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Abstract— Robotic vision has become an important field of
research for micro aerial vehicles in the recent years. While
many approaches for autonomous visual control of such vehicles
rely on powerful ground stations, the increasing availability
of small and light hardware allows for the design of more
independent systems. In this context, we present a robust
algorithm able to recover the UAV ego-motion using a monoc-
ular camera and on-board hardware. Our method exploits the
continuous homography constraint so as to discriminate among
the observed feature points in order to classify those belonging
to the dominant plane in the scene. Extensive experiments on
a real quadrotor UAV demonstrate that the estimation of the
scaled linear velocity in a cluttered environment improved by
a factor of 25% compared to previous approaches.

[. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are becoming an in-
creasingly popular robotic platform for a large variety of
applications, ranging from typical ‘spatial awareness’ tasks
such as mapping, patrolling, surveillance, inspection, to the
more recent field of Aerial Service Robotics where a direct
interaction with the environment is envisaged. The recently
EU-funded projects sFly [1], AIRobots [2] and ARCAS [3]
show the high level of interest within the scientific commu-
nity in exploiting these systems. In this context, quadrotor
UAVs are a particularly popular choice thanks to their low
cost, mechanical simplicity and robustness, low weight and
size, and high agility. This has led to an impressive number
of results, both in terms of accurate motion control and
sensor-based autonomy. In fact, contrarily to fixed wing
aircrafts, quadrotors can easily navigate in small cluttered
indoor scenes, and then represent a highly valuable choice
for operations in unaccessible or generically hazardous en-
vironments.

Pivotal for the autonomy of any mobile robot and, in
particular, of UAVs/quadrotors is the ability to obtain in-
formation on the surrounding environment to, e.g., detect
the presence of obstacles or estimate the robot self-motion.
Among the many existing sensors, cameras represent a
valuable tool for obtaining a rich sensory feedback combined
with the benefits of being small, light weight and affordable
devices. Use of cameras for real-time robotic applications,
i.e., robotic vision, lies at the intersection of robotics and
computer vision and constitutes an active field of research
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in, e.g., providing sufficiently reliable spatial localization
to mobile robots. This goal is reaching a good maturity
thanks to the increasing availability of powerful small PCs
which allow to process on-board and in real-time the high
information content generated by cameras. Thus, cameras
are of particular interest for use on flying vehicles and have
been exploited in many indoor and outdoor scenarios, see,
e.g., leader-follower and automatic landing maneuvers in [4],
[5] as well as for full three dimensional mapping of the
environment [6], [7].

In this work, we consider the problem of self-motion
estimation for a quadrotor UAV equipped with a monoc-
ular onboard camera by exploiting measurements of the
instantaneous optical flow w.r.t. a static environment. Use of
optical flow for self-motion estimation has a long history in
computer and robotic vision. It has been used in the context
of UAVs in simulated environments [8], using on-board
hardware [9] or in closed-loop control [10]. However, only
recently some solutions presenting full closed-loop motion
control based on optical flow and relying on sole on-board
hardware have been presented [11]. One of the advantages of
optical-flow based solutions is the low-computational power
required for estimating self-motion. This is in contrast with
more sophisticated algorithms based on 3D map reconstruc-
tion [12], [13], [14], which rely on ad-hoc ground stations for
implementing the intensive computations needed to maintain
a map of large environments.

In particular, this paper extends the results presented
in [11] which were still based on several assumptions on the
observed environment, namely the fact that all the detected
feature points were assumed as belonging to a single ground
plane. While this assumption is usually reasonable in many
outdoor and even indoor environments, it can be clearly re-
strictive in other situations. We therefore present an approach
to segment a dominant plane of any orientation within an
unknown environment. Besides being able to still recover
self motion, we also obtain, as a byproduct, the possibility of
classifying features as belonging to potential obstacles. This
then allows for a robust ego-motion estimation by means of
a computationally light approach. Furthermore, as opposed
to more sophisticated systems, our approach does not rely
on the presence of a map or any other prior knowledge of
the scene.

The paper is structured as follows: in Sect. II, we describe
the theoretical foundations of our approach and line out its
main features. In Sect. III we present an algorithm able to
exclude outlier features from the dominant plane, and in
Sect. IV we illustrate a practical method for coping with



high frame rates during the computation of optical flow.
Section V then presents our platform and reports the results
of the conducted experiments, which are then discussed in
Sect. VI. Finally, Sect. VII draws some concluding remarks
and addresses future projects.

II. SUMMARY OF SELF-MOTION ESTIMATION
FROM OPTICAL FLOW

In this work, we exploit the 4-point algorithm for planar
scenes based on the continuous homography constraint [15]
in order to solve the self-motion estimation problem. This
is complemented by taking into account the angular velocity
measurements obtained from an on-board Inertial Measure-
ment Unit (IMU) in order to improve the quality of the self-
motion estimation. Full details of this approach can be found
in [11]. For the reader’s convenience, we will nevertheless
briefly summarize the main features of the employed method.

In our setup, we consider a facing down camera at an angle
of 45° w.r.t. the forward direction of motion. Features in the
environment are tracked between consecutive frames to com-
pute an optical flow field ® = ((x1, w1),..., (Tn, u,)) as
function of n pairs (x;, u;) of detected features on the image
plane z; € R? and associated image velocities u; € R®. In
many scenarios, such as indoor hallways or areal coverage,
one can safely assume presence of a dominant ground plane
spanning most of the observed features. This assumption
is exploited by the classical reconstruction algorithm based
on the continuous homography constraint [15], which was
extended in [11] to include measurements of the angular
velocity from an onboard IMU.

A. Review of the continuous homography constraint

Seen from a moving camera, the apparent velocity of a
point X € R3 still in space as a result of the camera motion
is given by

X =0X+v (1)
where v € R3, w € R3 are the camera linear/angular velocity
(both expressed in the camera frame), and @ € so(3) is the
skew-symmetric matrix associated to the vector w € R3.

Consider a set of features located on a common plane
of equation N” X = d where N € S? is the unit normal
vector to the plane, and d € R the distance of the plane to
the camera frame. The plane constraint can be rephrased as
%NTX =1 so that eq. (1) becomes:

: 1 1
X =oX +vgNTX = (w + vaT) X=HX. (2

Matrix H € R®*3 is commonly referred to as continuous
homography matrix. H encodes the camera linear/angular
velocity (v, w), as well as the scene structure (N, d).

Defining A = X for a scalar depth factor A as the image
of a point X, and exploiting the fact that X = Az + A\u and
T = u, where u is the observed velocity of the point  on
the image plane, we get:

w— Hz - §m 3)

The depth factor A\ can be removed by multiplying both
sides of (3) with &. We then obtain the so-called continuous
homography constraint

THx = Tu @)
since vsv = 0 for any vector v and scalar s.

B. The extended 4-point algorithm

In order to retrieve H, we stack the elements of H into
the vector H® = [H11, Hap, -+, H33] € RY and rewrite (4)
as

aTH® = zu @)

where a € R%%3 stands for the Kronecker product  ® &.
This allows to stack all the a; obtained from n tracked
features into one cumulative matrix A = [aq,- - ,an]T €
R37*9, Similarly, we stack all #;u; into a matrix B =
[®111, -, Zpu,]T € R3 and generalize (5) to the case
of n features:

AH® = B. (6)

Using standard methods described in the literature [15], it is
possible to recover H from eq. (6).

Since the gyroscopes of any typical onboard IMU directly
provide a measurement of the angular velocity wryy, we
can consider w = wyyy as known from external (i.e., not
vision-based) sources. Knowledge of w can then be used
to derotate the perceived optical flow field. Therefore, we
subtract the rotational components from the perceived flow
using the interaction matrix which relates u to (v,w) [16]:

ul|  |ug 7 — Ty Ty
uy, Uy —(1+x,)?
After this manipulation, the remaining flow components

(z;, u}) do not contain any angular velocity component, thus
H reduces to

1+a22 — Xy
Taly — Ty

w. ()

H = %vNT. (8)

Since N spans H” and || N|| = 1, we can obtain N
from the singular value decomposition H = UXV7 as the
first column of matrix V. The inherent sign ambiguity can
be resolved by enforcing IN, > 0. Having retrieved IN, we
then obtain 7 as § = HN.

In order to find a unique solution for 5 and IN, the
observation of at least three feature pairs (x, u) is required.

III. SEGMENTATION OF FEATURES

In order to develop a robust velocity estimation approach
in presence of a dominant plane, we need a quantitative
measure of how well a given plane fits a set of observed
features. This also allows to classify new features as inliers
or outliers w.r.t. a candidate plane. In the following, we will
first propose a quantitative criterium in order to discriminate
between features on the plane and outliers. This will be
then used to obtain a real-time classification using on-board
hardware as the quadrotor explores an unknown environment.



A. Planarity measures

In order to test whether a certain group of observed
features belongs to a common plane, we considered two
different quantitative measures. We start noting that a pre-
requisite for solving eq. (6) is that B € R(A) where R(A)
denotes the range space of matrix A. This can be restated
as

rank(A) = rank([A B]) =8, 9)

since rank(A) = 8 by construction. Let o; > 0,7 =1... 10,
be the singular values of the augmented matrix [A B] €
R37%10 ordered from the largest to the smallest one. As a
measure of how well condition (9) is satisfied by the given set
of measured features/optical flow, one can monitor the value
of gg: in fact it is straightforward to check that o9 = 0 if (9)
holds, i.e., if all the observed points belong to a common
plane, and o9 > 0 otherwise. Therefore, the value of o9 > 0
can be exploited as a measure of how well a certain set of
features/optical flow meets the planarity constraint.

However, it is also possible to obtain an equivalent infor-
mation by resorting to a different argument. Let H S=A'B
represent the least-square solution of the linear system (6):
in order to obtain a measure of how well H® is actually
solving system (6), one can consider the ‘reprojection’ vector
R e R

R=B-AH°=B-AA'B=(I - AA"B

which should vanish if (6) admits an exact solution, i.e., if all
the observed feature points belong to the same plane. There-
fore, another equivalent measure of the planarity assumption
besides the previous og can be taken as r = || R||/n.

Although yielding similar information, we found in prac-
tice that  was much less sensitive to noise issues compared
to og. Additionally, the quantity r presents two advantages.
First, it does not require intense additional computations
since the pseudo-inverse of matrix A, i.e., AT, is already
computed when solving (6) for recovering the continuous
homography matrix. Secondly, this method can be used to
test effectively whether a new feature could be added to
an already known plane made of other feature points. For
this purpose, one can obtain H S = A'B using only the
features which are already known to form a plane. Then, by
constructing new A’ and B’ out of the new feature point
as described in Sect. II-B, one can decide the membership
to the given plane by testing || B’ — A’ AT B||/n against a
threshold.

B. Algorithm for robust velocity estimations

Having an effective measure to test both the plane hy-
pothesis and the assignment of new features to existing
planes, we can then design an algorithm able to dynamically
decide whether an observed feature belongs to the dominant
plane. Then, exploiting this clustering, we can obtain a better
estimation of the sought scaled linear velocity and plane
normal, while the angular velocity is, as explained before,
assumed measured from the on-board IMU.

In the following, we will describe in detail the steps run
as new images are captured:

e Initialization. At the beginning or after the dominant
plane was lost, a RANSAC inspired approach is used
to pick an initial set of features. The validity of the
potential plane is evaluated using the method described
above.

o Update phase. As a first step, all features already known
to be part of the plane are updated to the current location
as reported by the flow tracker. Additionally, all those
features which have not been observed in the current
frame are deleted from the plane.

o Estimation step. The scaled linear velocity is estimated
together with the plane normal vector. Thus, the esti-
mated linear velocity is independent of the particular
plane orientation, allowing for a broader range of envi-
ronments. This linear velocity is then taken as the best
estimation of v/d.

o Integration of new features. Afterwards, the algorithm
tests all other observed features against the current
model of the plane as built from known good features
using the method explained above. A threshold is used
to decide whether a new feature will be added to the
feature set.

o Validation of the feature set. The performance of each
feature is monitored over time. Thus, features which
turned out to be outliers will be excluded from the set
in this step.

IV. COMPUTATION OF OPTICAL FLOW

We made use of the established implementations provided
with OpenCV! to process the incoming frames. In particular,
we collected an initial set of Shi-Tomasi features [17] tracked
over time using the pyramidal version [18] of the Lukas-
Kanade tracker [19]. We limited the number of maintained
features to 150 in order to limit the computational load of
our algorithms. Whenever the size of the feature set dropped
below a moving threshold, new Shi-Tomasi features were
sampled and added to the set. Since both the floor and the
walls of our flight arena are uniformly white, we placed
structured carpets on the ground and posters on the walls
to provide enough structure. No special lighting conditions
were used apart from the default ceiling lights.

A. Interleaved Computation

Our previous study in [11] was carried out on less powerful
hardware reaching a frame rate for image acquisition and
processing of only 17 Hz. In that work, we were computing
the optical flow by means of subtraction of feature locations
on any two consecutive frames scaled by the elapsed time.
The current hardware however, as described in Sect. V,
supports considerably higher frame rates. Since efficient
feature tracking is always carried out in pixel space only,
a certain rounding error to the next pixel coordinate cannot
be avoided. An increased frame rate, however, results in the

lopencv.willowgarage.com



X

\
®

At =2 At=1

Fig. 1: The influence of high frame rates on the quality of
the computed optic flow. An observation made in a short
time frame will be subject to more noise than an observation
which was made over an extended period of time. The center
of a feature might be located on the edge of a pixel and
thus will be assigned to one of the adjacent pixels. Clearly,
the influence of this rounding error increases as the vector
shortens due to higher sampling rates.
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observation of even shorter optical flow vectors prone to an
highly increased rounding error as explained in Fig. 1.

While an increased resolution of the sensor or sub-pixel
refinement might reduce this problem at the cost of an
increased computational load, an extended temporal baseline
between the compared feature sets allows for the observation
of longer optical flow vectors. This can be done in an
interleaved manner in order to still make use of the benefits
of an increased update rate. Thus, we developed a method
to extract the optical flow over a predefined baseline of
length d while the best possible frame rate is still maintained.
Therefore, features are tracked from one frame to the next
as they are acquired, but the resulting feature locations for
each frame are stored in an array together with a time stamp.
Afterwards, the frame with a time stamp closest to ¢y, — d
is used for the computation of the optical flow relative to
the most recent image. The parameter d can be dynamically
selected depending on the current vehicle speed or other
practical considerations.

V. EXPERIMENTS
A. Experimental setup

For our experiments, we used a quadrotor purchased from
MikroKopter.de” with a customized low level controller. The
vehicle was equipped with a small computer holding an Intel
Atom 1.8 GHz dual core CPU and running 11.10 Ubuntu
Server. ROS (Robot Operating System) formed a middle
layer to allow interprocess communication. The visual in-
put was provided through a MatrixVision> mvBlueFOX
MLC200w monochrome 752 x 480 camera. The installed
78° lens projected an effective field of view of 54° x
38° onto the 1/3” sensor. In order to save computation
time, the calibration of the visual system was done before
the experiments using the Camera Calibration Toolbox for
Matlab*. We numerically calculated a lookup table that
allows the mapping of each pixel on the image plane to the
corresponding 3D coordinate = [z,y, 1]7 in camera frame.

2www.MikroKopter.de
3www.matrix-vision.com
4www.vision.caltech.edu/bouguetj/calib_doc/
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Fig. 2: Experimental setup: (a) Chart of the different frames
in consideration for the proposed algorithm. (b, c) The
quadrotor in its final configuration with IMU and camera
being highlighted. The body frame of the quadrotor is fixed
in the center of the two crossbars holding the motors. The
x-axis equals the red arm. The IMU is aligned with the body
frame while the camera is rotated around the z-axis and tilted
downwards by 45° with respect to these frames. The image
plane is fixed in 1 m distance to the camera. All frames
follow the NED convention commonly used in aviation.

As for the onboard IMU, we used a MicroStrain® 3DM-GX3
IMU at 200 Hz.

Figures 2(b) and 2(c) show the flight configuration used in
the experiments, while Fig. 2(a) visualizes the locations of
the sensor frames used in our setup. All measurements were
always converted into the camera frame for the computations.

To obtain an accurate ground truth within our flight arena
of 6 x 8 x 3 m, a Vicon® setup consisting of six Bonita
cameras was used. The linear velocity calculated from the
tracking data was filtered using a low-pass filter with a cut-
off frequency at 10Hz. As common with quadrotors, we
measured a strong rotational vibration around the z axis of
the body. Thus, we applied a 10 Hz low-pass filter on the
yaw readings of the gyroscopes as well.

B. Summary of the experiments

In order to evaluate the robustness of the proposed algo-
rithm, we conducted experiments using a regular quadrotor
UAV. The aim of these experiments was the comparison of
our feature filtering approach in the presence of obstacles
with our previously presented method which was based on
the assumption of a planar environment [11]. Since the on-
board hardware cannot run both algorithms in parallel for
comparison on the same sensory input while controlling the
robot, we recorded IMU, Vicon and video stream in a first
session. To allow for an evaluation of both systems on the
same trajectory and to obtain a ground truth, we controlled
the vehicle using feedback from the Vicon tracking sys-
tem during these recordings. Afterwards, the quadrotor was

Swww.microstrain.com

Sywww.vicon.com
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Fig. 3: A section of the trajectory which was used for
the collection of the presented results. The section shown
here was recorded during second 20 and second 50 of the
experiment and extends 2.2 min x, 2.1 miny and 1.2 m in
the z dimension.

commanded to track the same trajectory in space in order
to estimate the scaled linear velocity v/d using the two
algorithms. For the trajectory partly shown in Fig. 3, we took
off from a flat horizontal floor and moved towards a table
placed on the right side of the room. The UAV was then
commanded to explore the room in which two more objects
were placed: a small ladder and a stool. The three objects
were covered with similar patters as the floor and a back
wall to increase the chance of positive feature extraction.

Finally, we closed the loop and commanded the UAV
while relying purely on on-board hardware.

VI. RESULTS AND DISCUSSION

For the evaluation of the experiment, we consider a total
flight time of 120 s: Fig. 4(a-c) report the recovered scaled
linear velocity for a duration of 30 s. Each of the three plots
shows a comparison between: (i) the unmodified algorithm
which, for each image frame, considers all observed flow
vectors for the estimation of the linear velocities, (i7) the
presented clustering approach, and (ii7) the ground truth
obtained from the Vicon tracking system. For the reader’s
convenience, the obtained estimations of the scaled velocity
were multiplied by the current distance d from the dominant
plane as shown in Fig. 5.

The error relative to the ground truth for both system
during the 30 s section of the experiment is presented in
Fig. 6. Computing the mean error over the entire length of
the experiment, we find that our former approach reaches an
accuracy of 0.111 =*, while the proposed extended solution
yields an error of 0.089 “*. Thus, the proposed approach
was able to improve the estimation by a factor of 25%. The
standard deviation improved slightly from an initial 0.087 **
to 0.081 “* when using the modified algorithm.

Figures 7-8 present the clustering performance in two
different scenes. In the case of Fig. 7, our algorithm is able to
reject those features located on a table of 0.75 m height and
a board close by. Similarly, in the scene of Fig. 8, the system
excludes features on the back wall and two irregular shaped
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Fig. 4: Estimated linear velocities in camera frame along the
(a) x, (b) y and (c¢) z axis for both the unmodified and the
improved algorithm together with a ground truth as obtained
from a Vicon system. The unmodified approach considers all
available features for the computation of the velocity while
the presented modification is able to remove features which
are not on the dominant plane.
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Fig. 5: Height of the UAV over ground with the number of
features used.
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Fig. 6: Error of the original and improved approach as
compared to the ground truth. The improvement is mainly
due to an enhanced velocity estimation in the horizontal
plane while the contribution of the z domain has a relatively
low influence (compare Fig. 4).
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Fig. 7: Direct comparison of (a) original and (b) improved
algorithm. While the unmodified system considers all ob-
served features, the presented approach is able to exclude
the features on the table and the upper region of the plate
which leans against the table. Note that the image was rotated
by 180° for the readers convenience since the camera had to
be mounted upside down for mechanical reasons (compare
Fig. 2(a)). Furthermore, these images were taken using a
140° lens to improve the readers impression of the scene.

Fig. 8: Another direct comparison of (a) original and (b)
improved algorithm. This example demonstrates the ability
of our system to filter the features on the back wall and,
apart from one false-positive classification, the two objects.

objects. The algorithm was mainly designed to avoid a false-
positive classification of outliers and therefore the addition
of bad features to the dominant plane. Consequently, a
relatively high false-negative classification rate was accepted.
In average, 20% of all features were outliers. Out of these,
our system rejected 94% successfully.

During the final experiment in closed-loop control, an
average frame rate of 31 Hz guaranteed a stable flight
behavior.

VII. CONCLUSIONS AND FUTURE WORK
A. Conclusions

This work presented an algorithm able to estimate the self-
motion of a quadrotor UAV using a monocular camera and
relying on sole on-board hardware. For this, we developed
an optical flow tracking system for high frame rates and
extended a real-time velocity estimation algorithm based
on the continuous homography constraint to detect outliers
within the optical flow. The feature rejection system was
shown to improve the estimation of the linear velocity by
25% and to reduce the standard deviation.

Our approach proved to be an effective solution as it does
not rely on prior maps or on keeping visibility of specific
features. Although requiring presence of a dominant plane,
we were able to reject those features not belonging to this



plane with a very high accuracy, and consequently to improve
the real-time velocity estimations for previously unknown
environments.

B. Future work

Currently, we are addressing several limitations of our
system which emerged during the validation phase. First,
during the optical flow tracking, the features are not nec-
essarily distributed evenly across the image plane. In fact,
some areas attract features more than others and thus yield
an unbalanced representation of the scene. This can become
critical since the number of tracked features may be limited
for coping with the available on-board hardware. Thus, we
plan to split the image plane into tiles and try to keep
the number of features on each tile balanced. To further
speed up the feature sampling, the last velocity estimate
could be used to understand in which direction the features
moved. Consequently, the feature sampling process can be
concentrated on the new areas of the image.

Additionally, using the same mathematical approach to
test the validity of a single plane, it should be possible
to decide on the validity of the entire assumption that all
features are located on a plane as well. Thus, in cluttered
indoor environments and urban outdoor scenes, the algorithm
could automatically decide between the presented system
and another solution not based on the assumption of piece-
wise planar scene as, e.g., the continuous eight-point algo-
rithm [15].
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