Accès aux Téléchargement | Résumé | Contact | Référence BibTex | Référence EndNote |


V. Grabe, H.-H. Bülthoff, D. Scaramuzza, P. Robuffo Giordano. Nonlinear Ego-Motion Estimation from Optical Flow for Online Control of a Quadrotor UAV. The International Journal of Robotics Research, IJRR, 34(8):1114-1135, Juillet 2015.

Télécharger l'article [Aide]

Charger l'article : Doi page

Charger l'article sur Hal: Hal : Hyper Archive en ligne

Charger l'article : Adobe portable document (pdf) pdf

Copyright :

Les documents contenus dans ces répertoires sont rendus disponibles par les auteurs qui y ont contribué en vue d'assurer la diffusion à temps de travaux savants et techniques sur une base non-commerciale. Les droits de copie et autres droits sont gardés par les auteurs et par les détenteurs du copyright, en dépit du fait qu'ils présentent ici leurs travaux sous forme électronique. Les personnes copiant ces informations doivent adhérer aux termes et contraintes couverts par le copyright de chaque auteur. Ces travaux ne peuvent pas être rendus disponibles ailleurs sans la permission explicite du détenteur du copyright.

Cette page est générée automatiquement par bib2html v217, © Inria 2002-2021, Projet Lagadic/Rainbow


For the control of unmanned aerial vehicles (UAVs) in GPS-denied environments, cameras have been widely exploited as the main sensory modality for addressing the UAV state estimation problem. However, the use of visual information for ego-motion estimation presents several theoretical and practical difficulties, such as data association, occlusions, and lack of direct metric information when exploiting monocular cameras. In this paper, we address these issues by considering a quadrotor UAV equipped with an onboard monocular camera and an inertial measurement unit (IMU). First, we propose a robust ego-motion estimation algorithm for recovering the UAV scaled linear velocity and angular velocity from optical flow by exploiting the so-called continuous homography constraint in the presence of planar scenes. Then, we address the problem of retrieving the (unknown) metric scale by fusing the visual information with measurements from the onboard IMU. To this end, two different estimation strategies are proposed and critically compared: a first exploiting the classical extended Kalman filter (EKF) formulation, and a second one based on a novel nonlinear estimation framework. The main advantage of the latter scheme lies in the possibility of imposing a desired transient response to the estimation error when the camera moves with a constant acceleration norm with respect to the observed plane. We indeed show that, when compared against the EKF on the same trajectory and sensory data, the nonlinear scheme yields considerably superior performance in terms of convergence rate and predictability of the estimation. The paper is then concluded by an extensive experimental validation, including an onboard closed-loop control of a real quadrotor UAV meant to demonstrate the robustness of our approach in real-world conditions

Référence BibTex

   Author = {Grabe, V. and Bülthoff, H.-H. and Scaramuzza, D. and Robuffo Giordano, P.},
   Title = {Nonlinear Ego-Motion Estimation from Optical Flow for Online Control of a Quadrotor UAV},
   Journal = {The International Journal of Robotics Research, IJRR},
   Volume = {    34},
   Number = {8},
   Pages = {1114--1135},
   Month = {July},
   Year = {2015}

Référence EndNote [help]

Charger la référence EndNote (.ref)