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Abstract— This paper, divided in two Parts, considers the
problem of realizing a 6-DOF closed-loop motion simulator by
exploiting an anthropomorphic serial manipulator as motion
platform. After having proposed a suitable inverse kinematics
scheme in Part I [1], we address here the other key issue,
i.e., devising a motion cueing algorithm tailored to the specific
robot motion envelope. An extension of the well-known classical
washout filter designed in cylindrical coordinates will provide an
effective solution to this problem. The paper will then present
a thorough experimental evaluation of the overall architecture
(inverse kinematics + motion cueing) on the chosen scenario:
closed-loop simulation of a Formula 1 racing car. This will
prove the feasibility of our approach in fully exploiting the
robot motion capabilities as a motion simulator.

I. INTRODUCTION

In Part I of this work [1] we addressed the problem of
achieving a 6-DOF closed-loop motion simulation through
the use of an anthropomorphic serial robot arm — the
CyberMotion Simulator, see Fig. 1. This manipulator, based
on the commercial KUKA Robocoaster [2], is exploited as
motion platform for reproducing the motion cues that would
have been felt on a given (simulated) vehicle. Compared
to standard Stewart platforms, a serial 6-DOF industrial
manipulator offers higher dexterity, larger motion envelopes,
the possibility to realize any end-effector posture within the
workspace, and the ability to displace heavy loads (up to
500 [kg] in our case) with large accelerations and velocities.
By attaching a cabin to the end-effector, one can then take
advantage of the robot motion envelope to obtain a highly
versatile tool for interactive vehicle simulation.

There are, however, some challenges that need to be ad-
dressed when adopting a manipulator arm as motion platform
for closed-loop motion simulation, mainly the design of the
motion cueing and of the inverse kinematics algorithms.
The motion cueing subsystem is responsible for transform-
ing the ‘ideal’ vehicle motion into a Cartesian trajectory
compatible with the motion platform limited workspace, but
still inducing a realistic motion perception onto the user. A
well-know example is the classical combination of washout
filters and tilt-coordination algorithms [3], [4] and all their
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variants. Anyway, such schemes are typically designed for
Stewart-like platforms, while the motion envelope of a se-
rial manipulator is inherently different, in particular more
cylindrical than rectangular in Cartesian space. Therefore,
some modifications are required to fully exploit the robot
capabilities.

In addition, the filtered cabin motion is in general un-
predictable and geometrically arbitrary, since it eventually
depends on the (unpredictable) user’s inputs to the simulated
vehicle. This makes it hard to design an effective inverse
kinematics scheme: the sought algorithm must realize the
desired (but unknown in advance) cabin motion and, at the
same time, cope with all the typical robot constraints (joint
limits, actuator limitations) and avoid singularities in real-
time. As discussed in Part I, one has to assume that the
desired cabin trajectory may in general violate any or all
robot constraints, and design an inverse kinematics scheme
that aims at realizing online the best feasible motion.

Goal and contribution of this Part II is to conclude the
discussion opened in Part I, and to demonstrate the feasibility
and effectiveness of the proposed architecture for closed-
loop motion simulation. To this end, we will first present the
design of a motion cueing algorithm tailored to the specific
robot motion envelope (Sect. II). This algorithm will then
be used to generate the reference cabin trajectory tracked by
the robot via the inverse kinematics illustrated in Part I. We
will subsequently focus on the experimental evaluation of the
whole architecture (motion cueing combined with the inverse
kinematics of Part I) on the chosen test scenario: closed-
loop simulation of a Formula 1 racing car. We will first
illustrate the dynamical model adopted for the car simulation
(Sect. III), and then analyze the experimental data collected
while driving the car along a lap on a virtual track (Sect. IV).
A video of this lap showing the robot motion is also attached
to the paper. We will then conclude by summarizing the
results and discussing the open points (Sect. V).

II. DESIGN OF THE MOTION CUEING ALGORITHM

As explained in the previous Section, the goal of a
motion cueing algorithm is to ‘filter’ the ideal motion of
the simulated vehicle to make it compatible with the limited
workspace of a motion platform fixed to the ground, while
still inducing the same motion perception onto the user.
This is a fundamental but difficult problem that has been
studied since the early ’70 [5] until nowadays [6], and keeps
drawing the attention of many researchers. Perhaps the most
widespread motion cueing algorithm is the so-called classical
washout filter, i.e., a combination of washout filters for
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Fig. 1: A snapshot of the CyberMotion Simulator setup with some
relevant reference frames

reproducing high-frequency motions, and tilt-coordination
algorithms for reproducing low-frequency motions [3], [4].

Such algorithm can be summarized as follows: the vehi-
cle motion, specified in terms of linear accelerations and
angular velocities1, is split into high-frequency and low-
frequency components. The high-frequency component is
reproduced by actually moving the motion platform, since
this component will in general generate small (thus feasi-
ble) displacements. On the other hand, the low-frequency
component, comprehensive of sustained linear accelerations,
is not achieved by physically accelerating the platform,
but by exploiting the local gravity vector as a source of
‘persistent’ acceleration. Indeed, by properly orienting the
gravity vector in the cabin frame, one can reproduce the
illusion of persistently accelerating in a given direction. This
method, of course, has several limitations: for instance, it
cannot reproduce sustained accelerations larger than 1 [g], it
introduces rotational motion artifacts during the coordination
phase, and it reduces the amount of gravity acceleration
perceived by the user because of the tilting. Still, in most
cases the classical washout framework represents the only
viable option as motion cueing algorithm.

Many variants of this framework have been proposed in
the past years, especially in the context of flight simulators.
Just to mention a few, some attempts have been done in the
direction of adaptive algorithms [8], [9], [10], and optimal
control approaches [11], [12]. A thorough comparison can be
found in [13], [14], [15]. Despite the big variety of solutions,
it is worth noting that many authors still indicate the classical
washout filter as one of the most effective algorithm in
terms of design simplicity, easiness of tunability, and human
perception fidelity [3], [16], [17]. Therefore, we decided to
base our motion cueing algorithm on the classical washout
framework, and to modify it in order to take into account the
particular motion envelope of our motion simulator. The next
Sections will illustrate the details of our implementation.

1These are thought to be the motion states sensed by humans [7].

A. High-pass channels

Compared to a Stewart platform, the motion envelope of
the CyberMotion Simulator is closer to a cylinder rather
than a rectangular box in Cartesian space. For instance, by
exploiting the rotation of the first vertical joint, one can
obtain large lateral displacements along circular trajectories,
considerably larger than any achievable linear trajectory. This
motivated us to design the high-pass filters for the linear
acceleration in cylindrical coordinates, similarly to what
proposed for the spherical washout filter [18] implemented
in the Desdemona motion simulator developed at TNO [19].
The idea is to keep linear forward and upwards motions
unchanged, and replace linear lateral motions with circular
motions (i.e., moving on the surface of a vertical cylinder).

Before proceeding, we will define some needed quantities
consistently with the notation introduced in Part I. With
reference to Fig. 1, let F0 : {O; ~X0, ~Y0, ~Z0} be a world
reference frame fixed to the robot base, with ~Z0 pointing up-
wards and ( ~X0, ~Y0) spanning the horizontal plane. A moving
reference frame FP : {OP ; ~XP , ~YP , ~ZP } is attached to the
the pilot’s head (supposed fixed to the cabin) and has its
axes aligned with the pilot’s forward/left/upward direction,
respectively. Let also p = [x y z]T ∈ R3 represent the
coordinates of OP in F0. We can transform the Cartesian
coordinates p into cylindrical ones ξ = [R α z] defined as R =

√
x2 + y2

α = atan2(y, x)
z = z

,

and introduce a third moving frame FW :
{OW ; ~XW , ~YW , ~ZW }, denoted as the washout frame,
with OW ≡ O, ~ZW ≡ ~Z0, and ~XW rotated of angle α
w.r.t. ~XO. Therefore, axis ~XW will always point towards
the current angular position α on the cylinder.

Furthermore, let WRP be the rotation matrix from frame
FW to frame FP , and η = [ρ θ ψ]T ∈ R3 the usual set of
roll-pitch-yaw Euler angles parameterizing WRP , while the
rotation matrix from frame F0 to frame FW is just 0RW =
RZ0(α). Let us also define g as the gravity vector, and g
as the scalar value of the gravity acceleration. Finally, a pre-
superscript will indicate the reference frame where a quantity
is defined, e.g., in F0 it is 0g = [0 0 − g]T .

With these settings, we can illustrate our approach with
the help of the block scheme shown in Fig. 2. Let us first
consider the high-pass filter for the linear accelerations (top
block in Fig. 2). The input to this filter is Pa, the linear
acceleration of the vehicle expressed in the frame FP and
without gravity components, i.e., Pa = Pf + Pg where Pf is
the specific force acting on the vehicle2. By following the
classical washout framework, Pa is first scaled and limited to
obtain PaS which is then expressed into FW as WaS . These
Cartesian accelerations are then transformed into cylindrical

2We recall that the specific force Pf is defined as Pa−Pg, so that during
free fall (Pa = Pg) it is Pf = Pg − Pg = 0.
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Fig. 2: A block scheme representation of the motion cueing algorithm adopted in this paper. The algorithm is based on the classical
washout filter and tilt coordination [3], [4], but extended so as to take into account the cylindrical motion envelope of our motion simulator.
Compared to the classical design, an additional subsystem, denoted as Inertial compensation, is also present. The purpose of this block
is to compensate for the spurious centripetal and Coriolis accelerations due to the circular trajectories output of the filter

ones as

ξ̈ =

 R̈
α̈
z̈

 =


1 0 0

0
1
R

0

0 0 1

WaS = C(ξ)WaS (1)

The simple form of (1) clearly follows from the definition
of FW . Linear forward accelerations in FW correspond
to radial accelerations R̈, and lateral accelerations in FW
correspond to angular accelerations α̈R.

The accelerations ξ̈ are then high-pass filtered through the
transfer function HPA(s) to yield the high-pass component
of the linear motion ξ̈HP , which is subsequently double-
integrated into the desired platform displacement ξHP = ξd.
Many choices are possible for HPA(s). The typical one is
to take

HPA(s) =
s2

s2 + 2ζωns+ ω2
n

· s

s+ ωb
,

where the natural frequency ωn, the damping ratio ζ, and the
break frequency ωb are in general different for each compo-
nent of ξ̈. This choice ensures the washout characteristics of
the filter, i.e., the fact that, at steady state and for constant
inputs, the platform displacement ξHP = ξ̈/s2 goes back to
the initial position.

The angular high-pass channel (bottom block in Fig. 2)
is designed as in the classical washout scheme. In short,
the input angular velocity Pω expressed in FP is first
scaled and limited, then transformed into the corresponding
Euler rate η̇ which is high-pass filtered through HPω(s)
to obtain the high-pass component of the angular velocity
η̇HP . This is finally integrated into the corresponding angular

displacement ηHP . Here, HPω(s) can be chosen as a second-
order high-pass filter

HPω(s) =
s2

s2 + 2ζωns+ ω2
n

to ensure the washout characteristics.

B. Low-pass Channel and Tilt Coordination

As explained at the beginning of this Section, the purpose
of this step is to orient Pg so as to simulate presence of
sustained linear accelerations. This is achieved by matching
the low-pass components of Pa with the corresponding
components of Pg through the so-called tilt coordination
algorithm. In our case, however, we extended this idea to
also compensate for the undesired inertial accelerations due
to the choice of working in cylindrical coordinates. Indeed,
the benefits of moving along a horizontal circular trajectory
instead of a straight line (i.e., increased robot workspace)
come at the price of introducing spurious centripetal and
Coriolis accelerations during the motion. These disturbances
can be largely attenuated by using the gravity vector Pg to
filter them out.

Let us again refer to the scheme in Fig. 2, in particular
to the middle block. The scaled linear acceleration PaS is
first low-pass filtered through LP (s) into PaLP . We chose
to set LP (s) = 1 − HPA(s) in order to obtain a perfect
coordination between the high-pass and low-pass channels.
At this point, the standard tilt coordination algorithm would
compute the required cabin orientation ηT to match the first
two components of Pg with −PaLP . By imposing PRW

Wg =
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Fig. 3: Left: planar trajectory of the cabin in F0. The cabin starts
from (2.5, 0), travels along a circular path, and then goes back
to the starting position. Right: specific force felt on the cabin
during the motion (dashed lines) versus the input acceleration (solid
lines). The desired lateral acceleration of 4 [m/s2] (upper curve) is
almost perfectly reproduced, as well as the desired (zero) forward
acceleration (lower curve)

−PaLP , one obtains
ρT = arcsin

PaLPy

g cos θT

θT = − arcsin
PaLPx

g
ψT = 0

.

These angles are typically rate limited to avoid a strong
rotational cueing on the user.

The centrifugal and Coriolis accelerations due to the
cylindrical motion in FW are WaIN = [−Rθ̇2 2Ṙθ̇ 0]T .
These can be transformed into the cabin frame PaIN =
PRW

WaIN , and subtracted from PaLP to obtain the final
acceleration vector PaT = PaLP − PaIN to be sent to
the tilt coordination algorithm. The corresponding ηT is
then added to angular displacement ηHP from the high-pass
angular velocity channel to yield the sought cabin orientation
ηW = ηT + ηHP . The final step is to transform ηW into
the corresponding world frame quantity. By recalling the
definition of FW , this can be easily achieved by adding the
angular displacement α to the third (yaw) component of ηW ,
thus obtaining the desired cabin orientation input to the robot
inverse kinematics ηd = ηW + [0 0 α]T .

C. Simulation results

Here, we present a simulation example that will effectively
illustrate the main features of our washout implementa-
tion. The corresponding experimental data are reported in
Sect. IV. We chose to simulate a lateral constant acceleration
of the cabin Pa = [0 4 0]T [m/s2]. The parameters of
HPA(s) were set to ωn = .5 [rad/s], ζ = 1, and ωb = 1.2
[rad/s] for the three acceleration channels, and no rate
limitation was applied to the tilt coordination angles ηT .

Figure 3(a) shows the resulting planar trajectory in F0.
The cabin starts from (2.5, 0) on the horizontal plane,
travels along a circular arc until reaching a maximum angular
displacement αmax ' 0.8 [rad], and then goes back to
the starting position along the same arc (washout effect).
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Fig. 4: Left: high-pass components of the cabin acceleration.
Right: low-pass components of the cabin acceleration. Note how the
lateral accelerations in both plots (red dashed lines) have an almost
symmetric behavior. The initial peak on the high-pass forward
acceleration (solid blue line on the left) is due to the centripetal
acceleration associated to the circular trajectory followed by the
cabin, and is compensated by the corresponding peak on the low-
pass acceleration (solid blue line on the right)
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Fig. 5: Left: the behavior of the roll (solid blue line) and pitch
(dashed red line) angles (ρT , θT ) needed to properly orient the
gravity vector in FP . Right: the resulting specific force on the cabin
without compensating for the spurious centripetal acceleration.
Compared to Fig. 3(b), an initial peak on the forward acceleration
(dashed blue line) is present

Figure 3(b) illustrates the superimposition of the input ac-
celeration Pa (solid lines) and the total specific force felt on
the cabin (dashed lines), i.e., the vectorial sum of the actual
cabin acceleration due to ξ̈HP , and −Pg. In particular, the
upper curve represents the lateral specific force and the lower
curve the forward specific force. One can then verify an
almost perfect reproduction of the desired cabin acceleration,
thanks to this combined action.

This is also shown in Figs. 4(a–b) where the individual
low-pass component PaT and high-pass component ξ̈HP
are reported. We note that the high-pass component starts
from 4 [m/s2] and then exponentially vanishes over time,
while the low-pass component has an almost symmetric
profile. Note also that the forward component of the high-
pass motion (blue solid line in Fig. 4(a)) has a negative
peak of approx. −0.6 [m/s2] at time 0.76 [s]. This is
the effect of the centripetal acceleration associated to the
circular trajectory followed by the cabin. However, thanks
to the inertial compensation action, the low-pass component
shows a corresponding positive peak (blue solid line in
Fig. 4(b)) that cancels this undesired acceleration in the
final specific force felt by the user (blue dashed line in



Fig. 3(b)). Figure 5(a) reports the behavior of (ρT , θT ) over
time, i.e., the cabin roll and pitch angles output of the tilt
coordination algorithm needed to properly orient the gravity
vector in FP . In particular, ρT (solid blue line) is used to
simulate the sustained acceleration, and θT (dashed red line)
to compensate for the centripetal acceleration.

Finally, we show in Fig. 5(b) the cabin specific force
obtained without compensating for the inertial effects due
to the circular motion. In comparison with Fig. 3(b), we
clearly see the presence of a spurious negative acceleration
in the forward cabin axis (dashed blue line) consequence of
the uncompensated centripetal acceleration.

III. CAR DYNAMICAL MODEL

In order to generate the accelerations Pa and angular
velocities Pω input to the motion cueing algorithm, a fully
non linear car model was developed. A detailed description
of the car dynamics is outside the scope of this article;
nevertheless, we will give an overview of the complex
dynamic model used for our motion simulation.

The complete car was modeled as an articulated multibody
system: the chassis including pilot and engine, the four
suspension arms, the four spring/damper groups, the four
wheel hubs, and the four wheels. The whole car is basically
composed by four wheels interacting with the terrain, and
connected together by the suspensions and car chassis.
Figure 6(a) shows the various components of the model. For
simplicity, the masses of suspension arms and spring/damper
groups were included in the chassis mass, while the masses
of the wheel hub and the wheel itself were considered as a
unique body for generating linear motion, and separated for
generating rotational motion.

The 32 system state variables are the following: car
center of gravity CoG, linear velocity vCoG, angular velocity
ωCoG, position pCoG, and Euler angles: [φCoG, θCoG, ψCoG]
defining the car body reference system FCoG w.r.t. FW ,
the position (deflection) δ and velocity δ̇ of the four wheel
hubs along the spring/damper axis, the position pwheel and
velocity vwheel of the four wheel hubs along their respective
vertical axis of motion w.r.t. a reference terrain level, and
the angular velocity ωwheel of the four wheels around their
respective spin axis.

The external forces acting on the system are: gravity
g, contact forces and moments of each wheel (Fx, Fy ,
Mz), traction Q and braking B torques, and longitudinal
FCx, lateral FCy , and vertical FCz aerodynamics loads; the
steering angle λ is modeled as a direct user input.

According to the Newton-Euler formulation, the dynamic
equations of the car dynamics can be written in compact
form as
ẋ1 =

M−1(x2) [J1(x2)F (x1, x2)− C(x1, x2)x1 − S(x1, x2)− g(x2)]

ẋ2 = J2(x2)x1

(2)

where the system state vector is

x1 =
[
vTCoG ωTCoG δ̇T vTwheel ω

T
wheel

]T
x2 =

[
pTCoG φTCoG θTCoG ψTCoG δT pTwheel

]T

with δ, δ̇, pwheel, vwheel and ωwheel being 4-dimensional
vectors containing the corresponding variables of the four
wheels.

Matrix M(x2) contains all the mass and inertia terms of
the articulated body and is function of the suspension config-
uration. Matrix C(x1, x2) takes into account centripetal and
Coriolis terms, the term S(x1, x2) represents the suspension
related forces, and the term g(x2) the gravity forces.

The input vector F contains all the wheel/terrain interac-
tion forces for the four wheels, as well as the aerodynamics
forces. Matrix J1(x2) determines how these forces, com-
puted with respect to the wheel (the former) or car chassis
(the latter), affect the car dynamics as a function of the
current suspension state of compression and car attitude.

Matrix J2(x2) contains the relevant rotation matrices and
integrators needed to compute the car position and attitude,
and all the wheel and suspension variables from the corre-
sponding velocity variables in x1.

A. Car Suspensions

Formula 1 front and rear suspensions are very complex,
thus a simplified geometry was adopted. The wheel sus-
pension is usually modeled as an articulated closed chain
made of suspension arms, wheel hub, the car chassis and
possibly the spring/damper group. The wheel-chassis relative
motion, together with the car chassis attitude, determines
how the wheel touches the ground during both lateral ma-
neuvers/cornering and load transfers due to an acceleration
or a braking.

Three main angles define how the wheel is positioned
w.r.t. the terrain: toe (τ ), camber (χ) and caster (γ) angles.
Figure 6(b) shows the complete suspension geometry im-
plemented in the simulation, where the subscript FL stands
for Front Left wheel. Wheel camber and caster angles are
not constant and vary with the suspension motion, and the
car roll, and pitch angles. The complexity of simulating
the closed kinematic chain of the suspension was overcome
by using suitable kinematic constraints. The camber and
caster angles values during the simulation are defined by
the respective rest values χ0 and γ0, by the Suspension Arm
rotation angle θ, which represents the current state of the
suspension, and by the car attitude:

χ(t) = fχ
(
χ0, θ(t), WRCoG(t)

)
(3)

γ(t) = fγ
(
γ0, θ(t), WRCoG(t)

)
(4)

The angles θ and β are not actual state variables, but their
value depend via algebraic equations from the spring/damper
group compression δ, the CoG position pCoG, the wheel hub
position pwheel, the chassis attitude WRCoG and from the
suspension geometry:

θ(t) = fθ
(
δ(t), pCoG(t), pwheel(t), WRCoG(t)

)
(5)

β(t) = fβ
(
δ(t), pCoG(t), pwheel(t), WRCoG(t)

)
(6)

The steering angle λ(t), together with toe τ , determines
the orientation of the tyre w.r.t. the car chassis, and thus the
car velocity vector. The wheel/terrain interaction produces
the longitudinal reaction force Fx(t), the lateral or cornering
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Fig. 6: Left: the various components of the multibody system modeling the Formula-1: chassis, wheels, spring/damper groups, wheel
hubs, and suspension arms. Right: detailed view of the suspension geometry

force Fy(t), and the aligning moment Mz which are all
function of the vertical load Fz(t) and other wheel variables.

The complete car dynamic equations are then constituted
by (2) and by the kinematic constrains (3–6).

Modeling of the tyre(wheel)/terrain interaction poses se-
vere challenges that are usually approached by using simpli-
fying assumptions. For the goals of this paper, the Pacejka’s
Magic Formula [20] was adopted. Although the Magic For-
mula approach does not try to model the physical interaction
between tyre and terrain, it represents an effective way
of approximating the effects of this interaction by using
interpolating functions, and is widely used in automotive
simulators.

IV. EXPERIMENTAL EVALUATION

In this Section we will discuss several experimental results
conducted on the CyberMotion Simulator and aimed at
analyzing the performance of the whole proposed architec-
ture, i.e., the combination of the motion cueing algorithm
with the inverse kinematics presented in Part I. The goal
is to determine how these two subsystems interact when
plugged together, and to clearly assess the robot suitability of
being exploited as a motion simulator. We will first present
the experimental data collected during the execution of the
same motion discussed in Sect. II-C, i.e., a lateral constant
acceleration of the cabin Pa = [0 4 0]T [m/s2]. This will
allow an easy comparison of performance with the ideal
simulation case. We will then focus on the data collected
while driving the Formula 1 car along a lap on the virtual
track of Monza [21], the Italian official track of the Formula 1
world championship. Figures 8(a–b) show a screenshot of
the 3D environment displayed to the user, and an overall
view of the Monza track. The complex and sudden motions
experienced during this lap will constitute a solid benchmark
for our motion simulator.
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Fig. 7: Actual specific force felt on the cabin during the motion
(solid lines) and desired specific force output of the motion cueing
algorithm (dashed lines). Compared to the corresponding ‘ideal’
case of Fig 3(b), some lag is present in the robot motion due to
the limited maximum joint accelerations. Nevertheless, the desired
specific force is reasonably reproduced

A. Reproduction of a sustained acceleration

Analogously to Fig 3(b) in Sect. II-C, Fig. 7 shows the
specific force felt on the cabin during the actual motion of
the robot. This was evaluated by plugging the measured joint
angles into the robot forward differential kinematics so as to
compute the corresponding cabin accelerations. The resulting
specific force (solid lines) is superimposed to the output of
the washout filter (dashed lines) illustrated in Fig 3(b).

Apart from some distortions, we can essentially note some
lag between the desired specific force and the actual one.
The lateral component of the specific force (upper curve)
reaches the nominal value of 4 [m/s2] after about 0.3 [s], but
then overshoots and settles back after a couple of seconds.
This discrepancy is mainly due to the limitations in the
robot actuators, in particular to the constraints on maximum
joint accelerations that limit the responsiveness of the whole
system. Indeed, as explained in Part I, the chosen design of



(a) (b)

Fig. 8: Left: a screenshot of the 3D environment displayed to the user on the onboard projection screen. Right: a bird’s eye view of the
Monza track

the motion cueing algorithm does not allow to take explicitly
into account all the robot constraints expressed at the joint
level. This is a clear example where the output trajectory
of the motion cueing violates some robot constraints (max.
joint acceleration), but the inverse kinematics block still tries
to achieve the best feasible robot motion, i.e., a slightly
‘delayed’ response.

B. Driving a lap

For this closed-loop experiment, we tuned the parameters
of the motion cueing algorithm by trial and error, and no
rate limitation was applied to the angles ηT . Indeed, proper
tuning of this action, as well as of all the other washout
parameters, is a relevant but difficult problem that will be
extensively addressed in future studies with the help of
experienced drivers. At this step, we focused more on the
motion reproduction capabilities of our system rather than
on the quality of human motion perception. For the linear
acceleration high-pass channel, we chose ζ = 1, ωn = .5,
ωb = 1.2 for the lateral acceleration, and ζ = 1, ωn = .6,
ωb = 20 for the forward and upward accelerations. As
for the angular velocity high-pass channel, we set ζ = 1
and ωn = 1 for all components. To produce PaS , we first
scaled the forward/lateral accelerations by a factor 0.8 and
0.2, respectively, and then saturated all the components to
a maximum value of ±4 [m/s2]. The angular velocity was
neither scaled nor saturated.

Figures 9(a–c) show the forward (top plots) and lateral
(bottom plots) accelerations during the whole lap. In par-
ticular, Fig. 9(a) reports the accelerations Pa, direct output
of the car dynamical model. We can notice that the car
can achieve quite large accelerations: the peak values are
8 [m/s2] as forward acceleration,−12 [m/s2] during braking,
and about 34 [m/s2] during the roughest turns. Of course,
no tilt coordination algorithm could reproduce such motions.
After the scaling and saturation, we obtain the profiles shown
in Fig. 9(b) which are more feasible for our robot, and must
be compared with Fig. 9(c) where the actual specific force
of the cabin is reported. Apart from some unavoidable noise,
we can notice a substantial agreement among the two plots,
thus confirming the good performance of our simulator also
in reproducing such complex motions. We also encourage the
reader to examine the attached video where the whole lap
is shown from an external and onboard (camera-car) view-

points. The robot response to the car motion, consequence
of the user inputs, can then be fully appreciated.

V. CONCLUSIONS AND FUTURE WORK

In this paper and its companion Part I we presented a com-
plete architecture for realizing a 6-DOF closed-loop motion
simulator based on an anthropomorphic serial manipulator
— the CyberMotion Simulator. The main motivation behind
this work lies in the fact that, compared to standard Stewart
platforms, an industrial anthropomorphic manipulator offers
a considerably larger motion envelope and higher dexter-
ity, the possibility to realize any cabin posture within the
workspace, and the ability to displace heavy loads (up to 500
[kg] in our case) with large accelerations and velocities. This
clearly indicates a promising perspective for applications of
motion simulation. However, in order to fully exploit a serial
manipulator as motion platform, some specific issues must
be addressed. In particular, the need of a special inverse
kinematics scheme was tackled in Part I, while in this
Part II we focused on designing a motion cueing algorithm
tailored to the particular motion envelope of the robot (more
cylindrical rather than rectangular).

We then presented experimental results collected during
a closed-loop motion simulation on our testing scenario:
driving a Formula-1 car along a lap on a virtual track.
Although the proposed framework has a general validity, we
chose to test it on this particular scenario also because of the
challenges it involves, namely high and abrupt accelerations.
The obtained performance was quite satisfactory, as can be
also appreciated in the attached video, thus confirming the
effectiveness of our approach.

The work presented in this paper is, of course, still subject
to many improvements, and should be considered as a solid
and rigorous basis to lay down any future development.
These will include, for instance, a careful tuning of the
motion cueing algorithm to improve the simulation realism,
also with the feedback of experienced pilots. More in general,
our aim is to exploit the CyberMotion Simulator as a
versatile tool for simulating a variety of vehicles, ranging
from cars to airplanes, helicopters, and ships, for training and
telepresence purposes. This will require a specific tuning, or
even re-design, of the motion cueing algorithm case by case.
The planned modification of the first robot joint (enabling
continuous rotation), and the construction of a new closed
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Fig. 9: Top: the forward (top) and lateral (bottom) linear accelera-
tions Pa of the car during the lap. Middle: the scaled accelerations
PaS . Bottom: the actual specific force felt on the cabin as a
consequence of the robot motion. Note the substantial agreement
between plots (b) and (c). This confirms the good performance of
our whole architecture, i.e., the motion cueing algorithm combined
with the inverse kinematics of Part I

cabin will also contribute to improve the overall fidelity of
the simulation.
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