
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2024 1

Experimental Validation of Sensitivity-Aware
Trajectory Planning for a Redundant Robotic

Manipulator Under Payload Uncertainty
Ali Srour1, Antonio Franchi2,3, Paolo Robuffo Giordano1, Marco Cognetti4

Abstract—In this paper, we experimentally validate the recent
concepts of closed-loop state and input sensitivity in the context
of robust manipulation control for a robot manipulator. Our
objective is to assess how optimizing trajectories with respect to
sensitivity metrics can enhance the closed-loop system’s perfor-
mance w.r.t. model uncertainties, such as those arising from pay-
load variations during precise manipulation tasks. We conduct
a series of experiments to validate our optimization approach
across different trajectories, focusing primarily on evaluating the
precision of the manipulator’s end-effector at critical moments
where high accuracy is essential. Our findings offer valuable
insights into improving the closed-loop robustness of the robot’s
state and inputs against physical parametric uncertainties that
could otherwise degrade the system’s performance.

Index Terms—Optimization and Optimal Control; Planning
under Uncertainty; Manipulation Planning

I. INTRODUCTION

ROBOTS are now essential in daily applications, creating
a growing demand for improving their robustness and

accuracy. With the surge in online shopping, there exists a
growing push to automate package handling which can be of
various sizes and weights using robots. Thus, ensuring safe,
reliable, and accurate package handling is crucial to enhance
robot efficiency and meet operational demands effectively.
Real-world physical perturbations can occur if the payload
package is not fully grasped or if the dynamic parameters,
such as mass and inertia, are not measured precisely. Accurate
measurement and compensation of these payload parameters
are essential in the robot model for precise manipulation.

Manuscript received: July, 13, 2024; Revised September, 27, 2024; Ac-
cepted November, 21, 2024.

This paper was recommended for publication by Editor L.Pallottino upon
evaluation of the Associate Editor and Reviewers’ comments. This work
was supported by the project ANR-20-CE33-0003 “CAMP”, the Horizon
EU research and innovation programme [grant agreement No. 101120732]
AUTOASSESS, and the Chaire de Professeur Junior grant no. ANR-22-CPJ1-
0064-01. Experiments presented in this paper were carried out thanks to a
platform of the Robotex 2.0 French research infrastructure.

1A. Srour and P. Robuffo Giordano are with CNRS, Univ Rennes, In-
ria, IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France. email:
{ali.srour,prg}@irisa.fr

2A. Franchi is with the Robotics and Mechatronics Department, Elec-
trical Engineering, Mathematics, Computer Science (EEMCS) Faculty,
University of Twente, 7500 AE Enschede, The Netherlands. email:
a.franchi@utwente.nl

3A. Franchi is also with the Department of Computer, Control and Manage-
ment Engineering, Sapienza University of Rome, 00185 Rome, Italy. email:
antonio.franchi@uniroma1.it

4M. Cognetti is with LAAS-CNRS, Université de Toulouse, CNRS, UPS,
Toulouse, France LAAS-CNRS, email: mcognetti@laas.fr

Digital Object Identifier (DOI): see top of this page.

Fig. 1. This figure illustrates the comparison between a non-optimized
trajectory (INIT on the left) and one from our framework (OPTa on the
right), designed for robustly handling parametric payload uncertainties of the
payload (i.e., the box grasped by the robot). Nominal trajectories (i.e., when
the parameters are at their nominal values) are displayed in red while the ones
with altered parameters are depicted in green. The aim is to maximize the
robot end-effector precision at a target point (blue dot). The closest positions
(red dots) are the robot’s final positions across 15 real-world experiments,
showing improved precision using our approach. A video of experiments is
available at https://youtu.be/5dukBiuuOBs.

Furthermore, the payload may also have an influence on
collision detection [1] and system safety [2]. Estimating pay-
load package parameters, as described in [1], [3], involves
using optimization problems or filtering methods along with
proprioceptive sensors, as in [4]. In addition, some works,
such as [5], employ vision and reinforcement learning to
estimate the payload distribution. However, these methods
often necessitate performing pre-task motions (under some
excitation requirements), which can delay the manipulation
task or, anyway, create the need to perform cumbersome
maneuvers that are not related to the task realization.

In the literature, adaptive control [6] and robust control [7]
are used either to estimate payload parameters online or to
balance performance and robustness in the face of payload
parametric uncertainty. A robust control is typically designed
to handle worst-case scenarios and large perturbations, with
tuning gains optimized for such conditions. However, this
trades off robustness with performance, and can lead to
unnecessary poor results when the payload parameters happen
to be close to their nominal values. Another approach involves
using Model Predictive Control (MPC), as discussed in [8].

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2024

This method utilizes the system’s dynamic model to predict its
behavior. However, the effectiveness of MPC relies heavily on
the accuracy of the system model and the precise measurement
of its parameters. Any uncertainties in these parameters can
significantly degrade the controller’s performance. An interest-
ing approach is in [9], where a motion planner and controller
uses reachability analysis for non-prehensile manipulation of
unsecured objects. Finally, a fast time-scaling optimization
based on iterative learning is proposed in [10] for handling
model and execution uncertainties in contact tasks.

Recent strategies to mitigate the effects of parameter un-
certainty in a robot model, as introduced in [11]–[14], exploit
the closed-loop state/input sensitivity metrics to evaluate the
impact of model uncertainties on robot behavior. By designing
an “optimized” feedforward desired trajectory that minimizes
these sensitivity metrics, robustness against parametric uncer-
tainties is intrinsically embedded in the reference trajectory
itself, without the need of employing specific (e.g., robust)
control strategies. Indeed, the sensitivity machinery is agnostic
to the particular controller, which can also be the one provided
by the robot manufacturer. These versatile concepts can be ap-
plied to any system or controller under very mild assumptions
(differentiability of robot dynamics and control action).

Further advancements include the work in [15], which in-
vestigates optimal initialization of an energy tank for passivity-
based control in the context of robotic manipulators pushing
payloads, and [16], which examines the effects of controller
selection, gain tuning, and reference trajectory design on
reducing parametric sensitivity for quadrotor flight control. Re-
cent experimental validation of these methods, conducted on
a quadrotor with uncertain payloads, demonstrated enhanced
system robustness when navigating through confined spaces,
such as the center of a window [17].

Similar to previous works, [18] employed sensitivity analy-
sis metrics to study how model parameters affect end-effector
position deviations. These studies, conducted in an open-
loop manner, primarily aimed to identify the most influential
parameters impacting state deviations to improve robot design.
Authors of [19]–[21] focused on optimizing throwing motions
by minimizing the sensitivity to dynamic parameters, static
joint friction, and initial positioning errors. Their goal was
to achieve robust tossing configurations despite parametric
uncertainties. However, they modeled the object being tossed
as a point mass and used a linearized system model for the
sensitivity calculations.

To the best of our knowledge, the concept of closed-loop
state/input sensitivity has not previously been applied to the
case of torque control of manipulator arms (with full dynamics
model) in the presence of uncertain payloads. A significant
contribution of this study is to introduce, for the first time,
an experimental assessment and validation of sensitivity-based
trajectory generation focused on torque-controlled manipula-
tors. The experiments utilize the Franka Emika Panda Robot,
a widely adopted 7-DOF torque-controlled manipulator in the
research community. Our objective is to apply the closed-loop
state/input sensitivity (and related measures) for evaluating
how a proper reference trajectory planning, designed to be
robust against uncertainties in payload parameters, can im-

prove performance of a standard manipulator with a standard
controller and achieve more precise manipulation.

The remainder of this paper is structured as follows: In
Sect. II, we recall the main notions of closed-loop state/input
sensitivity with details about the manipulator model and track-
ing controller. In Sect. III, we present the reader with the
optimization problem proposed. Sect. IV discusses the simula-
tion and the experimental results on the controller performance
for three different case studies. Finally, Sect. V concludes the
paper.

II. METHODOLOGY

We consider the dynamic model of a robot in joint space that
can be expressed by the following Euler-Lagrange equation:

B(q)q̈ +C(q, q̇)q̇ + g(q) = u, (1)

where q, q̇, q̈ ∈ Rnq are the joint angles, velocities and
accelerations of the robot, respectively, B(q) ∈ Rnq×nq ,
C(q, q̇) ∈ Rnq×nq , and g(q) ∈ Rnq are the positive defi-
nite inertia matrix, the Coriolis matrix and the configuration
dependent gravity vector, and u ∈ Rnu is the vector of motor
torques. Finally, nq corresponds to the robot’s total degrees of
freedom (DoF) and nu to the dimension of the input space.

A. Load Dynamic Parameters

Consider the manipulator modeled as in (1) whose last end-
effector reference frame is referred to as ne . The robot has
to manipulate a payload L whose dynamic parameters are the
mass mL, the center of mass (CoM) denoted as rcL, and the
symmetric inertia tensor IL, all expressed at the last frame
ne. When the robot is grasping the payload, the latter can be
seen as an additional link of the robot, modifying the last link
dynamic parameters as [1]:

mne
−→ mne

+mL

rcxne
−→

rcxne
mne

+ rcxLmL

mne +mL

rcyne
−→

rcyne
mne + rcyLmL

mne +mL

rczne
−→

rczne
mne + rczLmL

mne +mL

(2)

Ine −→ Ine + IL (3)

where mne
, rcne

, Ine
are the mass, center of mass and the

inertia tensor of the last link of the robot. As depicted from (2),
the modified CoM is computed by summing the robot last
link’s CoM rcne

= (rcxne
, rcyne

, rczne
) and the payload’s

CoM rcL = (rcxL , rcyL , rczL), weighted by their respective
masses and both expressed in the end-effector frame ne. For
the calculation of the modified inertia in (3), a direct sum of
the robot link’s inertia tensor Ine

and the payload’s inertia
tensor IL is only valid if both tensors are represented in the
same reference frame. If the payload’s inertia tensor is defined
in a frame attached to its CoM – denoted as LIL – the Steiner
theorem can be applied to convert it to the ne frame

IL = neRL
LIL

neRT
L +mLS

T (rcL)S(rcL) (4)

SROUR et al.: ROBUST PLANNING FOR ROBOTIC MANIPULATORS 3

where neRL is the rotation matrix between ne and the
payload’s reference frame and S(rcL) is the skew-symmetric
matrix obtained from rcL .

B. Sensitivity Analysis

Notions of closed-loop state/input sensitivity were first in-
troduced in [11], [12] and further developed in [13], [15]–[17],
[22], [23]. These concepts are general but have been primarily
applied to aerial robots in the context of navigation tasks. In
this paper, we aim to illustrate how the concept of sensitivity
can be adapted to consider uncertain payload parameters,
denoted as p, while accounting for the full dynamics of a ma-
nipulator robot. Specifically, we consider the following vector
of parameters p = [mL, rcL, iL] ∈ R10 [1] as uncertain1,
where iL = [ILxx

, ILxy
, ILxz

, ILyy
, ILyz

, ILzz
] ∈ R6 is the

vector containing all the lower triangular elements of IL.
Modifying the last link parameters as shown in (2) and (3),

the dynamic model of the robot becomes explicitly dependent
on p and can be expressed as

B(q,p)q̈ +C(q, q̇,p)q̇ + g(q,p) = u. (5)

Let x = [q, q̇]T ∈ R2nq be the state of the system and s be
a quantity of interest to be controlled. For example, it can be
the pose of the robot end-effector. In this case, s = (re,ϕe)
where re is the EE position and ϕe is the EE orientation
(e.g., axis/angle as in our paper). We consider the tracking
task of a desired trajectory sd(a , t) defined for t ∈ [t0, tf]
and function of a finite set of trajectory parameters a ∈ Rna .
Even if the sensitivity matrix can be evaluated on any pair
of systems/controllers, we focus our attention in this paper,
without loss of generality, on a (standard) joint space torque-
controller based on feedback linearization with null space
projection:

u = (JsB(q,pc)
−1)† (s̈d +Ds(ṡd − ṡ) +Ks(sd − s)

+esint
− J̇s(q)q̇

)
+C(q, q̇,pc) + g(q,pc) + P⊥τN .

(6)
In the previous equation, Js denotes the task Jacobian and
τN = −kdBq̇, kd > 0 represents a secondary priority
torque, designed to introduce damping into the robot’s motion.
This torque is projected into the null space of the primary
(tracking) task using the projector P⊥ = (I−J⊤

s J̄⊤
s), which is

based on the dynamically consistent inertia-weighted pseudo-
inverse [24]. In particular, J̄s = B−1J⊤

s (JsB
−1J⊤

s)−1,
and Ks,Ds are the diagonal matrices corresponding to the
proportional and derivative gains respectively. Finally,

esint = KI

∫
(sd − s)dt (7)

is an integral action with KI a positive definite diagonal
integral gain matrix. It is worth mentioning that the controller
u in (6) is evaluated at the nominal values of the parameters pc

(which may differ from the actual p because of inaccuracies
in the payload parameters).

1This is motivated by the fact that we consider the robot dynamic model
(without payload) to be reasonably well identified via a preliminary calibration
procedure. However, in our context, the payload to be grasped is considered
coarsely known in advance and, therefore, with uncertain parameters.

Let X = [re,ve]
T ∈ R6 denote the end-effector (EE) state,

where re ∈ R3 represents its position and ve ∈ R3 its linear
velocity. In this paper, we are interested in minimizing the
sensitivity XΠp (at a specific time) of the end-effector state
X w.r.t. the parameters p. This is motivated by the fact that we
aim to generate precise trajectories for the robot end-effector
in the presence of parameter uncertainties.

The computation of this sensitivity can be divided into two
steps: (i) the computation of the robot closed-loop sensitivity
xΠp as in [11], [12]; and (ii) the computation of the sensi-
tivity XΠx of the EE state X w.r.t. the robot state x. The
overall sensitivity can be written as

XΠp = XΠx
xΠp , (8)

where xΠp(t) = ∂x(t)
∂p

∣∣∣
p=pc

and XΠx(t) = ∂X(t)
∂x

∣∣∣
p=pc

.

Furthermore, we also define the input sensitivity as (see [12])

Θ(t) =
∂u(t)

∂p

∣∣∣∣
p=pc

. (9)

Matrix XΠp(t) quantifies how variations of the parameters
p, around a nominal value pc, will affect the evolution of
the state X (in closed-loop). Analogously, Θ(t) relates how
variations of parameters p would affect the inputs u. A closed-
form expression for matrices xΠp(t) and Θ(t) is not, in
general, available. However, one can obtain a closed-form
expression for their dynamics and thus obtain the behavior
of xΠp(t) and Θ(t) via forward integration of an ODE along
the system trajectories [11], [12].

Matrices XΠp(t) and Θ(t) can then be used for several pur-
poses in the context of trajectory optimization, for obtaining
suitable sensitivity metrics to be optimized or an estimation of
the envelope of “perturbed trajectories” for the states/inputs.
To this end, assume that each parameter pi can vary in a given
range δpi centered at a nominal pci

pi ∈ [pci − δpi, pci + δpi] (10)

and define the diagonal weight matrix as W = diag(δp2i).
Letting ∆p = p − pc, an ellipsoid in the parameter space
centered at pc and with semi-axes δpi can be expressed as

∆pTW−1∆p ≤ 1. (11)

Following the derivations in [23], from (8)–(9) and (11),
one can obtain the corresponding ellipsoid in the state space

∆XT (XΠpW
XΠT

p)
−1∆X ≤ 1 (12)

and in input space

∆uT (ΘWΘT)−1∆u ≤ 1, (13)

where ∆X = X − Xnom, with Xnom the nominal EE
state, and ∆u = u − unom , with unom being the evolution
of (6) in the nominal case p = pc.

The state and input space ellipsoids can be exploited to
define a sensitivity-based norm and ‘tubes’ that envelope
the behavior of the state/input trajectories in the perturbed
cases. For example, one can consider the worst-case scenario
corresponding to the largest deviation of the EE state X when

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2024

the parameters lie in their bounds as in (10). This corresponds
to defining the norm as

∥XΠp∥W = λmax(
XΠpW

XΠT
p), (14)

where λmax(A) denotes the maximum eigenvalue of a
matrix A. Furthermore, one can also exploit (12)–(13) for
obtaining the tubes of perturbed trajectories for the individual
components of the EE states and the inputs. By referring
to [23] for additional details, for each direction of interest
in the input space, one can obtain the “tube radius” ri(t) as

unom,i(t)− ri(t) ≤ ui(t) ≤ unom,i(t) + ri(t), (15)

where unom,i(t) is the behavior of the input ui(t) in the
nominal case p = pc. Equation (15) bounds from above/below
the envelope of perturbed inputs when the parameter uncer-
tainty is bounded as in (10), and an analogous upper/lower
bound can also be obtained for the generic EE state component
Xi(t), i ∈ [1, ..., 6].

III. OPTIMIZATION PROBLEM
In this paper, we consider the following trajectory optimiza-

tion problem

a∗ = argmin
a

∥XΠp(t̄)∥W
s.t. Ma = b

Umin,i ≤ unom,i(t)− ri(t) ∀i ∈ [1, ..., nu], ∀t ∈ [t0, tf]

unom,i(t) + ri(t) ≤ Umax,i ∀i ∈ [1, ..., nu], ∀t ∈ [t0, tf].
(16)

We seek the optimal value a∗ of the shape parameter a of
the reference trajectory sd(a , t) for minimizing the sensitivity
norm (14) at a specific time t̄. Minimization of this cost
will increase the robustness (thus reducing the sensitivity) of
the closed-loop system at t̄ against parameter uncertainties
of the payload. The constraints consist of given initial/final
conditions for sd(a , t), represented by the linear constraints
Ma = b, and constraints that bound the envelope of perturbed
inputs within actuation limits Umin,i ≤ Umax,i, ensuring
that the tracking of the optimized reference trajectory will
be feasible for any value of the uncertain parameters p
in the range (10). Note that these constraints leverage the
“input tubes” as described in (15). Additionally, constraints
such as obstacle avoidance and workspace limitations can
be incorporated by leveraging state tubes, as demonstrated
in [13], [14]. Also, we focus only on the sensitivity of the
end effector’s (EE) position and linear velocity with respect
to the uncertain payload parameters p. While it is possible to
extend this analysis to include the sensitivity of other states,
such as the EE’s orientation and angular velocity, doing so
would increase computation time and, furthermore, it has been
shown that for a tossing task, the most relevant states are the
position/linear velocity w.r.t. the rotational ones [25]–[27].

IV. ANALYSIS

A series of simulations and experiments have been carried
out to evaluate the effectiveness of the proposed trajectory gen-
eration derived from solving (16). Three trajectories sd(a, t) =

(rd(a, t),ϕd(a, t)) were obtained, where rd(a, t) represents
the desired Cartesian EE position and ϕd(a, t) represents the
desired EE orientation. These trajectories – hereafter referred
to as Traj1, Traj2, and Traj3 – comply with the initial and
final state constraints (e.g., initial/final position, velocity, and
acceleration constraints) and input saturations as in (16).

In Traj1 and Traj2 the sensitivity of the EE position is
minimized at the final time tf by solving the optimization
problem (16) for t̄ = tf in order to increase the accuracy of
the EE position at tf where the robot should arrive at rest
(the orientation is left free to be determined by the optimizer).
Conversely, in Traj3, the sensitivity of the EE position is
minimized at a specific time tw < tf that corresponds to the
time at which the robot is passing over a point of interest
while moving – by solving (16) for t̄ = tw. Its objective is to
increase the accuracy of the EE position and linear velocity
while the robot is moving.

We start by generating a first trajectory that will be referred
to as INIT which is constructed using piecewise Bezier
curves as discussed in [16], [17]. This trajectory is obtained
through a preliminary optimization process that minimizes the
snap of sd(a , t) over the whole time interval. The goal is to
generate a smooth trajectory with minimal curvature changes
while satisfying nominal state and input constraints. To achieve
this objective, the INIT trajectories are obtained by solving
the following optimization problem

a = argmin
a

(∫ tf

t0

∥∥∥∥d4rd(a, τ)dt4

∥∥∥∥2 + ∥∥∥∥d4ϕd(a, τ)

dt4

∥∥∥∥2 dτ
)

s.t. Ma = b

Umin,i ≤ unom,i(t) ≤ Umax,i ∀i ∈ [1, . . . , nu], ∀t ∈ [t0, tf].
(17)

Our framework then modifies this trajectory by solving (16)
with INIT as an initial guess. The resulting trajectory is de-
noted as OPTa. More in detail, our framework is implemented
in Python and utilizes the COBYLA [28] nonlinear optimizer
from the nlopt toolbox by employing CasADi for symbolic
system representation [29]. Within this framework, the offline
optimization of trajectories, as described in Sect. II, typically
requires an average of 30 minutes per trajectory.

Our main objective is to assess the improvements in accu-
racy obtained within our framework for reaching better target
attainment (desired position rd(t̄) and desired linear velocity
vd(t̄)) at a specific time along the trajectory. We also want to
evaluate the impact of the integral action in (7) for real-world
applications. To this aim, we will compare the results in the
case KI = 0 and KI ̸= 0.

In the following subsections, the perturbations of the pay-
load’s parameters are introduced by uniformly sampling the
inner volume of the ellipsoid (11) in simulation. However,
in real-world experiments, the perturbations were obtained by
actually altering the payload L by changing the mass and
weight distribution which leads to modify the inertia as well
(see examples in Fig. 2, and the video).

The nominal parameters were obtained from a CAD model
of the package and experimental measurements. These pa-
rameters are defined as pc = [mLc

, rcLc
, iLc

], where the

SROUR et al.: ROBUST PLANNING FOR ROBOTIC MANIPULATORS 5

Fig. 2. Franka Emika Panda Robot while moving the box that contains a
certain payload with a specific distribution. The nominal state of the payload
is displayed (left) followed by the physical perturbation examples for the
payloads L6 and L11 aiming at changing the mass, center of the mass, and
inertia of the payload.

nominal mass, the center of mass, and the inertia tensor are
given by mLc

= 2 kg, rcLc
= [0.0, 0.0, 0.025] m, and

iLc = [7.4,−0.0001, 0.1, 11.4,−0.005, 1.6] × 10−3 kg·m2.
Precise measurements of these parameters inside the robot
model allow for precise manipulation. The uncertainty inter-
vals δpi for W are chosen relative to the nominal parameters
pc as δmL = 0.2mLc

, δrcxL,cyL = 0.15l, δrczL = 0.05h, and
δiL = 0.2iLc

, where h = 7cm is the box height and l = 20cm
is the box length. Additionally, the gains used in the torque
controller in (6) are defined as Ks = 480 I6, Ds = 60 I6,
and KI = 60 I6, where I6 is the 6× 6 identity matrix.

A. Sensitivity Optimization at t̄ = tf

In this section, we present the results when minimizing the
sensitivity at t̄ = tf . Fig. 3 shows the comparison between
INIT and OPTa when no integral action is considered in
the controller, i.e., KI = 0 in (7). We performed Nsim =
30 simulations (“Simulation Framework” label in Fig. 3) and
Nexp = 15 real-world experiments (“Real Experiments” label
in Fig. 3) where p was altered as described in Sect. IV.

In particular, Fig. 3 reports the results for Traj1 (1st and
3rd rows) and Traj2 (2nd and 4th rows). In the same figure,
the nominal case trajectories (i.e., p = pc) are reported in
red while the “perturbed” ones (i.e., p ̸= pc) are depicted in
green. The red dots represent, per each simulation/experiment,
the point re(tf) that is closest to the desired final position
rd(tf). The results show that, in the nominal case, the robot is
capable of tracking the reference trajectory with high accuracy.
On the contrary, the tracking performance degrades when the
payload parameters are altered, as can be seen by the sparsity
of the final robot position in the INIT column of Fig. 3.
However, the performances improve with our approach, as
evident by the OPTa column of Fig. 3, where the red dots
are much closer to the desired final position. This trend is also
confirmed by Fig. 4 that shows the distance to the target (i.e.,
||rd(tf) − re(tf)||) for the simulation (top) and experiment
(bottom) cases. In particular, INIT shows an average error
of 0.012 m for Traj1 and 0.01 m for Traj2 in simulation.
In contrast, the error is reduced to 0.008 m for Traj1 and
0.006 m for Traj2 for OPTa. A similar behavior can be seen
in real-world experiments. In fact, INIT shows an average
error of 0.022 m for Traj1 and 0.03 m for Traj2 with a large
variance. On the contrary, OPTa shows significantly better
target attainment where the distance to the target drops to
0.011 m for Traj1 (50% increased accuracy, see Fig. 1) and

[m]

0 3
0 4

0 5
0 6 0 5 0 0

[m
]

0 3
0 4
0 5Traj1

Traj2

[m]

0 3
0 4

0 5
0 6 0 5 0 0

[m
]

0 3
0 4
0 5

[m]

[m
]

0 3
0 4

0 5
0 6

[m]
0 5 0 0

[m
]

0 3
0 4
0 5

[m]

[m
]0 3

0 4
0 5

0 6
[m]

0 5 0 0

[m
]

0 3
0 4
0 5

Simulation Framework

[m]
0 3

0 4
0 5

0 6 0 5 0 0

[m
]

0 3
0 4
0 5Traj1

Traj2

Desired Target:
Reference Trajectory

Nominal Controller tracking
Controller tracking with pertubation

Closest positions to target
Trajectory Start

[m]

0 3
0 4

0 5
0 6 0 5 0 0

[m
]

0 3
0 4
0 5

[m]

[m
]

0 3
0 4

0 5
0 6[m]

0 5 0 0

[m
]

0 3
0 4
0 5

[m]

[m
]

0 3
0 4

0 5
0 6[m]

0 5 0 0

[m
]

0 3
0 4
0 5

Real Experiments

Fig. 3. Sensitivity results for t̄ = tf for two trajectories: Traj1 (1st and
3rd rows) and Traj2 (2nd and 4th rows) for INIT (left column) and OPTa

(right column). The nominal trajectories are in red while the perturbed ones
are shown in green. Nsim = 30 simulations and Nexp = 15 real-world
experiments are reported. Red dots at t = tf mark the closest points of each
trajectory to the desired target rd(tf). Parameters p were uniformly drawn
in our simulation framework as in (11) and in experiments by modifying the
box package as in Fig. 2.

10

15

20

25
Traj1

0 00 0 01 0 02 0 03 0 04 0 05
0

5

Average: 0.012
Average: 0.008

0 00 0 01 0 02 0 03 0 04 0 05

Traj2
Average: 0.010
Average: 0.006

Simulation

N
um

be
r

of
 t

ria
ls

N
um

be
r

of
 t

ria
ls

0 00 0 01 0 02 0 03 0 04 0 05
0

2

4

6

8

10
Traj1

Average: 0.022
Average: 0.011

0 00 0 01 0 02 0 03 0 04 0 05

Traj2Experiments
Average: 0.030
Average: 0.020

Fig. 4. Histograms of two trajectory types (left: Traj1, right: Traj2) for both
cases (INIT in blue, OPTa in red. The “dark purple” is the overlap of the
two colors) showing the distances to the desired target (||rd(tf)−re(tf)||) in
[m] and its average (dashed thick lines) across Nsim = 30 runs in simulation
(top) and Nexp = 15 runs in experiments (bottom).

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2024

0.02 m for Traj2. Finally, it is worth mentioning that the
variance is much smaller for the OPTa case, confirming the
improvements provided by our approach.

To further validate our results, we report in Fig. 5 the un-
certainty tubes for the EE position over time for Traj1 in case
of real-world experiments (a similar behavior is experienced
for Traj2, omitted for the sake of space). In particular, the red
solid line represents the nominal case, while the black solid
lines correspond to the upper and lower bounds of the tubes.

From Fig. 5, it is clear that the tubes’ size decreases notably
at tf . Specifically, OPTa reduced – w.r.t. INIT – the tube
radius of 33% for x, 5% for y, and 17% for z of the robot
EE position at tf . This confirms the importance of minimizing
the sensitivity to ensure robustness and enhance accuracy.

Finally, it is worth mentioning that the trajectory obtained
by OPTa often involves an initial maneuver followed by a
vertical approach to the target location, either from above
or below (see video and Figs. 1,3) while minimizing the
sensitivity at t̄ = tf . This behavior can be seen for both Traj1
and Traj2 and it has been empirically verified in most of the
trajectories obtained from (16). One possible explanation is
that a final vertical motion helps to better minimize the effects
of uncertainties in the considered parameters p.

B. Sensitivity Optimization at t̄ = tf with Integral Action

In this section, we aim to highlight the impact of the integral
action in (7). In particular, we compare the INIT and OPTa

approaches described so far with their counterparts including
an integral action. These new variants – obtained considering
KI ̸= 0 in (7) – will be referred to as INITi and OPTai,
respectively. Furthermore, we explored two scenarios for the
controller incorporating integral action: (a) the robot stops at
tf (as in INIT and OPTa); and (b) an additional time budget
of 5 seconds is allocated, which significantly extends the total
trajectory duration (2.2 s). This latter case is included to allow
more time for the integral action to recover from uncertainties.

As shown in Figs. 6 and 7, OPTa not only outperforms
INIT but also INITi across both scenarios (without and with
an additional time budget). The final positions achieved by
OPTa are consistently closer to the desired target rd(tf) and
demonstrate less variance. Specifically, for the INIT case,
the average distance to rd(tf) is 0.022 m, which reduces to
0.017 m and further to 0.015 m for INITi in scenarios (a) and
(b) (without and with an additional time budget, as mentioned
above), respectively. However, the performance of OPTa is
even better, achieving an average error of 0.011 m, while
OPTai reduces this further to 0.007 m in scenario (a) and to
0.006 m in scenario (b). These results highlight the positive
impact of the integral action and, more importantly, validate
our approach. Even with the additional time budget, which
provides the best outcome for INITi, OPTa (without inte-
gral action and post-delay) still outperforms the best INITi

outcome. Furthermore, to provide a broader perspective on
the results, Fig. 8 presents the outcomes of a simulation
campaign involving 10 distinct trajectories with randomized
target locations, covering both the INITi and OPTai cases.
For each case, we conducted Nsim = 30 perturbed runs. This

0 1 2

0 40

0 45

0 50

0 55

EE
po

sit
io

n
[

]

0 1 2

Nominal state tracking
Tube bound upper/lower
Perturbed tracking

Traj1

0 1 2

0 4

0 2

0 0

0 2

EE
po

sit
io

n
[

]

0 1 2

0 1 2
0 30

0 35

0 40

0 45

0 50
EE

po
sit

ion
[

]

0 1 2

Fig. 5. Visualization of the uncertainty tubes associated with the EE position
over time for INIT (left) and OPTa (right). The solid red lines denote the
nominal case, while the solid black lines represent the upper/lower bounds
for the tubes. The dashed green lines depict the Nexp experimental runs. As
expected, the tubes are much smaller for OPTa w.r.t. INIT at t̄ = tf .

simulation campaign supports the experimental results shown
in Fig. 7, highlighting statistically similar improvements in
terms of target reach. Specifically, the latter improved from
0.013 m for INITi to 0.008 m for OPTai in Fig. 8, which is
consistent with scenario (a) in Fig. 7, based on Nexp = 15.

C. Sensitivity Optimization at t̄ = tw (robot in motion)

In this section, we validate our framework in case the robot
is passing over a point of interest while moving (e.g., for
dropping or tossing a package). It is worth noting that the
additional time budget discussed in Sect. IV-B would not make
any difference for this scenario since the point of interest is
in the middle of the trajectory and the robot should pass over
it while moving. For this reason, for the cases that include an
integral term (INITi and OPTai), we will focus on the case
where no additional time budget is given.

As it can be seen in Fig. 9, the average distance error
is 0.014 m for INITi and 0.012 m for OPTai in sim-
ulation. Moreover, the deviations from the desired velocity
are 0.031 m/s for the INITi and 0.023 m/s for OPTai.

SROUR et al.: ROBUST PLANNING FOR ROBOTIC MANIPULATORS 7

[m]

0 3
0 4

0 5
0 6

[m]0 5
0 0

[m
]

0 3

0 4

0 5

Desired Target:
Reference Trajectory
Nominal Controller tracking

Controller tracking with pertubation
Closest positions to target
Trajectory Start

[m]

0 3
0 4

0 5
0 6

[m]0 5
0 0

[m
]

0 3

0 4

0 5

[m]

0 3
0 4

0 5
0 6

[m]0 5
0 0

[m
]

0 3

0 4

0 5

[m]

0 3
0 4

0 5
0 6

[m]0 5
0 0

[m
]

0 3

0 4

0 5

[m]

0 3
0 4

0 5
0 6

[m]0 5
0 0

[m
]

0 3

0 4

0 5

[m]

0 3
0 4

0 5
0 6

[m]0 5
0 0

[m
]

0 3

0 4

0 5

Real Experiments: Traj1

With 5s additional time after

Without additional time after

Fig. 6. Resulting trajectories for Nexp = 15 real-world experiments. First
row: no integral term in (6): INIT and OPTa. Second row: integral term
in (6) and robot stopping at tf : INITi and OPTai. Third row: integral term
in (6), giving additional 5 s after tf to the controller: INITi and OPTai.
Nominal trajectories are in red while the perturbed ones are in green. The red
spheres at t̄ = tf depict the closest points to rd(tf) reached by the robot.

0.00 0.02 0.04
‖rd(tf)− re(tf)‖ in [m]

0

5

10
Average: 0.022
INIT

0.00 0.02 0.04
‖rd(tf)− re(tf)‖ in [m]

Average: 0.011
OPTa

0.00 0.02 0.04
‖rd(tf)− re(tf)‖ in [m]

0

5

10
Average: 0.017
INITi

0.00 0.02 0.04
‖rd(tf)− re(tf)‖ in [m]

Average: 0.007
OPTai

0.00 0.02 0.04
‖rd(tf)− re(tf + 5)‖ in [m]

0

5

10
Average: 0.015
INITi

0.00 0.02 0.04
‖rd(tf)− re(tf + 5)‖ in [m]

Average: 0.006
OPTai

Experiments: Traj1

Nu
m

be
ro

ft
ria

ls
Nu

m
be

ro
ft

ria
ls

Nu
m

be
ro

ft
ria

ls

Without additional time after tf

With 5s additional time after tf

Fig. 7. Histograms of Traj1 for the four cases (INIT in blue, INITi in
green, OPTa in red, and OPTai in violet) showing the distances to the
desired target ||rd(tf)− re(tf)|| in [m] and its average (dashed thick lines)
across Nexp = 15 experiments. For the cases including an integral term
(INITi and OPTai), two scenarios are considered: (a) stopping the robot at
tf (as for INIT and OPTa) - second row; and (b) providing an additional
time budget of 5 s - third row. As it is evident, OPTai obtains the best
performance in terms of average error and variance, in particular when we
donated an additional time budget to the integral term.

0 000 0 005 0 010 0 015 0 020 0 025 0 030
0

50

100

150

200 Average: 0.013
Average: 0.008

Simulation

N
um

be
r

of
 t

ria
ls

Fig. 8. Histogram illustrating the results for 10 distinct trajectories with
randomized target locations for INITi and OPTai. For each trajectory,
Nsim = 30 perturbed runs were performed, showing the variation in
the distance ∥rd(tf) − re(tf)∥ in [m] at the final time tf . The vertical
dashed lines indicate the average distance for INITi and OPTai, offering
a comparative insight into their respective performance.

Thus, OPTai shows slight improvements in terms of average
error with less variance in velocity. However, in experimental
results, the differences between the two approaches become
more prominent, particularly in terms of deviations from the
desired target velocity vd(tw). The average velocity error
is 0.13 m/s for INITi, while it reduces to 0.07 m/s for
OPTai, representing about a 46% improvement. In terms of
deviation from the target reach, OPTai shows a deviation of
0.019 m, compared to 0.023 m for INITi. Thus, our approach
produced more robust and precise trajectories, leading to
reduced deviations in both EE position and velocity.

To appreciate the effect of the perturbations over the control
inputs, we report in Fig. 10 the input tubes. For the sake of
space, we report only the input torque τ4 but similar results
were obtained for the other inputs. In Fig. 10, the black solid
lines represent the upper/lower tube bounds obtained from
simulations, while the green dashed lines correspond to the
perturbed torques (for Nexp = 15 cases) and the red solid line
represents the nominal torque from experiments. The perturbed
torques generally remain within these bounds, demonstrating
that the input tubes effectively capture the system’s input
behavior under parameter perturbations. The violations in
Fig. 10 of the tubes are due to the first-order approximation
used for computing the tubes [23], the difficulty in modeling
all the parameters that might be uncertain (e.g., joint friction
or backlash), and the impossibility of exactly knowing the
nominal parameters pc in real-world experiments which is
probably the main factor affecting the tube behavior.

V. CONCLUSIONS

In this paper, we experimentally validated the closed-loop
state and input sensitivity for a robotic arm that has to track a
trajectory while grasping a payload whose dynamic parameters
are uncertain. We performed simulations and real-world exper-
iments where these parameters were altered, comparing the
tracking of a minimum snap trajectory with the one obtained
with our sensitivity framework using the same controller.
The results confirm that our approach effectively mitigates
the effects of the uncertain parameters, allowing for more
precise tracking in terms of precision of the EE position and
velocity. Future works will explore scenarios such as tossing
an uncertain payload into a desired location, aiming to increase
the tossing and landing accuracy.

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2024

0 00 0 01 0 02 0 03 0 04 0 05
0

5

10

15
Average: 0.014
Average: 0.012

0 00 0 02 0 04 0 06 0 08

Average: 0.031
Average: 0.023

Simulation: Traj3
N

um
be

r
of

 t
ria

ls

0 00 0 01 0 02 0 03 0 04 0 05
0

2

4

6

8

10 Average: 0.023
Average: 0.019

0 0 0 1 0 2 0 3 0 4

Average: 0.130
Average: 0.070

Experiments: Traj3

N
um

be
r

of
 t

ria
ls

Fig. 9. Histograms of Traj3 in simulation (top) and experiments (bottom)
for the INITi (green) and the OPTai (violet) cases. EE position distance
(||rd(tw)−re(tw)||) in [m] and EE velocity distance (||vd(tw)−ve(tw)||)
in [m/s] w.r.t. the desired trajectory at t̄ = tw .

0 0 0 5 1 0 1 5 2 0 2 5 3 0 3 5

0

20

40

0 0 0 5 1 0 1 5 2 0 2 5 3 0 3 5
0

20

40

4(
)i

n
[

]

Fig. 10. Experimental actuator torque comparison for Traj3: INITi (top) vs.
OPTai (bottom). The solid red line denotes nominal actuator torque, while
the solid black lines represent the input tube upper/lower bounds (15). The
dashed green lines depict Np perturbation runs.

REFERENCES

[1] C. Gaz and A. De Luca, “Payload estimation based on identified coef-
ficients of robot dynamics—with an application to collision detection,”
in 2017 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS).
IEEE, 2017, pp. 3033–3040.

[2] M. Hamad, N. Mansfeld, S. Abdolshah, and S. Haddadin, “The role
of robot payload in the safety map framework,” in 2019 IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems. IEEE, 2019, pp. 195–200.

[3] A. Bahloul, S. Tliba, and Y. Chitour, “Dynamic parameters identification
of an industrial robot with and without payload,” Ifac-Papersonline,
vol. 51, no. 15, pp. 443–448, 2018.

[4] A. Kurdas, M. Hamad, J. Vorndamme, N. Mansfeld, S. Abdolshah, and
S. Haddadin, “Online payload identification for tactile robots using the
momentum observer,” in 2022 Int. Conf. on Robotics and Automation
(ICRA). IEEE, 2022, pp. 5953–5959.

[5] K. N. Kumar, I. Essa, S. Ha, and C. K. Liu, “Estimating mass distribution
of articulated objects using non-prehensile manipulation,” arXiv preprint
arXiv:1907.03964, 2019.

[6] I. Carlucho, D. W. Stephens, and C. Barbalata, “An adaptive data-driven
controller for underwater manipulators with variable payload,” Applied
Ocean Research, vol. 113, p. 102726, 2021.

[7] Y. Chen, W. Zhan, B. He, L. Lin, Z. Miao, X. Yuan, and Y. Wang,
“Robust control for unmanned aerial manipulator under disturbances,”
Ieee Access, vol. 8, pp. 129 869–129 877, 2020.

[8] Y. Dai, H. Gao, S. Yu, and Z. Ju, “A fast tube model predictive
control scheme based on sliding mode control for underwater vehicle-
manipulator system,” Ocean Engineering, vol. 254, p. 111259, 2022.

[9] Z. Brei, J. Michaux, B. Zhang, P. Holmes, and R. Vasudevan, “Serving
time: Real-time, safe motion planning and control for manipulation of

unsecured objects,” IEEE Robotics and Automation Letters, vol. 9, no. 3,
pp. 2383–2390, 2024.

[10] J. Luo and K. Hauser, “Robust trajectory optimization under frictional
contact with iterative learning,” Autonomous Robots, vol. 41, pp. 1447–
1461, 2017.

[11] P. Robuffo Giordano, Q. Delamare, and A. Franchi, “Trajectory genera-
tion for minimum closed-loop state sensitivity,” in 2018 IEEE Int. Conf.
on Robotics and Automation. IEEE, 2018, pp. 286–293.

[12] P. Brault, Q. Delamare, and P. Robuffo Giordano, “Robust trajectory
planning with parametric uncertainties,” in 2021 IEEE Int. Conf. on
Robotics and Automation (ICRA). IEEE, 2021, pp. 11 095–11 101.

[13] S. Wasiela, P. Robuffo Giordano, J. Cortes, and T. Simeon, “A
Sensitivity-Aware Motion Planner (SAMP) to Generate Intrinsically-
Robust Trajectories,” in 2023 IEEE Int. Conf. on Robotics and Automa-
tion, 2023, pp. 12 707–12 713.

[14] S. Wasiela, M. Cognetti, P. Robuffo Giordano, J. Cortés, and T. Siméon,
“Robust motion planning with accuracy optimization based on learned
sensitivity metrics,” IEEE Robotics and Automation Letters, vol. 9,
no. 11, pp. 10 113–10 120, 2024.

[15] A. Pupa, P. Robuffo Giordano, and C. Secchi, “Optimal energy tank
initialization for minimum sensitivity to model uncertainties,” in 2023
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2023.

[16] A. Srour, A. Franchi, and P. Robuffo Giordano, “Controller and trajec-
tory optimization for a quadrotor uav with parametric uncertainty,” in
2023 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS2023),
Detroit, Michigan, United States, October 2023.

[17] A. Srour, S. Marcellini, T. Belvedere, M. Cognetti, A. Franchi, and
P. Robuffo Giordano, “Experimental validation of sensitivity-aware
trajectory planning for a quadrotor uav under parametric uncertainty,”
in 2024 Int. Conf. on Unmanned Aircraft Systems, 2024, pp. 572–578.

[18] M. Hafezipour and S. Khodaygan, “An uncertainty analysis method for
error reduction in end-effector of spatial robots with joint clearances
and link dimension deviations,” International Journal of Computer
Integrated Manufacturing, vol. 30, no. 6, pp. 653–663, 2017.

[19] M. Okada, A. Pekarovskiy, and M. Buss, “Robust trajectory design for
object throwing based on sensitivity for model uncertainties,” in 2015
IEEE Int. Conf. on Robotics and Automation (ICRA). IEEE, 2015, pp.
3089–3094.

[20] M. Okada, S. Oniwa, and W. Hijikata, “Robust throwing design based on
dynamic sensitivity analysis,” Mechanical Engineering Journal, vol. 5,
no. 1, pp. 17–00 442, 2018.

[21] M. Okada and T. Sekiguchi, “Throwing motion design based on min-
imum sensitivity with respect to error covariance of robot dynamic
parameters,” Mechanical Engineering Journal, vol. 8, no. 1, pp. 20–
00 299, 2021.

[22] C. Böhm, P. Brault, Q. Delamare, P. Robuffo Giordano, and S. Weiss,
“Cop: Control & observability-aware planning,” in 2022 International
Conference on Robotics and Automation, 2022, pp. 3364–3370.

[23] A. Afifi, T. Belvedere, A. Pupa, P. Robuffo Giordano, and A. Franchi,
“Safe and robust planning for uncertain robots: A closed-loop state
sensitivity approach,” IEEE Robotics and Automation Letters, vol. 9,
no. 11, pp. 9962–9969, 2024.

[24] O. Khatib, “A unified approach for motion and force control of robot
manipulators: The operational space formulation,” IEEE Journal on
Robotics and Automation, vol. 3, no. 1, pp. 43–53, 1987.

[25] A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser, “Tossing-
bot: Learning to throw arbitrary objects with residual physics,” IEEE
Transactions on Robotics, vol. 36, no. 4, pp. 1307–1319, 2020.

[26] M. J. Jongeneel, L. Poort, N. van de Wouw, and A. Saccon,
“Experimental Validation of Nonsmooth Dynamics Simulations for
Robotic Tossing involving Friction and Impacts,” Feb. 2023, working
paper or preprint. [Online]. Available: https://hal.science/hal-03974604

[27] M. Lubbers, J. van Voorst, M. Jongeneel, and A. Saccon, “Learning
suction cup dynamics from motion capture: Accurate prediction of an
object’s vertical motion during release,” in 2022 IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems. IEEE, 2022, pp. 1541–1547.

[28] A. R. Conn, K. Scheinberg, and P. L. Toint, “On the convergence of
derivative-free methods for unconstrained optimization,” Approximation
theory and optimization: tributes to MJD Powell, pp. 83–108, 1997.

[29] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“Casadi: a software framework for nonlinear optimization and optimal
control,” Mathematical Programming Computation, vol. 11, pp. 1–36,
2019.

