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Abstract— This work addresses the problem of generating
robust and accurate trajectories taking into account uncertain-
ties in the robot dynamic model. Based on the notion of closed-
loop sensitivity, which quantifies deviations in the closed-loop
trajectories of any robot/controller pair against uncertainties in
the robot model parameters, uncertainty tubes can be derived
for bounded parameter variations. In our prior work, such
tubes were integrated within a motion planner named SAMP to
produce robust global plans, emphasizing the generation of tra-
jectories with low sensitivity to model uncertainty. However, the
high computational cost of the uncertainty tubes is a bottleneck
for this method. Here, we solve this problem by proposing a
novel framework that first incorporates a Gated Recurrent Unit
(GRU) neural network to provide fast and accurate estimation
of uncertainty tubes and then minimizes these tubes at given
points along the trajectory. We experimentally validate our
framework on a 3D quadrotor in two challenging scenarios:
a navigation through a narrow window, and an in-flight “ring
catching” task that requires high accuracy.

Index Terms— Motion and Path Planning, Planning under
Uncertainty, Integrated Planning and Control

I. INTRODUCTION

Robust motion planning for dynamic systems to ensure
the safe execution of the planned trajectory in the presence
of parametric uncertainties is an important but challenging
problem. To this end, several recent approaches [1]–[7] (see
Sect.II) rely on so-called “uncertainty tubes” that bound the
state evolution of the system given a model of uncertainty.
However, these approaches are either limited to specific
system classes, require the design of specific robust con-
trollers, or only address the presence of external disturbances,
neglecting model parametric uncertainty. Other approaches
propose more general probabilistic strategies propagating
the system dynamics for different random uncertainties to
estimate the set of states that can be reached by the system
[8], [9]. However, a good estimate of this set may require
sampling a large number of states, which can quickly become
computationally heavy for complex systems and controllers.

To overcome some of the aforementioned problems, the
sensitivity-aware motion planner (SAMP) proposed in [10]
exploits the derivation of uncertainty tubes of [11], based on
the so-called closed-loop sensitivity [12], [13]. This approach
is applicable to any controller and robot model, taking
into account parametric uncertainties. However, this planner
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(a) Robust motion planning (b) Accuracy optimization

Fig. 1: Two scenarios considered for the experimental val-
idation of the proposed method: (a) Robust navigation of
a drone through a narrow window. (b) Precision in-flight
‘ring catching’ task, where the uncertainty on the position
of the perch end-effector is minimized to successfully ac-
complish the task. A video of the experiments is available
at: https://laas.hal.science/hal-04642257

suffers from the high computational cost of computing the
uncertainty tubes. Moreover, SAMP and the aforementioned
methods focus on computing robust trajectories but do not
consider the problem of also minimizing uncertainty tubes
at a desired location for increasing the accuracy of specific
tasks (e.g., insertion, grasping).

With respect to these considerations, the contribution of
this paper is twofold: (i) We propose a computationally
efficient version of the SAMP algorithm, relying on a Gated
Recurrent Unit neural network (GRU) [14] (see Sect. III),
which quickly and accurately estimates time-varying uncer-
tainty tubes and control input profiles along trajectories. We
present a general way of incorporating this type of network
into a sampling-based tree planner (see Sect. IV) in order
to predict the uncertainty tubes and control inputs along
trajectories. (ii) On the basis of this new planner, we pro-
pose a comprehensive framework that not only plans robust
trajectories but also locally optimizes them together with the
controller gains to maximize accuracy at some desired states
of the planned trajectory for any system/controller.

Fig. 1 illustrates the application to a quadrotor model (see
Sect.V) in two different experimental scenarios involving
uncertain parameters affecting the robot model (see Sect.VI):
(i) a robust navigation through a narrow window; (ii) an in-
flight ring-catching task demonstrating the robustness and
accuracy of the proposed framework.

https://laas.hal.science/hal-04642257


II. RELATED WORK

A common way for guaranteeing the robustness of planned
motions is to use “uncertainty tubes” that bound the state
of the system in the presence of disturbances/uncertainties.
These tubes can be computed in different ways and with
different assumptions about the system/controller.

For instance, a robust version of the well-known Model
Predictive Control (MPC), which is an online planning
technique, was proposed in [1] where a feedback tracking
controller is used to maintain the system state within a
consistent “tube” around the nominal MPC trajectory in the
presence of disturbances. Nevertheless, MPC remains local
in the vicinity of a reference trajectory.

A more global approach as the so-called ‘feedback motion
planning’ [2] builds a tree of local Linear Quadratic Regula-
tor (LQR) feedback controllers for which the envelope of a
Lyapunov function is computed. Nevertheless, this approach
is constrained to the particular class of LQR controllers, and
the computation of the tube is time-consuming. Based on
this previous work, the offline computation of a ‘tube library’
was proposed in [3]. Although this allows robust planning
at runtime, the solutions are constrained by a predetermined
number of trajectories.

In [4]–[6], tubes were computed by leveraging the so-
called ‘control contraction metrics’. These contraction met-
rics represent a generalization of control Lyapunov functions
and are used to synthesize specific robust controllers for
which tubes can be derived according to their associated
contraction rate and given maximum disturbance limits.
Consequently, these methods remain limited to the use of
specific controllers, which may not always be amenable to a
reasonably simple implementation in real-world cases.

In the FaSTrack framework [7], a simplified system dy-
namic model, that does not allow parametric uncertainties to
be taken into account, was used to compute invariant tubes
that are used at runtime. Furthermore, to ensure that the sys-
tem actually stays inside these tubes, a specific synthesized
optimal tracking controller was used.

While the aforementioned methods focus on generating
robust trajectories to external disturbances or unmodeled
forces (e.g., wind, friction), none of them considers potential
mismatches or fluctuations in the robot model parameters
during runtime, such as changes in mass or displacements
of the center of mass. Moreover, many of these methods
hold for a specific class of systems or a specific synthesized
controller and, thus, lack generality.

To tackle some of these issues, the RandUp-RRT proposed
in [8], [9] is applicable to any system and controller. The
idea is to estimate for each node of the tree the set of
states that can be reached by the system using ‘particles’,
which corresponds to a dynamic propagation of the system in
the presence of random parameters uncertainty. Furthermore,
these sets can be approximated for any system and con-
troller. However, the guarantee that these reachable sets are
conservative relies on additional padding or a large number
of particles, and the more particles considered, the longer

the computation time will be compared to conventional
algorithms. Nevertheless, this work is the closest to ours and
will be used as a baseline for comparison.

III. LEARNING SENSITIVITY METRICS
A. Closed-loop sensitivity: A reminder

The notion of closed-loop sensitivity was introduced
in [12], [13] for quantifying how variations of some model
parameters (supposed to be uncertain) affect the evolution of
the system in closed-loop, i.e., by also taking into account
any controller chosen for executing the task. Consider a
generic robot dynamics

q̇ = f(q, u, p), q(t0) = q0, (1)

where q → Rnq is the state vector, u → Rnu the input
vector, and p → Rnp is the vector containing (possibly
uncertain) model parameters. Also, assume the presence of a
controller of any form to track a desired trajectory ωd(a, t)
parameterized by the vector a s.t.,

{
ω̇ = g(ω, q, a, pc, kc, t), ω(t0) = ω0
u = µ(ω, q, a, pc, kc, t),

(2)

where ω → Rnω are the internal states of the controller (e.g.,
an integral action), kc → Rnk the controller gains, and pc →
Rnp the vector of nominal parameters used in the control
loop.

In order to quantify how sensitive the states q(t) and the
inputs u(t) are w.r.t. variations of p (w.r.t. the ‘nominal’
pc) for the closed-loop system (1–2), the state sensitivity

matrix ! and the input sensitivity matrix ” are defined in
[12] and [13], respectively. They do not have in general a
closed-form expression but their evolutions in time can be
computed according to their following dynamics (see [12],
[13] for more details):
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ωε

!ω.

(3)

Given a bounded range εpi for each uncertain parameter pi
s.t. pi → [pci ↑ εpi, pci + εpi], and assuming small variations
of the parameters s.t. !q ↓ !(t)!p, it is possible to
obtain the so-called uncertainty tubes. The tube along the
i-th component of the state is characterized by its radius
rq,i(t), which bounds the state evolution over time. In other
words,

qn,i(t)↑ rq,i(t) ↔ qi(t) ↔ qn,i(t) + rq,i(t), (4)

with rq,i(t) =
√

ni
TK!(t)ni, K!(t) = !(t)W!(t)T ,

where ni is the i-th dimension of the state, and W is a
diagonal matrix where its elements are the components of
εp (see [11] for details). Note that such bounds apply to the
nominal state (qn)1 and that similar tubes can be obtained
for the control inputs.

1A nominal state refers to the simulated state of the system in closed-loop
under nominal system parameters (i.e., p = pc).



Fig. 2: Representation of the GRU architecture. Blue blocks
correspond to the inputs composed of a sequence of states
qk
NN and an initial hidden state (h0). Green blocks refer to

the output, which is a sequence of radii and control inputs
(rqk, ruk

,uk), and the final hidden state (hF ).

Since the uncertainty tubes’ radii depend on the state
sensitivity !, we need to numerically integrate eq. (3) to
compute them. Depending on the number of parameters and
the dimension of the system state, this integration may be
computationally expensive. For example, referring to our
quadrotor case in Sect.V, this requires solving more than
a hundred ordinary differential equations. For trajectories
composed of a hundred samples, this may require from tens
to hundreds of milliseconds. These tubes were used in [10] to
perform robust collision checking within a motion planning
framework. However, each iteration of the planner requires
a new tube computation which results in prohibitively high
planning times even for simple problems.

B. GRU-based learning method

To leverage the computational issue raised by integrating
the sensitivity dynamics in (3), we propose a one layer GRU-
based method to quickly and accurately estimate the tube
radii (rq and ru) and the input u profiles.

The use of recurrent networks for motion planning appli-
cations has rapidly grown in recent years, e.g., to quickly
predict the surrounding state of a robot [15], or to predict
trajectories in sampling-based algorithms [16]. They rely on
feedback connections that encode past events through the so-
called hidden states. Since they work very well in processing
sequences of data – in particular time series – they perfectly
fit with our framework, since the planned trajectory can be
discretized into points at a given time step (hereafter referred
to as desired states), that will be treated as input sequences
by the network. Among the most effective are GRU [14] and
LSTM [17], which process the ‘memory’ of the hidden state
more efficiently. We use GRU in this work as it provides
more advantages such as memory saving (see [18]).

A simplified representation of our GRU architecture is
presented in Fig. 2, where h0 represents the initial hidden
state and the input sequence consists of a series of states,
denoted by qk

NN , evaluated at the k-th time step of a
desired trajectory. The output is a sequence consisting of
the nominal control input values uk and of rqk and ruk,
which represent the radii of the uncertainty tubes, estimated

at the k-th state of the trajectory, along the desired directions
of the state and of the input spaces, respectively. Finally,
hF corresponds to the hidden state at the last point of the
sequence (i.e., the last state of the trajectory). The importance
of the initial and final hidden states is discussed in Sect.IV-
B. An application of this machine learning approach to a
quadrotor is presented in Sect.V, together with the training
procedure and an evaluation of its performance.

IV. ROBUST MOTION PLANNING WITH
ACCURACY OPTIMIZATION VIA LEARNED

SENSITIVITY METRICS

Sect. IV-A provides an overview of our planning frame-
work to generate robust and accurate trajectories. Sect. IV-B
shows how to integrate the sensitivity learning method within
a sampling-based motion planner, while Sect. IV-C explains
the accuracy optimization stage.

A. Robust and accurate planning framework

The method consists of two stages: (i) first, it generates a
robust trajectory based on a Robust Sensitivity-Aware Motion
Planner (R-SAMP) – explained in Sect. IV-B – that utilizes
the GRU-based computation of the uncertainty tubes; (ii)
second, it optimizes the accuracy at some given states along
this trajectory by minimizing the size of the uncertainty tubes
at these locations. The motivation behind the second stage
is to improve the accuracy of the planned robust trajectory
for tasks – e.g., pick-and-place or insertion tasks – where
minimizing the deviation from the nominal trajectory is
important only at specific designed locations, as for picking
the ring in Fig. 1.

The pseudo-code of RA-SAMP (Robust and Accurate
Sensitivity-Aware Motion Planner) is presented in Alg.1.
It takes as input (line 1) a list of desired states listd =
(q0d, . . . , q

n
d ) for which the accuracy should be optimized, and

the initial controller gains vector k
init
c considered constant

all along the trajectory.

Algorithm 1 RA-SAMP [listd, kinitc ]
1: ω

tot
d ↗ ↘;

2: for (i = 1; i < len(listd); i = i+ 1) do
3: ω

tot
d ↗ ω

tot
d +R-SAMP(listd(i↑ 1), listd(i));

4: end for
5: {ωtot

d , k
opt
c } ↗A-Optim(listd,ωtot

d , k
init
c );

6: return {ωtot
d , k

opt
c };

The first step of the algorithm consists of generating robust
trajectories (ωi

d) between successive desired states in the
list (line 3 of Alg. 1) by means of a robust sensitivity-
aware motion planner called R-SAMP (explained in Sect. IV-
B) that uses our learning approach. These trajectories are
concatenated into a global one ω

tot
d , connecting all the

desired states of listd (lines 2-5 in Alg. 1).
The trajectory from R-SAMP is locally modified by A-

Optim (line 6 in Alg. 1), aiming at optimizing the accuracy
at specific desired states along the trajectory. This algorithm



iteratively samples both the trajectory from R-SAMP and
the controller gains, adjusting the former to minimize un-
certainty at these states. Indeed, as demonstrated in [19],
optimizing both factors concurrently results in minimizing
the uncertainty. The algorithm produces two offline outputs:
(i) a robust desired trajectory ω

tot
d optimized for accuracy

at the desired states, and (ii) the optimized controller gains
vector koptc , considered constant throughout the trajectory.

B. Robust Sensitivity-Aware Motion Planner

This section explains how the learned uncertainty tubes
can be incorporated into any sampling-based tree planner in
order to obtain a robust sensitivity-aware motion planner (R-
SAMP). As highlighted before, a key challenge in computing
such tubes for a given trajectory lies in the high computa-
tional cost of numerically integrating the dynamics of !(t)
and ”(t). Additionally, when extending the tree and com-
puting these sensitivity matrices, various initial conditions
(e.g. initial control input, !0, etc.) must be embedded in the
tree nodes.

We solve this problem thanks to the GRU network, which
naturally encodes this information in its “memory” terms,
i.e., the so-called hidden state (see [14]). An interesting
feature of the algorithm is to leverage this latent state to
embed the initial conditions into each node. This enables
the reuse of the updated initial conditions for predictions
in future extensions. Note that a hidden state h is unique
according to its parent. Therefore, its use is only applicable
to tree-based planners, where each node has a single parent.
We show in Alg. 2 how to incorporate this hidden state
and tube predictions for the case of a standard RRT planner
[20] with the pseudocode of the R-SARRT algorithm, as a
particular instance of an R-SAMP planner. Note that the use
of this hidden state and tube predictions can be similarly
applied to other tree-based planners. For instance, in the
results presented in Sect. VI-B, we used a robust RRT→

implementation denoted R-SARRT→.
First, R-SARRT performs the standard RRT procedure

(lines 1-5) that produces a local desired trajectory ωd between
a sampled state (qrand) and its nearest state (qnear) in the
tree. Then, as the tubes are only valid around the nominal
trajectories, which may differ from the desired ones depend-
ing on the controller performance, the nominal trajectory
(ωn) is computed by the SimulateExecution function (line
6). It corresponds to the simulated tracking in closed-loop
of the desired trajectory (ωd) to be robustly checked by the
system under the nominal parameters (i.e. p = pc). Next,
the starting hidden state (as for h0 of Fig. 2) is recovered
from the tree node (line 7). Such initial condition is used
together with the above-mentioned nominal trajectory by
the GRU that returns all the radii and the control inputs
profiles (rq, ru,u), together with the final hidden state hF

to be reused as initial condition in subsequent iterations
(line 8). Then, for each state of the nominal trajectory ωn,
the function IsRobust (line 9) performs a robust collision
checking by using the uncertainty radii, and tests if the inputs
are within the admissible bounds that the system can exert. If

Algorithm 2 R-SARRT [qinit, qgoal]
1: T ↗ InitTree(qinit);
2: while not StopCondition(T, qgoal) do
3: q

rand ↗Sample();
4: q

near ↗ Nearest(T, qrand);
5: ωd ↗ Steer(qnear, qrand);
6: ωn ↗SimulateExecution(ωd);
7: h0 ↗GetNodeConditions(qnear);
8: {rq, ru,u, hF } ↗GRU(ωd, h0);
9: if IsRobust(rq, ru,u,ωn) then

10: SetNodeConditions(qrand, hF );
11: AddNewNode(T, qrand);
12: AddNewEdge(T, qnear, qrand);
13: end if
14: end while
15: return GetTrajectory(T, qinit, qgoal);

the extension is valid, the final state of the desired trajectory
is inserted in the tree as a new node, embedding at the same
time the final hidden state hF to be reused as initial condition
in next iterations (line 10-12). Finally, the algorithm returns
a global trajectory connecting q

init and q
goal if one exists

in the tree (lines 15).

C. Accuracy optimization (A-Optim)

The application of a local optimization method at this
level is justified by the cost function considered in order
to optimize the accuracy at desired states. Indeed, the cost
of a trajectory ω is defined as:

c(ω) = w1E[L] + w2V[L], L = [ϑ0...ϑn] (5)

with E[L] and V[L] the mean and the variance of L, where
ϑk is the p-norm of the radii of interest in the k-th state in
the listd of Sect.IV-A, and w1, w2 are user-defined weigths.
The variance is considered in this cost function so that the
minimization of a radius at a given point does not lead to the
growth of another radius at another waypoint. This function
is neither additive (i.e., considering two trajectories (ω1,ω2),
the cost of their concatenation c(ω1|ω2) ≃= c(ω1)+c(ω2)), nor
monotonic. Therefore, it is unsuitable for global optimization
using sampling-based motion planners like [21], [22], since
they require additive and monotonic objective functions.
Given that we do not have the analytic expression of the cost
function derivatives, the accuracy optimization of A-Optim
has to be performed by a derivative-free method. In this
work, we simply used a robust version of the random shortcut
algorithm [23] that performs robust collision checks (as in
Alg. 2) to maintain the robustness of the initial trajectory
computed by the R-SAMP planner.

V. APPLICATION TO A 3D-QUADROTOR

We first present the quadrotor dynamic model considered
in this work and then further explain how uncertainty tubes
were learned for this model.



A. System and controller

Let the ENU (East North Up) world frame be defined as
FW = {OW , XW , YW , ZW } and FB = {OB , XB , YB , ZB}
be the quadrotor body frame attached to its geometric center
(OB). The state of the quadrotor is defined as q = [xv εϑ]
where x = [x y z] → R3 and v = [vx vy vz] → R3 are
respectively the position and velocity vector of OB expressed
in FW . The body orientation w.r.t. FW is represented by
the unitary quaternion ε and its angular velocity as ϑ =
[ϖx ϖy ϖz] → R3. Finally, let R(ε) be the rotation matrix
associated to ε.

We consider that the center of mass is displaced from the
robot’s geometric center of an offset xc = [xcx, xcy, xcz]
expressed in FB . Under this consideration, the total force
(ftot) and torque (ϖtot) acting on the quadrotor can be
expressed in FB s.t.

ftot= fZW ↑mgR(ε)TZW ↑m[ϑ]↑[ϑ]↑xc

ϖtot= ϖ ↑mg[xc]↑R(ε)TZW ↑ [ϑ]↑(J ↑ [xc]↑[xc]↑)ϑ

where f and ϖ are the propeller total thrust and torques, m
is the mass and J is the inertia matrix of the system. By
considering the spatial inertia matrix

S =

(
mI3 ↑m[xc]↑

m[xc]↑ J ↑m[xc]↑[xc]↑

)

one finally gets the body frame linear acceleration
ϱ and angular acceleration ς as:

(
ϱT ςT

)T
=

S↓1
(
ftot

T ϖtotT
)T

. The dynamic model is then defined
as follows:

q̇ =






ẋ = v
v̇ = ϱ
ε̇ = 1

2ε⇐ ϑ
ϑ̇ = ς

(6)

As tracking controller, we consider the so-called Lee (or
geometric) controller [24] where the control inputs are the
squared rotor speeds u = [ϖ2

1 ϖ
2
2 ϖ

2
3 ϖ

2
4 ]

T that are related to
f and ϖ by mean of a standard allocation matrix.

The uncertain parameters vector is defined as p =
[m, xcx, xcy, Jx, Jy, Jz]T → R6, which represents pa-
rameters that are difficult to evaluate or likely to vary
during execution. We chose as nominal parameters pc

= [1.113, 0.0, 0.0, 0.015, 0.015, 0.007]T and their associated
uncertainty range εp = [7%, 3cm, 3cm, 10%, 10%, 10%]T ,
which represents the percentage variation of the parameters
w.r.t. their associated nominal value, except for xcx and xcy

whose nominal values are zeros.

B. Learning uncertainty tubes for the 3D-quadrotor

As mentioned in Sect. III-B, our GRU predicts the
radii of the uncertainty tubes and the system inputs. In
the quadrotor case, the control inputs to be predicted are
u = [ϖ2

1 ϖ
2
2 ϖ

2
3 ϖ

2
4 ]

T . Regarding the uncertainty tubes, the
GRU predicts rq =[rx, ry, rz]T which represent the radii
of the state uncertainty tube along the {x, y, z}-axis, and
ru = [ru1, ru2, ru3, ru4]T (with rui the radius of the input
uncertainty tube associated with the i-th control input).

We choose the desired states as input parameters to the
GRU, as they form the input to the control loop. The steering
method used to plan these desired states is the Kinosplines of
[25] and a desired state is defined as qd = [φ φ̇ φ̈]T , where
φ = [xd yd zd ”d]T with xd, yd, zd the desired position along
the x, y, z-axis respectively and ”d the desired yaw angle.

In order to make our learning independent of workspace
boundaries (i.e. position bounds and initial orientation), we
choose to only use the desired linear and angular velocities
and the accelerations to be the network input components. In
other words, qk

NN =[ẋd ẏd żd ”̇d ẍd ÿd z̈d]T where k refers
to the k-th state of the desired trajectory.

For the experiments presented below, the GRU was trained
on 10,000 randomly generated trajectories (80% are used for
the training set and 20% for the validation set) in an obstacle-
free environment to be totally independent of the obstacles.
Note that, since the learned GRU depends on the controller’s
nominal gains2, the A-Optim method cannot benefit from it.
More details regarding the dataset generation, training, and
evaluation of the GRU can be found in [18].

VI. PERFORMANCE EVALUATION
This section first presents results showing the quality of

the learning-based uncertainty tubes prediction and its high
efficiency when used for robust motion planning. Then, we
show the ability of the proposed R-SAMP planning approach
to generate robust and accurate trajectories for the two
experimental scenarios illustrated in Fig. 1.

A. Learning-based tube computation

In order to evaluate the accuracy of the GRU predictions,
we generated a test set composed of 1,000 trajectories differ-
ent to the ones used in the training and validation sets. The
performance of the method is illustrated in Table I, which
reports the MAE (Mean Absolute Error) of the norm of the
output vector components rq , u and ru computed on the
validation and test sets. This high accuracy of the prediction
is also illustrated in Fig. 3 that depicts the norm of predicted
vector components for a 300-state trajectory of the test set
w.r.t. their real values. It also highlights the high robustness
of the model, especially during transient phases induced by
velocity variations not seen during training but present in the
test set. Predictions for each component independently are
available in [18]. Finally, we mention that the predictions
are only valid for the parameter maximum range εp chosen
during the generation of the training set, and that the model
is trained for given values of the controller gains.

Fig. 4 shows the significant performance improvement of
using this learning-based prediction within a sampling-based
tree planner for checking the robustness of the local tree
expansions (see Alg. 2), against the previous version [10]
that directly integrates the ! dynamics. Results provided
for RRT and its RRT→ near time-optimal variant compare the
number of iterations of the main loop of the algorithm as a
function of computing time in an obstacle-free environment,

2Learning optimal controller gains is left to future work, as it would
require additional work on database generation and data annotation.



Validation set Test set
rq u ru rq u ru

MAE 2.6e↓4 17.3 64.5 1.1e↓3 71.0 279.8

TABLE I: MAE (Mean Absolute Error) of the norm of the
rq [m], u and ru [(rad/s)!] components of the output vector
computed on the validation and test sets.

Fig. 3: Example of GRU predictions along a trajectory
(orange) against true values (back). ||rq||, ||u|| and ||ru||
refer to the norm of their respective vector components.
||rq|| is expressed in m, and control input associated values
(||u||, ||ru||) are squared propeller speeds [(rad/s)!].

(a) RRT (b) RRT→

Fig. 4: Number of (a) RRT / (b) RRT→ iterations as a
function of planning time in an obstacle-free environment
using the standard (non-robust) RRT/RRT→ implementation
(blue), compared to robust versions using the GRU-based
tube prediction (green) or the integration of the dynamics of
! (red), as done in [10].

showing in both cases a significant time gain thanks to
the proposed learning method compared with the method
that integrates the dynamics of !. Note that in the case of
RRT, this time gain is constant (3 times faster) because the
expansion benefits from the neural network only once per
iteration. In the case of RRT→, the denser the tree, the more
robust collision tests are required for the rewiring connection
phase. Therefore, much more time is saved when using the
learning method. The gain on the planning time can reach
more than one order of magnitude for problems requiring a
significant amount of iterations.

B. Robust planning

We first demonstrate good efficiency and robustness of the
R-SARRT planner (see Sect. IV-B) from comparative simu-
lation results with a standard (non-robust) RRT, a RandUp-
RRT [8] and SARRT standing for a RRT implementation
of our former framework SAMP [10]. The robust collision
checking of R-SARRT and SARRT is achieved by enlarging

the robot shape to account for uncertainty. As for RandUp-
RRT, it has been implemented with 20 “RandUP particles”
to approximate the reachable set, and no ϱ-padding is used.

We also compared an asymptotically optimal version of
our algorithm (R-SARRT→) to a classic RRT→ to compute
near time-optimal trajectories. Both algorithms ran until the
solution cost converged below a threshold. Note that we
cannot perform a comparison with the RandUp-RRT since
there is no optimal version of the algorithm. The comparison
is based on their planning time and success rate on the
scenario depicted in Fig.1a, using an Intel i9 CPU@2.6GHz
and a RTX A3000 GPU for the GRU predictions. The same
geometric controller that steers the robot toward a sampled
desired state qd was used for all planners.

Table II shows comparative results averaged for each plan-
ner over 20 trajectories and 30 simulations with uncertain
parameters in the range εp of Sect.V-B. First note that
RandUp-RRT, SARRT and R-SARRT have a much stronger
robustness than standard non-robust RRT. R-SARRT has
a success rate of 100% compared to 99,2% for RanUp-
RRT. Indeed, as mentioned in [8], [9], the computation
of a conservative reachable set requires some additional
padding step, which is set to zero in our experiment3. Also
note the higher efficiency of R-SARRT which only uses
one prediction per iteration whereas RandUp-RRT needs
to perform a propagation per particle, yielding to a longer
planning time. As for SARRT, it does not build a robust
tree like R-SARRT. Instead, it only robustly checks the final
solution, causing frequent disconnections and re-connections
of non-robust nodes, which results in a higher planning time.
RRT, which does not account for robustness, remains faster
but with a significantly lower success rate. Similar results are
observed on the optimal versions. An example of trajectories
planned by RRT→ and a robust version R-SARRT→ optimiz-
ing the trajectory duration, and their associated simulations,
is illustrated in Fig.5. It shows the effective robustness of the
proposed algorithm as illustrated by the higher success rate
indicated in Table II.

We also experimentally demonstrate the window scenario
on a real quadrotor. Uncertainties are added to the system
by randomly attaching a mass of up to 80g (not known by
the controller) to the drone as depicted in Fig.6a.

In this experiment, a non-robust trajectory planned by
RRT→ and a robust one planned by R-SARRT→ were executed
ten times, using the same masses and attachment points
between the two algorithms. All trajectories were planned of-
fline on a remote computer. To make the robot execute them,
the geometric controller [24] ran online on the quadrotor’s
onboard computer, tracking the trajectories provided as input.
The robot state was measured using a motion capture system
with millimeter accuracy, ensuring that the only source of
uncertainty was the attached unknown mass. Fig.7 illustrates
the experimental execution of a non-robust RRT→ trajectory
and a robust R-SARRT→ trajectory. The figure shows the

3The padding value is a user parameter that is difficult to find. Choosing
the wrong padding value can result in set estimations that are too conser-
vative. We chose zero as in some experiments of [8].



Basic Planners Asymptotically Optimal Planners
RRT RandUp-RRT SARRT R-SARRT RRT→ R-SARRT→

Success (%) 61.8 99.2 100.0 100.0 56.5 100.0
Plan time (s) 7.1 ± 7.6 45.6 ± 33.4 57.8 ± 49.1 22.3 ± 15.8 308.7 ± 235.7 584.3 ± 394.7

TABLE II: Average planning time and success rate (no crash) of the simulated motions planned by RRT, RandUP-RRT, our
former planner SARRT and our R-SARRT, as well as RRT→ and our R-SARRT→ variants optimizing time, over 20 plans
and 30 simulations per plan.

(a) RRT→ (b) R-SARRT→

Fig. 5: Planned trajectory (black) produced by a (a) RRT→

and our (b) R-SARRT→. Simulated trajectories under uncer-
tainty are displayed in green in the case of success, and in
red in the case of a crash.

(a) (b)

Fig. 6: Quadrotor setups for the two scenarios considered
for the experimental validation. (a) a drone equipped with
a random mass to perform a robust navigation through a
window (b) a drone equipped with a perch to catch the rings.

recorded executions within a virtual environment to detect
virtual collisions, thus mitigating the risk of real crashes and
damages to the robot. The experimental results confirm the
simulation observations, providing an overall success rate of
100% in the case of the robust trajectory computed with R-
SARRT→, against 40% for the classic RRT→.

C. Accuracy optimization

We implemented the A-Optim method of Sect.IV-C by
using a robust version of the random shortcut algorithm [23]
and (5) as cost function to be optimized, where the radii of
interest are the ones along the x, ε and ϑ components of
q. At each iteration of this method, a shortcut is attempted
between two states of the input trajectory that are randomly
sampled together with the controller gain values, sampled
between 50% and 150% of their nominal values. Fig.8
motivates why we optimized both the trajectory and the
controller gains at the same time in the A-Optim function in
order to minimize uncertainty for a given point, as mentioned

(a) RRT→ (b) R-SARRT→

Fig. 7: Experimental execution by a quadrotor with uncer-
tainty of trajectories planned by RRT→ (a) and R-SARRT→

(b). Both trajectories are executed with the same uncertainty
and a virtual collision is found in the RRT→ case while the
R-SARRT→ execution is robust.

Fig. 8: Example of uncertainty ellipsoid without optimization
(red), with local trajectory optimization (yellow), with gains
optimization (blue), and with local trajectory and gains
optimization at the same time (green).

in Sec.IV-A. In fact, these results corroborate the findings of
[19], but this time by employing a sampling-based motion
planner that considers obstacles in the environment.

We evaluated our complete framework with the accuracy
optimization in a scenario that involves the in-flight retrieval
of two 2cm radius rings in a cluttered environment using a
drone equipped with a perch (see Fig.6b) in a (near) time
optimal way. The experimental setup is shown in Fig.9.
When the first ring is caught it becomes part of the drone
and modifies the overall mass/inertia and center of mass of
the system in an unmodeled way. A success is characterized
by the recovery of both rings, otherwise we consider the
execution as a failure.

We executed 10 trajectories using a vanilla (non-robust)
RRT→ planner and the RA-SARRT→ algorithm, both of which
optimize the trajectory time. The RRT→ does not use the A-
Optim method to optimize accuracy while the RA-SARRT→

does, in addition to guaranteeing the robustness. The offline



Fig. 9: Experimental validation of the “ring catching” sce-
nario with a perch-equipped drone (left) with the position of
the perch end-effector at the second ring location over 10
trajectories non accuracy optimized (top right) and accuracy
optimized (bottom right).

optimization in A-Optim aimed at minimizing the uncertainty
at the location of the two rings. Fig. 9 shows the perch
end-effector position at the second ring location in the non-
optimized case and in the optimized one. In the latter case,
the perch tip is closer to the reference point in the middle of
the ring than in the former case. This translates into a higher
success rate of nine out of ten attempts to catch the ring
with the optimized approach, against only three times out of
ten for the non-optimized case. However, given the chosen
system and controller parameters, there is no guarantee that
the computed tube will be enclosed in within the ring. This
explains why we still encounter one failure in the optimized
case. Overall, the experimental results show a success rate
of 90% for RA-SARRT→ against only 30% for RRT→.

VII. CONCLUSION
We have presented a motion planner able to generate tra-

jectories that are both robust and accurate in the presence of
model uncertainties for a variety of robot/controller pair. The
proposed planner leverages a GRU-based learning approach
that quickly and accurately estimates the control inputs and
the sensitivity-based uncertainty tubes of the state and of
the inputs. The results on a quadrotor robot confirm the
efficiency of the proposed learning method and highlight the
benefit of its integration within a motion planner, resulting
in a significant reduction of the planning times. Moreover,
we showed that our framework is able to locally optimize
the planned trajectory in order to minimize the size of the
uncertainty tubes of the state at some desired locations,
allowing the system to accurately perform a precision task.
An experimental demonstration involving a quadrotor UAV
in a ring-catching task allowed to validate the approach in
real conditions. Future works will focus on considering un-
certainties not only in the dynamic model, by extending the
computation of the tubes for state estimation uncertainties.
Furthermore, we aim to expand the capabilities of the neural
network to learn the optimal controller gains.
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