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QP-based Visual Servoing
Under Motion Blur-Free Constraint
Maxime Robic1, Renaud Fraisse2, Eric Marchand3, and François Chaumette1

Abstract—This work proposes a QP-based visual servoing
scheme for limiting motion blur during the achievement of a
visual task. Unlike traditional image restoration approaches, we
want to avoid any deconvolution step by keeping the image
sequence acquired by the camera as sharp as possible. To do
so, we select the norm of the image gradient as sharpness
metric, from which we design a velocity constraint that is
injected in a QP controller. Our system is evaluated for an Earth
observation satellite. Simulation and experimental results show
the effectiveness of our approach.

Index Terms—Visual servoing, space robotics and automation,
visual tracking.

I. INTRODUCTION

V ISUAL Servoing (VS) [6] is a vision-based control
approach that relies on visual features extracted from

image data. The reliability of the system is highly linked to
the feature extraction step, which can be degraded if the image
is too blurred. However, high camera velocity or fast-moving
objects can create motion blur in the image. Indeed, motion
blur is due to the camera and/or objects motion during the
integration time for acquiring an image [10]. In VS, it induces
a degradation of the image quality, which may perturb the
feature extraction step and eventually make the control fail.
In this work, we aim to control the orientation of an Earth
observation satellite equipped with a snapshot matrix camera,
such as [28], in order to center a potentially moving target in
the image. This system can be seen as a pinhole camera in a
pan-tilt configuration subject to external motions induced by
satellite orbit. Pan-tilt motion control using classical VS [30],
[12], [18] may lead to motion-blurred images (see Fig. 1).
We propose in this paper to constrain the camera rotational
velocity using a Quadratic Programming (QP) scheme for
limiting motion blur as much as possible while the satellite
performs its task.

Motion blur is characterized by its point spread function
(PSF), or kernel, that can take various forms depending on
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Fig 1. Satellite image of Brest (a) Sharp (b) Motion-blurred (20px,45°)

the cause of the blur, and part of the literature is focused on
how to implement a given PSF in image rendering [29], [26],
either to enhance the perceived motion in a single snapshot
or to increase the realism in movies or video games [24].
Another major stake is to estimate the PSF of motion-blurred
images and to recover sharp images through deconvolution.
The parameters estimation is usually processed on a single-
blurred image, where the length and the orientation of the
blur are evaluated through image gradients and spectral ap-
proaches [39], [35]. While these studies are often focused on
linear motion blur, relevant works have also been made to
handle more general motion types [15], such as nonlinear,
rotational, or space-variant [10], [8], [27]. Then, motion-
blurred image restoration has been extensively tackled with
impressive results: for instance, while [32] presents a proba-
bilistic model to deblur a single image, [7] slightly enhances
the computation time by introducing a prediction step in the
PSF estimation and [38] proposes a robust framework refining
the estimation process together with noise suppression during
the image restoration step. Finally, learning-based approaches
have also been proposed to deblur an image without any
estimation of the PSF [25], [20]. Although all these studies
show restored images of high quality, they need high com-
putational power and their current computational time is not
compatible with real-time processing. Since VS is a closed-
loop control scheme based on measurements extracted on
each image acquired, and since our ultimate goal is to embed
all computations on-board, which induces low-computational
process in case of satellites, the previous approaches cannot
be employed. So, our method is not based on deblurring the
image but uses a measure of the sharpness directly in the
control scheme. Several sharpness metrics have been studied
in the literature [37]: norm of the image gradient [19], [33],
norm of the image Laplacian [19], mutual information [11],
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eigenvalues of the image covariance matrix [37], and other
statistical functions like normalized variance, auto-correlation,
or standard-deviation-based correlation [34]. In this study,
we have selected the norm of the image gradient that has
already been considered in visual servoing [21][22], especially
for autofocusing [9]. In these works, a single objective is
considered that consists in maximizing the sharpness, while
we also have to simultaneously consider the achievement of
the primary visual task, that is, centering and tracking the
target. As already said, this is achieved by limiting motion blur
during the camera motion by considering it as a constraint in
the control scheme.

Simple constraints in visual servoing such as limiting the
camera velocity and acceleration can be dealt using ad-
hoc techniques [23], [30]. More difficult constraints, such as
avoiding joint limits and ensuring the visibility of the target,
have to be considered with more elaborated methods such as
adding features [17] or using the task-priority framework in
case the system has some redundancy [16]. Optimal control,
such as Quadratic Programming (QP) and Model-Predictive
Control (MPC), is also an appealing general approach effective
when multiple constraints have to be ensured simultaneously.
QP has already been applied to VS [1], the same for MPC [2],
[14], [31]. In [13] and [36], an MPC has been designed
to limit motion blur while optimizing the trajectory of a
quadrotor with respect to perception features. In both papers,
the control tackles motion blur by considering the reduction
of the projected velocity of a landmark in the cost function.
The main differences with our approach are that we explicitly
consider motion blur through a sharpness metric measured in
the current image, and motion blur limitation is expressed as a
constraint instead of a supplementary term in the cost function,
which is impossible in our case due to the lack of redundancy
in pan-tilt control. Finally, QP has been preferred to MPC due
to the low computing resources on a satellite.

To sum up, the contributions of this paper are to propose
a QP controller where motion blur limitation is expressed as
a constraint to be handled simultaneously with a centering
and target tracking task. It is based on the norm of the image
gradients whose Jacobian with respect to the control inputs
is determined so that a velocity constraint is injected into the
controller. A predictive step is also introduced to improve the
behavior of the system.

The paper is ordered as follows: Section II presents the QP-
based VS controller and the modeling of the centering task
with a pan-tilt configuration. Section III discusses the param-
eters affecting our sharpness metric, from which its Jacobian is
computed. In Section IV we express the sharpness constraint
through a control barrier function for several configurations of
the system: fixed pan-tilt, pan-tilt subject to external motions,
and target tracking. Experimental results based on a satellite
path simulator and Earth images are presented in Section V
to validate our approach for these different use cases. Finally,
Section VI concludes on the results of our work.

II. CONSTRAINED VISUAL SERVOING

In this section, we present a simple formulation to design
an IBVS controller of a pan-tilt camera under constraints. As

this system has only 2 degrees of freedom, the visual feature
chosen is simply an image point x = (x, y) belonging to the
target, typically its center of gravity, and its desired position
at the image center is denoted x∗. Thus, the visual servoing
control law aims to regulate to 0 a visual error e defined by

e = x− x∗ (1)

The dynamic equation that links the variation of the visual
error with the camera pan-tilt velocity ωc = (ωx, ωy) is then:

ė = Lωωc (2)

where the pan-tilt part Lω of the interaction matrix related to
x is given by [6]:

Lω =

(
xy −(1 + x2)

1 + y2 −xy

)
(3)

A. QP-formulation

In classical IBVS, the control scheme is directly designed
through inverse kinematics. In QP-based approach, it is ex-
pressed as a quadratic cost function to be minimized wrt. the
control variables, here ωc. Additionally, every constraint has to
be expressed linearly with respect to these variables. From (2)
and considering velocity, acceleration and motion blur-free
constraints, we obtain the following optimization system [16]:

ω∗c = arg min
ωc

‖ Lωωc − ėd ‖2

s.t. − ωmax ≤ ωc ≤ ωmax
− γmax ≤ γc ≤ γmax
cTS ωc ≥ cs

(4)

The desired evolution ėd chosen for the visual error e is
evaluated at each iteration and described in the next section.
Furthermore, γc denotes the camera acceleration while ωmax
and γmax are respectively the velocity and the acceleration
bounds. In order to express linearly the acceleration constraint
with respect to ωc, it is implemented by discretizing γc =
(ωc(k+1)−ωc(k))/∆t, ωc(k) being the result obtained at the
previous step. Finally, cS and cs are respectively the sharpness
constraint vector and a scalar involved for ensuring the motion
blur-free constraint. The complete definition of the couple (cS ,
cs), together with a stability and performance analysis of the
system, is provided in Section IV.

B. Visual error model

In the nominal case of a static pan-tilt unit observing a
motionless object, the classical model is an exponential decay
of the error vector:

ėd = −λe (5)

with λ > 0 an adaptive gain defined in [30]. This case will
be studied as a proof of concept, as it is widely used in the
visual servoing community.

In case the camera is subject to known external motions,
which is our use-case since the satellite has its own orbital
speed, the visual error model is refined for compensating these
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external motions. More precisely, for a satellite observing a
static terrestrial target, we set [30]:

ėd = −λe− Lυ
cυext (6)

where cυext = cυs − cυoE is the known external velocity
applied to the camera, with cυs and cυoE respectively the
translational velocity of the satellite and the translational
velocity induced by Earth’s rotation, both expressed in the
camera frame. Then, Lυ is the translational part of the
interaction matrix of x, given by [6]:

Lυ =

(
−1/Z 0 x/Z

0 −1/Z y/Z

)
(7)

with Z the depth of the target, which is obtained knowing the
orbital trajectory.

Finally, in case the satellite observes a mobile target without
any knowledge about its velocity, it is possible to estimate the
effect in the image ∂xt

∂t due to this unknown motion and to
compensate for it [6], leading to:

ėd = −λe− Lυ
cυext −

∂̂xt
∂t

(8)

with ∂̂xt

∂t the estimation of ∂xt

∂t .

III. MOTION BLUR METRIC

In this section, the norm of the image gradient is evaluated
to measure the motion blur, and its Jacobian that will be used
in the QP-controller is derived. In our application, since the
camera is able to compensate for the translational velocity
of the satellite and the velocity involved by Earth’s rotation,
motion blur occurs in two configurations: as soon as the
centering from x towards x∗ starts, in which case the initial
acquired image is sharp, and when the camera tracks a mobile
target whose own motion is unknown, in which case the part
of the image corresponding to the target is initially blurred.

(a) (b)

(d)(c)

Fig 2. Norm of the image gradient applied to a satellite image of Brest (a)
Sharp (b) Vertical blur (c)(d) Resulting norm of the gradient.

A. Norm of the image gradient

As already stated in the introduction, the norm of the image
gradient is a good indicator of the image sharpness. This norm
is expressed as:

S =
1

N

∑
u∈ROI

∇2
uI(u, v) +∇2

vI(u, v) (9)

with N the number of pixels u = (u, v) in a region of interest
(ROI) centered around x, and ∇kI the spatial image gradient
along axis k. Furthermore, motion blur can be modeled as a
convolution of a sharp image with a particular kernel h. More
precisely, if I∗(u, v) denotes the intensity of the sharp image
at pixel (u, v) and ©∗ the convolution operator, the intensity
of the blurred image is given by:

I(u, v) = I∗(u, v)©∗ h (10)

with [35]:

h(a, b) =

{
1/L if

√
a2 + b2 ≤ L

2 and b
a = − tanα

0 else
(11)

where the motion amplitude L = tk||ẋp|| is the product of
the integration time tk of the camera with the norm of the
projected speed ẋp = (ẋp, ẏp) in the image, expressed in
pixel/s, and α = arctan(−ẏp/ẋp) is the direction of motion.
Thanks to this kernel, the sharpness function S has been
evaluated on simulated images with different camera velocities
(see Fig. 2). As can be seen on Fig. 3, S is maximum when
ẋp ≈ 0, which means the image is indeed sharp. We also see
local maxima depending on the direction of motion, which are
stronger when considering large values of motion amplitude.

Fig 3. Norm S of the image gradient: (a) S with respect to L and α, (b) S with
respect to ẋp = (ẋp, 0)px/s, (c) S with respect to α with ẋp = (100, 0)px/s
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B. Jacobian of the sharpness function

As will be detailed in the next section, it is necessary to
relate the sharpness function S to the camera pan-tilt velocities
for using it in our QP controller. As a first step for that, we
determine in this section the Jacobian of S with respect to
the parameters L and α involved in kernel h, as well as the
variation of these parameters with respect to the acceleration
ẍp = (ẍp, ÿp) in the image. We have:

Ṡ =
∂S

∂L
L̇+

∂S

∂α
α̇ (12)

1) Motion amplitude: From (9), the variation of S related
to L, JL = ∂S

∂L , is given by:

JL =
1

N

∑
u∈ROI

2(∇uI
∂∇uI
∂L

+∇vI
∂∇vI
∂L

) (13)

Then, from (10), we have:

∂∇uI(u, v)

∂L
= ∇u(I∗(u, v)©∗ ∂h

∂L
)

∂∇vI
∂(

u, v)L = ∇v(I∗(u, v)©∗ ∂h

∂L
)

(14)

Finally, from (11), we obtain:

∂h

∂L
=

{
−1/L2 if

√
a2 + b2 ≤ L

2 and b
a = − tanα

0 else
(15)

which can be rewritten under the simple form:

∂h

∂L
= − 1

L
h (16)

leading to:

JL = − 2

LN

∑
u∈ROI

∇2
uI(u, v) +∇2

vI(u, v) = −2S/L (17)

As for the variation of L, from its definition L = tk||ẋp||, we
have:

L̇ = tk
d||ẋp||
dt

= tk
ẋpẍp + ẏpÿp
||ẋp||

(18)

2) Direction of motion: Similarly, the variation of S related
to α, Jα = ∂S

∂α , has the same form as (13):

Jα =
1

N

∑
u∈ROI

2(∇uI
∂∇uI
∂α

+∇vI
∂∇vI
∂α

) (19)

From (10), we now have:

∂∇uI(u, v)

∂α
= ∇u(I∗(u, v)©∗ ∂h

∂α
)

∂∇vI(u, v)

∂α
= ∇v(I∗(u, v)©∗ ∂h

∂α
)

(20)

Unfortunately, the α-derivative of h can not be expressed
directly since α appears in an edge condition of h. Thus,
we propose to approximate h by a Gaussian function that is
continuous wrt. α. Let us call this function hα defined by:

hα(a, b) =

{
1
Le
−π(a sinα+b cosα)2 if

√
a2 + b2 ≤ L

2
0 else

(21)

leading to:

∂hα
∂α

= −2π(a cosα− b sinα)(a sinα+ b cosα)hα (22)

As for the variation of α, we obtain from its definition:

α̇ =
ẏpẍp − ẋpÿp
||ẋp||2

(23)

3) Complete Jacobian: By combining the previous devel-
opments, we obtain:

Ṡ = tkJL
ẋpẍp + ẏpÿp
||ẋp||

+ Jα
ẏpẍp − ẋpÿp
||ẋp||2

(24)

which, since L = tk||ẋp||, can be rewritten as:

Ṡ = tkJSẍp (25)

where the Jacobian of S wrt. ẋp is given by:

JS =
ẋTp
||ẋp||

(
JL −Jα/L
Jα/L JL

)
(26)

On one hand, we see from (17) that JL can be computed
directly from S and L. On the other hand, from (20), com-
puting Jα necessitates to know I∗ that is not available in
case of target tracking. Furthermore, from (22), it is clear
that supplementary processing are necessary to evaluate Jα.
Finally, from the results depicted on Fig. 3, there is a clear
preponderance in the variations of S due to L wrt. α. That is
why we consider only the parameter L in the following, which
is easily implemented by setting Jα = 0 in (26).

IV. SHARPNESS CONSTRAINT

In this part, we aim to express a constraint expressed linearly
wrt. the camera pan-tilt velocities for limiting as much as
possible the motion blur and ensuring sharpness.

A. Sharpness as an angular velocity constraint

A basic idea to achieve this goal would be to state that S
should not decrease, leading to the inequality constraint Ṡ ≥ 0.
Ensuring this condition would force the control to improve the
sharpness, or at least to maintain it steady. However, if the
image is initially sharp, camera pan-tilt motions for centering
the target will necessary decrease the sharpness, which is not
compatible with the above constraint. A better strategy is to
impose S to be higher than an acceptable value for maintaining
a certain level of sharpness in the image. This can be expressed
through the following condition:

S ≥ τ Smax (27)

where τ ∈ [0, 1) is the level of desired sharpness (see Fig. 4 for
some examples) and Smax is the norm of the image gradients
for the sharpest image available Imax. In case the camera
observes a static target, the initial ROI is sharp, from which
Imax = I∗ is directly obtained, and so is Smax. When tracking
a mobile target, Imax and Smax are again first selected and
computed from the initial ROI, but since the initial ROI is
blurred and the control is aimed to decrease this blur, it is
possible to update both Imax and Smax such that:

if S(t) ≥ Smax then Imax = I(t) and Smax = S(t) (28)
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Fig 4. Normalized sharpness S/S∗: (a) 0.2, (b) 0.6, (c) 0.9.

In order to express this constraint linearly wrt. to camera pan-
tilt velocities, we propose to use a control barrier function [3]
from (27), defined by:

Ṡ ≥ σ with σ = κ(τSmax − S) (29)

where κ > 0 is a scalar gain. We now have to express (29)
under the form given in (4), i.e.:

cTSωc ≥ cs (30)

For that, by considering a forward Euler discretization of (25),
taking arbitrarily ∆t = tk, we obtain:

Ṡ = JS(k)(ẋp(k + 1)− ẋp(k)) (31)

The projected speed in the image ẋp (expressed in pixel/s) is
then given in the general case by:

ẋp = p (Lωωc + Lυυext +
∂̂xt
∂t

) (32)

where p is the ratio between the focal length and the size of a
pixel for converting meters into pixels. We can now substitute
ẋp(k + 1) in (31) to obtain:

Ṡ = JS(k)
[
pLω(k)ωc(k + 1)

+ pLυ(k)υext(k + 1) + p
∂̂xt
∂t

(k + 1)− ẋp(k)
]

(33)

Note that Lω and Lυ are evaluated at instant k since their
value at instant k + 1 is not available yet. The sharpness
constraint (29) can thus be written as (30) with:

cTS = pJS(k)Lω(k) (34)

cs = σ − JS(k)
[
pLυ(k)υext(k + 1) + p

∂̂xt
∂t

(k + 1)
]

+ JS(k)ẋp(k) (35)

This inequality constraint is linear through ωc(k+ 1) and can
be handled by our QP scheme. Note that if the target to track
is static ( ∂̂xt

∂t = 0), and/or if there are no external motions
applied to the camera (cυext = 0), ẋp in (32) is simplified,
and so is cs in (35).

B. Predictive sharpness constraint

The main issue with (35) is that the constraint is based
on current measurements. It means that if the image is sharp
at instant k, the constraint is not activated for computing
ωc (k+ 1), so if blur is created at instant k+1 due to ωc(k+1),
the QP will consider it only at the next step. Therefore, we

propose to consider a one-step predictive constraint designed
as follows:
• Predict the next velocity based on inverse kinematics

through the dynamic model ω̂c(k + 1) = L−1ω ėd
• Blur the ROI Imax obtained in (28) using (10) according

to ω̂c(k + 1), and compute ĴS(k + 1),
• Fill the constraint for the QP at instant k by using:

cTS = pJS(k + 1)Lω(k) (36)

cs = σ − JS(k + 1)
[
pLυ(k)υext(k + 1) + p

∂̂xt
∂t

(k + 1)
]

+ JS(k + 1)ẋp(k) (37)

C. Stability and performance analysis

In case the target speed is correctly estimated, the quadratic
part of the system (4) is stable since it corresponds exactly
to the classic control scheme that is globally asymptotically
stable [30]. However, the sharpness and mechanical constraints
may slow down the system, i.e., they may decrease the time-
to-convergence of the centering task. This can lead to a failure
of the system for a moving target if it does not move toward
the center of the image and if its speed is too fast. In all
other cases, the stability of the system is preserved. In terms
of performances, ensuring the sharpness constraint induces a
switching behavior:
• while S < τSmax, it is clear from (29) that σ > 0,

which means constraint (29) Ṡ ≥ σ forces the system to
increase S until S reaches τSmax, which decreases the
time-to-convergence of the centering task.

• if S ≥ τSmax then σ ≤ 0, which means constraint (29)
Ṡ ≥ σ allows S to decrease with a decreasing speed till
S reaches τSmax. This has less impact on the time-to-
convergence of the centering task.

Smax is computed according to (28), while τ ∈ [0, 1) is
determined by the user. In practical terms, the higher τ , the
sharper image, but the centering task will converge more
slowly. Conversely, a lower τ allows for a faster convergence
of the centering task with a reasonable loss of sharpness.
The case τ = 1 is naturally excluded, because impossible to
ensure when the image is initially sharp, as any camera motion
induces even small motion blur while the centering task has
not started yet. A study of parameter τ is presented in the next
section.

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we evaluate our system for several config-
urations: fixed pan-tilt tracking a static object, and pan-tilt
embedded on a satellite tracking a terrestrial target, motionless
or not. These use cases are validated either in simulations or
with experiments on a robotic platform.

The satellite path simulator is implemented as in [30], a
camera is fixed to a satellite that moves in a sun-synchronous
circular orbit of 500 km and acquires generated images with a
50-cm resolution (GSD) of Brest and an airplane above water
moving at 800 km/h, set in their real location on the Earth’s
surface. The velocity and acceleration bounds of the satellite
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are ωmax = (3, 3) deg/s and γmax = (0.6, 0.6) deg/s²,
which corresponds to dynamic constraints provided by Airbus
Defence & Space.

The experimental setup involves a Cartesian robot whose
end-effector is an Intel D405 camera mounted on a pan-tilt
head. The robot operates a flyby of an aerial view of Rennes
with a downscaled satellite motion, while the pan-tilt head
is servoed by our controller. The mechanical constraints are
adjusted regarding the depth of the scene, i.e., multiplied by a
factor 1500. Finally, the robot armature is covered by curtains,
and a light source illuminates uniformly the scene to recreate
actual optical satellite conditions. The setup is shown in the
accompanying video.

For both simulations and experiments, an SSD inverse
compositional template tracker [23], [4] is considered to track
the ROI, whose centroid forms the target point x. The camera
frequency F has been set to 5 Hz, which corresponds to the
frequency of a typical space sensor, and we have selected
tk = 1/F for the integration time of an image. This high
value usually generates large motion blur. To solve the QP,
we use ProxQP [5] a QP-solver with augmented Lagrangian.

In the following, we highlight the influences on the control
of the sharpness constraint defined in (29) tuned with different
desired level of sharpness using τ ∈ [0, 1) while κ is set to the
highest value that does not induce any oscillatory behavior,
typically κ = 1. We compare the constraint outcomes on
the visual error, the angular velocity, the sharpness metric,
and the image trajectory. For sake of visibility, the sharpness
metric (9) is shown normalized on every figure, i.e., divided
by the highest value S∗ of S recorded during the servo to get
S/S∗ ∈ [0, 1]. The accompanying video also illustrates the
obtained results.

A. Translation-less pan-tilt tracking a static target

In the first configuration, we consider a nominal case in
simulation where the pan-tilt unit is fixed (i.e., no external
motions) and has to center a static object. This classic case
for a standard pan-tilt camera allows us to analyze clearly
the impact of the non-predictive and the predictive sharpness
constraints and to conclude on the best one to use.

1) Non-predictive constraint: In the non-predictive case,
depictedin Fig. 5 with τ = 0.7 (∗), the sharpness drops as
soon as the centering task is activated (Fig. 5c). Indeed, since
the image is initially sharp, the non-predictive constraint is
satisfied so the centering task is initially not constrained and
generates motion blur. Just after this drop, for τ = 0 that
corresponds to not considering the sharpness constraint in the
QP, we can note that the sharpness naturally increases due to
the decrease of the angular velocity. Whereas, for τ = 0.7 (∗),
we are in the case S < τSmax and the constraint is involved
for increasing as fast as possible the sharpness over τSmax.
The velocity is slow downed (Fig. 5b) and the visual error
converges more slowly (Fig. 5a). Finally, the trajectory of the
target in the image is a pure straight line (Fig. 5d), and the
centering task is successfully completed.

2) Predictive constraint: The case considering the predic-
tive constraint is also reported in Fig. 5. Unlike the previous
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Fig 5. Simulation results of the non-predictive (35) (*) and predictive (37)
constraints applied to the fixed pan-tilt configuration tracking a location in
the port of Brest, wrt. τ . S∗ = 393.2.

case, since this constraint is based on a one-step prediction,
the centering task is constrained as soon as it is activated,
which allows avoiding any initial large drop (apart of course
when τ = 0). We are now in the case S ≥ τSmax and the
control decreases the sharpness up to τSmax (Fig. 5c), which
preserves much more the quality of the image, especially for
τ = 0.9. The angular velocity is now saturated at a value that
is lower with the increase of τ (Fig. 5b), which induces a
slower convergence of the visual error (Fig. 5a) with a linear
decrease. The image trajectory of the target is still a pure
straight line (Fig. 5d), with a perfect centering of the target.

To conclude on this nominal case, both sharpness con-
straints improve the quality of the image compared to the
unconstrained case while the target is perfectly centered. Still,
the comparison between the non-predictive and the predictive
constraints shows that the predictive constraint brings a far
better behavior of the system. That is why only the predictive
constraint will be considered in the following.

B. Pan-tilt embedded on a satellite tracking a fixed target

In the second configuration, the pan-tilt unit is embedded on
a satellite aiming to center a static selected terrestrial target.
The pan-tilt is initially compensating for all the orbital motions
thanks to the satellite inner loop control, i.e., the pan-tilt
focuses on a particular terrestrial location such that the target is
visible in the image before the centering task is activated. This
use case is validated in real experiments using our Cartesian
robot,and presented in Fig. 6 and Fig. 7.
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Fig 6. Experimental results of the predictive constraint (37) applied to the
embedded pan-tilt configuration tracking a static terrestrial object wrt. τ .
S∗ = 393.05.

(a) (b)
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Fig 7. Comparisons between images acquired during experiments of Fig. 6
at t=2s in (a) the non-constrained case and (b) with the predictive constraint
τ = 0.7, (c) τ = 0.8 and (d) τ = 0.9.

The initial ROI is sharp as in the previous case. Thus, when
τ 6= 0, the sharpness is preserved over τSmax (Fig. 6c) with
a better image quality (Fig. 7) while the target is successfully
centered with a perfect straight-line trajectory (Fig. 6d) and
a convergence time increasing with τ (Fig. 6a). Velocity
reductions are observed compared to the unconstrained case
and they are stronger wrt. τ but they still allow achieving
the centering task while compensating for the satellite/robot
motion. Additionally, compared to the previous simulation
results, maximum sharpness is slightly varying (Fig. 6c) due
to small luminosity changes. They do not impact the control
scheme.

C. Target with an unknown motion

In this specific scenario validated in simulation, the target
now exhibits significant own motion (800 km/h), causing
initial blurring of the ROI, as illustrated in Fig. 8d. This
blur in the early iterations may potentially lead to template
tracking failures. In this case, one may consider a more robust
visual tracking algorithm. The estimation of the corresponding
motion ∂̂xt

∂t in the image is handled by a Kalman filter with
a constant velocity model. As a sharp image is initially not
available, Smax is updated during the control according to
(28). As a result, the sharpness threshold τSmax has initially
a low value that will be improved by the natural increase of
the sharpness due to the compensation of the target’s own
motion and the reduction of the visual error. In this case, we
set τ = 0.9, the best level of sharpness obtained so far. The
results are depicted in Fig. 8. First, the predictive constraint
allows tracking and centering the airplane, while the non-
consideration of the sharpness constraint leads to an immediate
failure of the template tracking due to blur accumulation. In-
deed, the predictive constraint favors an increase in sharpness
(Fig. 8c) induced by a larger influence of the compensation of
the airplane’s motion (Fig. 8b) compared to the centering task
at the beginning (Fig. 8b inner window). This effect is also
observed in Fig. 8d, the centering task starts to bend the image
trajectory only from 2s and its impact becomes preponderant
at 4s when the aircraft’s motion is fully compensated. Thus, as

Fig 8. Simulation results of the predictive constraint (37) applied to the
embedded pan-tilt configuration tracking an airplane flying at 800 km/h above
water. S∗ = 523.2. Velocity in (b) are subtracted from orbital motion
compensations, the inner figure also subtracts the compensation for the aiplane
motion.



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2024

already explained in Section IV-C, any target motion gradually
delays the completion of the centering task (a part, of course,
if the target moves naturally to the center of the image frame).
Lately, the centering is perfectly accomplished (Fig. 8a) and
the maximum sharpness is reached accordingly (Fig. 8c).

This last scenario illustrates that the predictive constraint
enables the tracking and centering of any high-speed target
in Earth troposphere (validated up to 800 km/h) while main-
taining an expected degree of sharpness as long as the image
processing part is able to track it.

VI. CONCLUSION

In this paper, a QP-based IBVS controller has been ex-
pressed under a motion blur-free constraint to operate si-
multaneously a centering and target tracking task in various
configurations of a pan-tilt camera. This constraint was de-
signed through a control barrier function using the norm of
the image gradient and proposed in two variations, either with
current image information or after a one-step prediction. After
demonstrating the validity of our approach in a nominal case,
we considered the pan-tilt embedded on a satellite, where the
tracking of a target, static or not, was addressed. For each
case, the control successfully completed the centering task
while ensuring the sharpness constraint, leading to preserve the
quality of the image during the whole process. Specifically, the
predictive constraint made possible the smooth target tracking
of a high-speed object, which has a lot of interests either in
the robotics or in the astronautical fields. Finally, we believe
that this approach can be easily transferred to any system
using a camera, provided that the visual control law can be
formulated as a quadratic cost function. As future work, it
would be interesting to integrate an optimization of the energy
consumption in the QP. An MPC could also be designed for
applications benefiting from high computational resources.
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