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Nonholonomic Distance to Polygonal Obstacles for a
Car-Like Robot of Polygonal Shape

Paolo Robuffo Giordano, M. Vendittelli, Jean-Paul Laumond, and
Philippe Souères

Abstract—This paper shows how to compute the nonholonomic distance
between a polygonal car-like robot and polygonal obstacles. The solution
extends previous work of Reeds and Shepp by finding the shortest path to a
manifold (rather than to a point) in configuration space. Based on optimal
control theory, the proposed approach yields an analytic solution to the
problem.

Index Terms—Car-like robots, nonholonomic distance, optimal control
theory, shortest paths.

I. INTRODUCTION

Distance computation plays a crucial role in robot motion planning.
Numerous motion-planning algorithms rely on obstacle distance
computation, e.g., skeletonization and potential field methods [1].
The distance from a robot configuration to an obstacle is the length
of the shortest feasible path bringing one point on the robot boundary
in contact with the obstacle. Car-like robots being nonholonomic
systems, any path in configuration space is not necessarily feasible.
As a consequence, the length of the shortest feasible path induces
a special metric, the so-called nonholonomic metric, which is not a
Euclidean metric [2].

The search for a shortest path between a polygonal robot and a polyg-
onal obstacle in physical space can be easily reformulated into the con-
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Fig. 1. Car-like robot.

figuration space C, i.e., representing the robot as a point and mapping
the obstacles in their C-obstacle counterparts. The original problem is
then transformed in finding the shortest path to the manifold defining
the C-obstacle.

Adopting an optimal control point of view, the proposed approach
makes use of transversality conditions on the final state of the robot,
which make the problem square everywhere (i.e., same number of un-
knowns and equations), and provide deeper insight of the solution.
Moreover, simple continuity arguments allow restricting the search for
the optimal path to a subset of the Reeds and Shepp (RS) families.

II. CAR-LIKE ROBOTS AND THE SHORTEST PATH PROBLEM

The configuration of a car-like robot, sketched in Fig. 1, at the instant
t is completely defined in C = 2 � S1, by the position (x(t); y(t))
of the reference point and the heading direction �(t) of the robot. The
model of the car to which we will refer in this paper is described by the
control system

_x(t) = cos �(t) � u1(t)

_y(t) = sin �(t) � u1(t)
_�(t) = u2(t)

(1)

where ju1(t)j = 1 and ju2(t)j � 1 are, respectively, the linear and
angular velocities of the car. This model is referred to as the RS car.

A. Shortest Paths Without Obstacles

The study of the shortest paths between any two configurations in
the absence of obstacles has been addressed first by Dubins [3], who
proved the existence of a sufficient set of optimal paths when u1 � 1
(the robot moves only forward).

Reeds and Shepp [4] extended this result to the forward/backward
case (u1 = �1), showing that there always exists a shortest path
composed of straight lines and turns of minimal radius with at most
two cusps, among a family of 48 different paths; moreover, every path
is specified by three parameters representing the length of the basic
components (arcs, lines). The problem has been revisited from a con-
trol-theory point of view by Boissonnat et al. [5] and by Sussman and
Tang [6], who reduced the sufficient family to 46 paths.

Souères and Laumond, using these results, computed a synthesis of
the shortest paths [7], i.e., a partition of the manifold 2�S1 into cells
defined by the type of optimal paths (among the 46 candidates) that
reach their points. They also showed the metric nature of the length of
the shortest path between two configurations [2].

B. Shortest Paths With Obstacles

The problem of computing the shortest paths for a car-like robot in
the presence of obstacles is a very difficult one. A shortest path for an
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RS car may not exist [8]. The problem for Dubins’ car has been proved
to be NP-hard [9]. In [10], Fortune and Wilfong propose an algorithm
running in exponential time and space to decide if a path exists, but the
algorithm does not generate a solution. Mirtich and Canny [11] propose
a skeletonization of C which takes into account the nonholonomic con-
straint. The skeleton is then used for planning feasible trajectories. The
algorithm, however, requires the discretization of the robot’s configu-
ration space C and of the images of the obstacles in C.

Strictly related to our work is [12], where Moutarlier et al. explored
an analytic tool to compute shortest paths for a polygonal RS car to
some manifold in C by minimizing a distance function of three vari-
ables (the three RS parameters) with equality constraints (the equation
of the manifold). The proposed approach leads to an analytic solution
for “optimally crashing” a car-like robot against obstacles of, in prin-
ciple, any shape. However, the implementation requires managing the
original 46 paths, and every possible combination of subpaths, by re-
cursively minimizing the distance function along the target manifold,
its boundaries, and any set of singular and nonregular points [12]. Ven-
dittelli et al. [13] developed a geometric method to compute obstacle
distance for a pointwise RS car and Dubin’s car to polygonal obsta-
cles. The algorithm has complexity O(n) for a polygonal environment
with n vertices. In [14], Vendittelli et al. extended their previous work
by considering a polygonal car-like robot; using an optimal control ap-
proach, they reduced the problem to the minimization of a function of
one variable, namely, the robot’s final orientation.

C. Contribution of the Paper

Our work naturally extends [13] by computing the nonholonomic
distance for a polygonal RS car in a polygonal obstacle environment.
The approach adopted, however, differs from [12]–[14], since it takes
advantage of the combination of tools from optimal control theory and
geometric constructions, allowing reducing the optimal paths from 46
to 26, and solving the problem without resorting to numerical optimiza-
tion techniques. To find the shortest path to a manifold, it is sufficient
to solve the problem for each of the 26 RS paths and then to choose
the shortest solution. Moreover, transversality conditions from optimal
control tools provide a deeper insight into the general structure of the
shortest paths.

The paper is organized as follows. In Section III, we briefly summa-
rize the general structure and properties of the RS paths. In Section IV,
we attack the main problem addressed in this paper by decomposing
it into three subcases handled separately. In Section V, we reduce the
original families of RS paths by showing that some paths can never be
optimal, and in Section VI, we focus on the smoothness of the defined
nonholonomic distance.

III. SHORTEST PATHS FOR THE RS CAR

This section summarizes the results presented in [5]–[7]. In accor-
dance with the notation proposed in [6], we will useC and S to denote,
respectively, an arc of circle of minimum radius and a straight-line seg-
ment, while the symbol j denotes a cusp at the junction of two arcs of a
circle. To specify the direction of motion along the path, l and r will de-
note, respectively, a counterclockwise or clockwise sense of rotation of
the direction vector�!v , while s will mean motion along a straight seg-
ment. The superscript +(�) will denote forward (backward) motion.
Subscripts are positive real numbers giving the length of each elemen-
tary path composing an optimal path, and they will be referred to as
path parameters (a; b; e). For example, a path of Type CjCC may be
specified as l+a l

�

b r
�
e , that is, forward left turn of length a, backward

left turn of length b, and backward right turn of length e.
Letting �(t) = (x(t); y(t); �(t))T , g1(�) = (cos � sin � 0)T ,

g2(�) = (0 0 1)T , and expressing (1) in the form _� = f(�; u) =

Fig. 2. Example of optimal path Type-B.

g1(�)u1+ g2(�)u2, we want to minimize the time to travel from �(ti)
to �(tf). The starting configuration �(ti) is assumed, without loss of
generality (wlog), to be the origin of the configuration space (0 0 0)T .
For the RS car, this is equivalent to minimizing the length of the path
linking �(ti) to �(tf ). In this case, the Hamiltonian is expressed by
H = h ; fi =  1 cos �u1 +  2 sin �u1 +  3u2 = �1u1 + �2u2,
where  is the costate satisfying the adjoint equation

_ (t) = �
@H

@�
( (t); �(t); u(t)) = � (t) u1

dg1
d�

+ u2
dg2
d�

(2)

for almost all t, and �1 = h ; g1i, �2 = h ; g2i represent the
switching functions. If a constraint on the final state �(�f) = 0 of
dimension �f is present, it is possible to derive a set of transversality
conditions  f = MT � , where M = @�=@�f is a �f � 3 matrix, and
� is an auxiliary vector of dimension �f [15].

Results from [5] and [6] allow restricting the search of optimal paths
for the RS car to a sufficient family of paths consisting of concatena-
tions of at most five pieces, that are either arcs of circle of minimum
radius (C) or straight-line segments (S). These paths are of two types:

A paths CjCjC , along which �1 � 0 and either u2 � 1 or u2 �
�1;

B paths lying between two parallel linesD+ andD�, and such that
straight-line segments and points of inflection are on the median
line D0 of both lines, the cusps lie on D+ and D�, and at each
cusp, the heading direction is perpendicular to the common di-
rection of the lines (see Fig. 2).

D+, D�, and D0 are defined as the lines

D0 = (x; y) 2 2j 1y(t)�  2x(t) +  3(t0) = 0

D+ = (x; y) 2 2j 1y(t)�  2x(t) +  3(t0) +  0 = 0

D� = (x; y) 2 2j 1y(t)�  2x(t) +  3(t0)�  0 = 0

where 0 is a negative constant given by the condition of maximization
of the Hamiltonian. For almost all t 2 [t0; t1], the following equality
holds:

� 0 = h (t); g1 (�(t))iu1 + h (t); g2 (�(t))iu2

= max
(v ;v )2U

(h (t); g1 (�(t))iv1 + h (t); g2 (�(t))iv2) : (3)

From (2) and (3), it can be deduced that:
1)  1 and 2 are constants, and the ratio 2= 1 gives the common

direction of D+, D�, and D0;
2) the line D0 corresponds to the equation

 3(t) =  1y(t)�  2x(t) +  3(t0) = 0: (4)
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The sufficient family of optimal paths can be partitioned into nine
path types, as described in (5). The first path type (I) represents Type-A
trajectories, whereas the remaining types, (II)–(IX), represent Type-B
trajectories

(I) CajCbjCe a � 0; b � 0; e � 0a+ b+ e � �

(II) CajCbCe 0 � a � b; 0 � e � b0 � b � �=2

(III) CaCbjCe 0 � a � b; 0 � e � b0 � b � �=2

(IV ) CaCbjCbCe 0 � a � b; 0 � e � b0 � b � �=2

(V ) CajCbCbjCe 0 � a � b; 0 � e � b0 � b � �=2

(V I) CajC�=2SeC�=2jCb 0 � a � �=2; 0 � b � �=2e � 0

(V II) CajC�=2SeCb 0 � a � �; 0 � b � �=2e � 0

(V III) CaSeC�=2jCb 0 � a � �=2; 0 � b � �e � 0

(IX) CaSeCb 0 � a � �=2; 0 � b � �=2e � 0:

(5)

Some remarks are in order.
1) Every RS path maps smoothly the parameter space into the config-

uration space [12], i.e., for each path pi, one can define a function
Wi :

3 �! C associating the final configuration in C with the
parameters (a; b; e)

xi
yi
�i

= Wi(a; b; e) =

Xi(a; b; e)

Yi(a; b; e)

�i(a; b; e)

(6)

where Xi, Yi, and �i are smooth.
2) Denoting with Lp(a; b; e) the length of the path p defined by the

parameters (a; b; e), the following hold:
— Type-A trajectories: Lp = j�(tf )j
— Type-B trajectories: Lp > j�(tf)j.

3) LinesD+,D�,D0, and transversality conditions are defined only
for paths of Type-B.

IV. DISTANCE FUNCTION

The aim of this paper is to find the length d of the shortest path
bringing any point on the boundary of a RS polygonal robot in con-
tact with any point on the boundary of any polygonal obstacle in
physical space. The searched path will link the robot’s starting con-
figuration to the configuration in contact with one of the obstacles
in the environment; it will, therefore, belong to one of the families
of RS-optimal paths (5) linking any couple of robot configurations.
For this reason, the search will be restricted to these families. As
shown by [2], the length of the RS shortest paths induces a metric on
the configuration space, and this metric is equivalent to the sub-Rie-
mannian distance [16] associated with the control system representing
the RS car model.

The length d is, therefore, a distance to the closest obstacle in the
configuration space and is a function of the robot’s current state and of
the shapes of the robot and the obstacles.

In this paper, we will assume, wlog, that the robot starting configu-
ration is the origin (0; 0; 0)T . It is useful to partition the distance com-
putation problem into the three subproblems of bringing into contact
(see Fig. 3):

(i) one vertex qi of the robot with one vertex oj of the obstacle;
(ii) one vertex qi of the robot with the line vj supporting one edge

ojoj+1 of the obstacle;
(iii) the line wi supporting one edge qiqi+1 of the robot with one

vertex of the obstacle oj .

Fig. 3. Partitioning the distance computation.

If one is able to solve these subtasks, it is possible to find the shortest
path to an obstacle by iterating the three steps over all the robot/obstacle
vertex/edge combinations, and by choosing the minimum from among
the obtained path lengths.1 The three problems (i)–(iii) can be associ-
ated with the following three functions:

1) LV V : 4 ! (qi; oj)! LV V (qi; oj)

2) LV E : 4 ! (qi; vj)! LV E(qi; vj)

3) LEV : 4 ! (wi; oj)! LEV (wi; oj)

where LV V , LV E , and LEV will be defined in the following sections.
With this notation, the distance is defined as

d() : 8!

d()=min min
i;j

LV V (qi; oj);min
i;j

LV E(qi; vj);min
i;j

LEV (wi; oj) :

(7)

In the next sections, we will describe the approach adopted to solve
each specific subproblem. The set of all 46 RS paths will be denoted
by fOPg, while pk 2 fOPg, k = 1; . . . ; 46 will denote an optimal
path of the sufficient family, with the associated RS path parameters
(ak; bk; ek) determining its length Lp (ak; bk; ek).

A. Vertex–Vertex Distance

The solution to problem (i), using the specific path pk , is provided
by the map

V Vp : 4 ! 3 (qi; oj)! (ak; bk; ek):

The function LV V (qi; oj) is then defined as

LV V (qi; oj) = min
p 2fOPg

Lp (V Vp (qi; oj)) : (8)

Remarks: When solving for each pk , three scenarios may arise:
• the solution does not exist, i.e., at least one RS path parameter is

complex;

1Note that in a polygonal environment, the problem of bringing into contact
one edge of the robot with the line supporting one edge of the obstacle is already
covered by points (ii) and (iii) [12].
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Fig. 4. Projection on the plane (dotted arc) of the contact manifold.

• the solution exists but it is not valid, i.e., at least one RS path
parameter is outside its range of validity;

• a valid solution exists.
In the first two cases, Lp (V Vp (qi; oj)) is discarded by setting it
equal to 1.

1) Handling Type-B Paths: Preliminary remark: throughout the fol-
lowing sections, time dependency is omitted when no confusion is
possible.

In order to find the solution of V Vp (qi; oj) for each path pk of
Type-B, we will use a property derived from the transversality condi-
tions on the final state. Let (li; �i) be the pair representing the length of

the segmentPqi and the angle between the vectors
�!
Pqi and�!v (Fig. 3).

The coordinates (qi ; qi ) of the robot vertex are

x+ li cos(� + �i) = qi
y + li sin(�+ �i) = qi :

(9)

Denoted by (oj ; oj ) the Cartesian coordinates of the target vertex oj
of the obstacle, we define the 1-D contact manifoldCij

V V(�)=f�jqi=ojg,
which can be represented by

�ijV V (�) =
x� oj + li cos(� + �i)

y � oj + li sin(� + �i)
=

0

0
: (10)

Equation (10) describes a vertical helix centered on oj (Fig. 4) and will
be used for finding the solution path, i.e., for determining the three RS
path parameters (a; b; e). An additional constraint is, however, neces-
sary to make the problem “square” (three parameters and three equa-
tions), and it will be derived from transversality conditions, as shown
below.

Lemma 1: A necessary condition for a path of Type-B to be optimal
for problem (i) is that the line D0 passes through the point oj .

Proof: Let �f = (x(tf ); y(tf ); �(tf)) be the final robot config-
uration. The constraint �f 2 Cij

V V on the robot final state, expressed
as �ijV V (�f) = 0, can be used to derive the transversality condition
 f = MT � , where

M =
@�ijV V (�f)

@�f
=

1 0 �li sin (�(tf) + �i)

0 1 li cos (�(tf) + �i)

and � = (�1 �2)
T . We get the system

 1 = �1
 2 = �2
 3(tf) = �li sin (�(tf) + �i) �1 + li cos (�(tf) + �i) �2

Fig. 5. Straight path (left) versus the shortest path (right) satisfying Lemma 1
condition.

and substituting  1 and  2 in the third equation, we obtain

 3(tf) = �li sin (�(tf) + �i) 1 + li cos (�(tf) + �i) 2:

Using the definition of  3(t), we can get

 3(t0) = �  1 (y(tf) + li sin (�(tf) + �i))

+  2 (x(tf) + li cos (�(tf) + �i))

= �  1oj +  2oj :

Thus, the line D0 has equation

 3(t) =  1 y(t)� oj �  2 (x(t)� oj ) = 0 (11)

which implies our thesis.
Recalling from (6) that every path pk is associated with a smooth

map (xk; yk; �k)
T = Wk(a; b; e), and denoting by Y k and Xk the

final positions computed via (6), associated with the subpath of pk
which brings the robot on the line D0 (where  3(t) = 0),2 we get
from (10) and (11) a square system of equations for every V Vp di-
rectly projected into the RS parameter space

�ijV V (Wk(a; b; e)) = 0

 1 � Y k(a; b; e)� oj �  2 � Xk(a; b; e)� oj = 0:
(12)

The solution of (12) yields the candidate optimal path.
The condition stated in Lemma 1 deserves some additional consider-

ations. Suppose that we want to bring the point located on the robot at
(l = 0:3; � = �=4) from the home position P0(l cos(�); l sin(�)) to
the goal position P1(1+ l cos(�); l sin(�)), i.e., we want to shift it by
L = 1 to the right [Fig. 5 (left)]. A trivial solution would be to travel
along the x axis for a distance exactly equal to L. This kind of path,
however, does not satisfy Lemma 1, since the line D0 (the x axis, in
this case) does not pass through P1; hence, there exists a shorter path
of some other shape. The shortest path, shown in Fig. 5 (right), is of
type l+a S

+
e r

+

b with a = 0:188, b = 0:449, e = 0:327, and total length
L = a + b + e = 0:964 < L.

This strange phenomenon can be explained by noting that although
we plan a path for the generic robot point qi, such a path must minimize
a cost associated with the control point P . On straight segments, both
points cover the same distance, but this is not true for arcs where P
moves on circles of radius 1, and qi on circles of radius amplified by
its distance from P . Hence, the shortest path shall avoid straight lines

2For instance, if p is l l r , D is reached through the subpath l l .
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Fig. 6. Region 
 is the intersection of two discs.

as much as possible, since arcs can be cheaper in terms of traveled
distance of P with respect to qi.

2) Handling Type-A Paths: The solution of problem (i) when pk
is a trajectory of Type-A cannot rely upon transversality conditions;
a direct geometric approach will be adopted instead. The method is
the same for all three LV V , LV E , and LEV distances, though in this
specific case, it can be applied straightforwardly (the other cases will
need some more work). We will focus only on � 2 [0; �], the other
case being symmetric; according to [7], define 
� as the region of the
plane3 P� associated with the family CjCjC . Every 
� is a bounded
and closed region centered at the origin composed of the intersection
of two discs (see Fig. 6); moreover, the family f
�g, � 2 [0; �] is a
monotonic succession of sets such that:


0 = (0; 0)


� � 
� ; if �1 < �2.

Recalling that for Type-A paths,L = �, we can consider the regions
�

as level sets of the path lengthL evaluated for different values of �. It is
clear, then, that tangency between the CjCjC domain and the contact
manifold can occur only at the boundaries of regions 
� , where only
CjC paths are defined, i.e., one of the RS parameters is always equal
to zero. Thus, the equation

�ijV V (Wp (0; b; e)) = 0 (13)

is square, and can be solved analytically.

B. Vertex–Edge Distance

In this section, we will show the method proposed to solve problem
(ii); some preliminary remarks may be useful to better understand our
approach. In this case, the contact manifold being 2-D, two more con-
straints are needed in order to get a square equation system. As usual,
these additional constraints will be derived from transversality condi-
tions on the final robot state. Moreover, since we assume the target
edge of the obstacle to be an unbounded line, there could be solutions
returning a contact point outside the edge boundaries (oj ; oj+1); in this
case, the solution is discarded.

Using the same notation of the previous section, we define the map

V Ep () : 4 ! 3 (qi; vj)! (ak; bk; ek)

3Planes whose points are reached with constant final orientation �.

Fig. 7. Vertex–Edge case. Projection on the plane (dotted lines) of the contact
manifold for two values of � (left); an example of shortest path to a line (right).

which solves problem (ii) for a given RS path pk returning the three
RS parameters and the contact point on the edge. The main LV E()
function can be expressed as

LV E(qi; vj) = min
p 2fOPg

Lp (V Ep (qi; vj)) (14)

with Lp (V Ep (qi; vj)) = 1 if the contact point on the edge lies
outside the edge boundaries, i.e., the minimization in (14) is performed
over the set (which can also be empty) of RS paths landing inside the
edge. All the remarks stated for (8) hold also in this case.

1) Handling Type-B Paths: Let y = mjx + nj be the equation of
the target edge vj ; by using (9), the contact manifold between qi and
vj is defined by Cij

V E(�) = f�jqi 2 vjg, and is represented as

�ijV E(�) = y �mjx� nj � limj cos(� + �i) + li sin(� + �i) = 0

which represents a 2-D surface whose projection on the plane xy for a
given � is a line parallel to vj [Fig. 7 (left)].

Lemma 2: If a Type-B path is optimal for problem (ii), then:
1) the line D0 is perpendicular to the line vj ;
2) the contact point lies at the intersection of D0 and vj .

Proof: The constraint �f 2 Cij

V E , expressed as �ijV E(�f) = 0,
yields  f = MT � , where M = @�ijV E(�f)=@�f is given by

M = (�mj 1 limj sin(�(tf ) + �i) + li cos(�(tf) + �i)):

Thus, we get the system

 1 = �mj�

 2 = �

 3(tf) = (limj sin (�(tf) + �i) + li cos (�(tf) + �i)) �

from which we get the following relations:

 2
 1

=�
1

mj

(15)

 3(tf) = �  1li sin (�(tf) + �i) +  2li cos (�(tf) + �i) : (16)

Point 1 of Lemma 2 is proved by (15); by using (4), (9), and (16), we can
compute the constant  3(t0) = � 1qi (tf) +  2qi (tf) that yields
 3(t) =  1(y(t) � qi (tf))) �  2(x(t) � qi (tf)), which implies
that the point qi at the end of the path must lie on the line D0. Thus,
combined with the contact condition between qi(tf) and the target line
vj , we prove point 2.
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Fig. 8. Geometric construction for handling Type-A paths.

Putting together the contact manifold constraint on the final state
and the two transversality conditions, we get again a square system of
equations for each path pk of Type-B.

As an example, in Fig. 7 (right), we show the solution for the line of
equation y = 0:1x+2 and the pair (li = 0:3; �i = �=4); the shortest
path is of type l�a l

+
�=2s

+
e r

+
b , with a = 0:099, b = 0:449, e = 0:268,

and total length L = a + b+ e + �=2 = 2:386.
2) Handling Type-A Paths: Although the conditions derived in

Section IV-A.2 are still valid for this case, they are no longer sufficient,
since

�ijV E (Wp (0; b; e)) = 0 (17)

is underspecified (one equation and two parameters). The missing in-
formation is recovered with the following geometric reasoning (see
Fig. 8): tangency between 
� and Cij

V E may occur on points H1, H2

(the intersection of the two circles), or on one of the two arcs bounding

� ; in Fig. 8, these three tangency conditions are represented by the
three generic lines vj , vj , vj . At pointsH1 andH2, the pathCjCjC
reduces to a single arcC , thus, the only free parameter can be computed
using (17). On the upper (lower) arc of circle, the angular coefficient
of vj matches the angle � between the vertical radius vector through
H1(H2) and the radius vector �!r through the tangency point H3. On
the other hand, � fixes one of the two parameters, i.e., b = � on the
upper circle and e = � on the lower circle [7], then (17) can be used
to obtain the second parameter.

C. Edge–Vertex Distance

The approach adopted to solve problem (iii) is very similar to the
method outlined in the last section. In particular, we assume an un-
bounded robot edge, and we discard any solution yielding a contact
point outside the edge boundaries (qi; qi+1). Defining

EVp () : 4 ! 3 (wi; oj)! (ak; bk; ek)

as the map which solves problem (iii) for a specific path pk , theLEV ()
function is

LEV (wi; oj) = min
p 2fOPg

Lp (EVp (wi; oj)) (18)

Fig. 9. Edge–Vertex case. Angles � (left). Projection on the plane (dotted
lines) of the contact manifold (right).

with Lp(LEV (wi; oj)) = 1 if the contact point lies outside the edge
boundaries.

1) Handling Type-B Paths: Let (qi; qi+1) be two adjacent robot
vertices. From (9), the linewi can be expressed as y = mi(�)x+ni(�),
where

mi(�) = tan (� + �0 )

ni(�) = qi �mi(�)qi

�0 = arctan
l sin(� )�l sin(� )

l cos(� )�l cos(� )

and �0 is the angle made by the edge wi and the direction vector �!v .
Fig. 9 (left) shows, for instance, the angles �0 , �0 relative to two edges
w1, w2 for a generic polygonal robot.

The coordinates of the target point oj being (ox; oy), the manifold
representing oj 2 wi is Cij

EV (�) = f�joj 2 wig and is expressed by

�ijEV (�) = oy �mi(�)ox � ni(�)

= (�ox + x + li cos(� + �i)) sin (� + �0 )

+ (oy � y � li sin(� + �i)) cos (� + �0 ) = 0

which describes, as � varies, a 2-D surface whose projection on the
xy plane is made of straight lines rotating at a fixed distance from oj
[Fig. 9 (right)].

Lemma 3: If a Type-B path is optimal for problem (iii), then:
1) line D0 must be perpendicular to the edge wi at the end of the

path;
2) the contact point lies at the intersection of D0 and wi.

Proof: The constraint �f 2 Cij
EV , expressed as �ijEV (�f) = 0,

yields the transversality conditions  f = MT � , where

M =
@�ijEV (�f)

@�f

= [sin (�(tf ) + �0 )� cos (�(tf) + �0 ) (�oy + y(tf ))

sin (�(tf) + �0 ) + (�ox + x(tf)) cos (�(tf) + �0 )] :

Hence, we get

 1 = sin (�(tf) + �0 ) �

 2 = � cos (�(tf) + �0 ) �

 3(tf) = ((�oy + y(tf )) sin (�(tf) + �0 )

+ (�ox + x(tf)) cos (�(tf) + �0 )) �
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which yields

 2
 1

= �
1

tan (�(tf ) + �0 )
= �

1

mi (�(tf))
(19)

 3(tf) = 1 (y(tf)� oy)�  2 (x(tf)� ox) : (20)

Equation (19) proves point 1 of Lemma 1; from (20), we have 3(t0) =
� 1oy+ 2ox, which yields  3(t) =  1(y(t)�oy)� 2(x(t)�ox).
This relation, together with the contact constraint between oj and the
line wi, proves point 2.

2) Handling Type-A Paths: The solution for Type-A paths follows
the same approach adopted in the previous section for the LV E case.
Referring to Fig. 8, if Cij

EV is tangent inH1 orH2, the solution degen-
erates to a single arc C (lines vj , vj ). If Cij

EV is tangent to one of the
two arcs of circle (e.g., line vj ), one of the two parameters (e; b) can
be computed from the angular coefficient of vj . For instance, if tan-
gency occurs on the upper circle, then e = 0, b = �(�+ �0), a = �0,
tan(� + �0) being the angular coefficient of vj .

V. REDUCTION OF THE SUFFICIENT FAMILY

In this section, we will reduce the set of optimal RS paths (5) by
showing that four of these families are never optimal, and can be ex-
cluded a priori from the computations. The proof takes advantage of
the continuity of the RS parameters (a; b; e) with respect to the param-
eter li of the robot. Some preliminary steps are required.

Lemma 4: For any robot/obstacle vertex/edge qi=oj , wi=vj , as in-
troduced in the beginning of Section IV, we have the following.

1) If L� = LV E(qi; vj) is the optimal solution of problem (ii) and
P �
l is the associated contact point, then L� = LV V (qi; P

�
l ).

2) If L� = LEV (wi; oj) is the optimal solution of problem (iii) and
P �
l is the associated contact point, then L� = LV V (P �

l ; oj).
Proof: The proof is given for point 1; point 2 can be proved

using the same approach. If L� 6= LV V (P �
l ; qi), then there exists a

shorter path p 6= p� bringing the vertex qi to P �
l . But then p would

be also the optimal solution for LV E(vj ; qi), thus contradicting the
hypothesis.

Lemma 4 allows focusing only on the LV V distance, since the other
two functions can always be reduced to this case. The solution of every
instanceLV V (qi; oj) is found by solving (12) for Type-B paths or (13)
for Type-A paths. We have also the following.

Lemma 5:  1 and  2 are smooth functions of the RS path parame-
ters (a; b; e).

Proof: It is convenient to split Type-B paths into two sets:
S1: paths without a straight segment, i.e., families (II)–(V);
S2: paths with a straight segment, i.e., families (VI)–(IX).

For S1 paths, the direction of D0 is perpendicular to the robot ori-
entation �c at a cusp, hence,  2= 1 = �1= tan(�c). For S2 paths,
the direction of D0 coincides with the constant robot orientation �s
on the straight segment, hence  2= 1 = tan(�s). Both �s and �c
are the orientations achieved after at most two basic RS path compo-
nents (two arcs of circle), and can be expressed as �1a + �2b, with
�1; �2 = f0; 1g depending on the RS path.

Hence, (12) and (13) are smooth with respect to the unknowns
(a; b; e) via the Wi maps, and with respect to (qi; oj) by construction
of the contact manifold Cij

V V and the transversality condition (11).
The RS parameters appear either algebraically (when relative to
straight segments) or inside trigonometric functions (when relative to
arcs of circle); a classic change of variable � = tan(�=2) applied to
each trigonometric function can transform these equations into a fully
algebraic set whose solution is smooth with respect to the coefficients,
which, in turn, are smooth functions of the li.

From [17], we know that when li = 0 (a pointwise robot), the op-
timal paths reduce to the following three families, where each path is
specified by only two parameters:

F1 : CajCb

F2 : CajC�=2Se

F3 : CaSe: (21)

Thus, the continuity of the three RS parameters with respect to li im-
plies that the nine families described in (5) must converge continuously
towards (21), i.e., one parameter must go to zero, and the resulting path
must be compatible with (21). We can then state the following.

Lemma 6: Path families (IV)–(VI) and (VIII) cannot be optimal for
problems (i)–(iii).

Proof:
• Families (IV) and (V): b cannot vanish, since the inequal-

ities a � b; e � b would yield a zero-length path. If a
or e vanish, the resulting path does not belong to (5), e.g.,
CbjCbCe 62 fF1;F2;F3g.

• Families (VI) and (VIII): when one of the three parame-
ters vanish, the resulting path never belongs to (5), e.g.,
SeC�=2jCb 62 fF1;F2;F3g.

Thus, the search for the optimal path can be restricted to the 26 paths de-
scribed by the families (I)–(III), (VII), and (IX). Formally, by defining
fOP �g, the set of these 26 optimal paths, the functions (8), (14), and
(18) can be reformulated as

LV V (qi; oj) = min
p 2fOP g

Lp (V Vp (qi; oj))

LV E(qi; vj) = min
p 2fOP g

Lp (V Ep (qi; vj))

LEV (oj ; wi) = min
p 2fOP g

Lp (EVp (oj ; wi)) :

VI. SMOOTHNESS

Here, we study the smoothness of the distance function (7) with
respect to its arguments, i.e., the actual robot state and its shape.
Intuitively, we would like to have a smooth measure of how far
the obstacles are while a robot of any shape moves through the
environment. Actually, such desired feature can be guaranteed almost
everywhere for (7).

Lemma 7: The distance function (7) is piecewise smooth, and the
not-derivable points are located at the switches between the LV V ,
LV E , and LEV functions.

Proof: The distances LV V ; LV E ; LEV being smooth on their
own, as shown in Section VII, a problem may arise when one has to
switch among them. Such switches can occur at those configurations
where:

A distances between two distinct robot vertices and an edge coin-
cide, i.e., there exist two different but equivalent shortest paths
linking the two vertices to the edge;

B the contact point Pl, computed with the LV E or LEV func-
tion, coincides with a vertex of the obstacle or of the robot,
respectively.

Proof for case 1) is trivial; for case 2), Lemma 4 guarantees that for
such configurations, the three distances match exactly. Thus, when the
LV V ; LV E , andLEV functions are taken together, as in (7), they actu-
ally define a piecewise smooth function, since the switching points are
continuously connected.

As an example, we computed the distance from a bounded seg-
ment P1P2 of a rectangular robot against its initial orientation
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Fig. 10. Distance (7) versus initial orientation (left) of robot R from the seg-
ment P P (right).

[Fig. 10 (right)]; as expected, while the robot turns, the distance is
smooth almost everywhere [Fig. 10 (left)]. Values for the robot and the
segment are

R1 : l1 = 0:28 �1 = �=6

R2 : l2 = 0:2 �2 = 3�=4

R3 : l3 = 0:2 �3 = 5�=4

R4 : l4 = 0:28 �4 = 11�=6

P1 : (�0:3; 0:4)

P2 : (0:3; 0:4):

VII. CONCLUSION

In this paper, we presented an analytical method to compute the non-
holonomic distance of a polygonal RS car from a polygonal obstacle.
By extending the original RS work, we computed the shortest distance
to a manifold (the C-obstacle), rather than to a point. In particular, we
were able to reduce this problem to that of finding the solution of a set of
algebraic equations by using geometric and optimal control arguments,
which also provided deeper understanding of the underlying structure
of the shortest paths. Moreover, the distance d(�) being a piecewise
smooth function of the robot state �, it is easy to compute analytically

the gradient
�!
r�d(�) almost everywhere; thus, it is possible to build an

artificial potential field with d(�).
The computation of a candidate optimal path is performed in con-

stant time. For a robot and an environment with m and n vertices, re-
spectively, the complexity is O(3 �m � n � 26), where 3 accounts for
the three subproblems that must be solved to compute the distance, and
26 accounts for the number of candidate paths whose length will deter-
mine the distance value.
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Metric-Based Iterative Closest Point Scan Matching
for Sensor Displacement Estimation

Javier Minguez, Luis Montesano, and Florent Lamiraux

Abstract—This paper addresses the scan matching problem for mobile
robot displacement estimation. The contribution is a new metric distance
and all the tools necessary to be used within the iterative closest point frame-
work. The metric distance is defined in the configuration space of the sensor,
and takes into account both translation and rotation error of the sensor.
The new scan matching technique ameliorates previous methods in terms of
robustness, precision, convergence, and computational load. Furthermore,
it has been extensively tested to validate and compare this technique with
existing methods.

Index Terms—Mobile robots, scan matching, sensor displacement esti-
mation.

I. INTRODUCTION

A key issue in autonomous mobile robots is to keep track of the ve-
hicle position. One strategy is to estimate the robot displacement using
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