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Abstract— This paper proposes a novel distributed active
sensing control strategy for formations of drones measuring
relative bearings. To be able to localize their relative positions
from bearing measurements, the drone formation must satisfy
specific Persistency of Excitation (PE) conditions. We propose a
solution that can meet these PE conditions by maximizing the
information collected from onboard cameras via a distributed
gradient-based algorithm. Additionally, we also consider pres-
ence of a (concurrent) position-based formation control task
using Quadratic Program-based control with Control Lyapunov
Functions (CLFs). The results show that the inclusion of active
sensing in the formation control law enhances the localization
accuracy and, as a consequence, the precision of reaching the
desired formation. The improvement is especially important
when the underlying graphs are not Infinitesimally Bearing Rigid
(IBR), as it can be expected.

I. INTRODUCTION

Cooperative localization from relative sensing is a relevant
topic in the multi-robot community [1]–[5], it is especially
relevant in GPS-denied environments, such as indoors. One
specific area of interest is cooperative localization from
bearing measurements [2]–[5], primarily due to the ease
of retrieving relative bearings using onboard cameras. Much
of the previous work in this domain has been built around
the notion of Infinitesimal Bearing Rigidity (IBR) [2], [3].
IBR characterizes the conditions, primarily related to graph
topology, under which a group of drones measuring constant
relative bearings can localize themselves up to a global
translation and scaling factor. In case of constant bearings, to
resolve the scale ambiguity, a distance measurement among
a pair of robots is necessary.

Maintaining formation rigidity can be, however, quite
restrictive in terms of motion flexibility, especially when
the presence of edges among robots depends on sensing
constraints such as limited range, occlusions, and limited field
of view (FoV). Recently, in [5], [6] the notion of Bearing
Persistently Exciting (BPE) formations has been introduced,
where at least a subset of the relative bearings is time-varying.
By leveraging the concept of PE, this allows resolving the
scale ambiguity and to relax the IBR assumption. A distributed
observer is also proposed with Uniform Exponential (UE)
convergence under the condition of the formation being BPE.

However, there remains the problem of how to ensure
the BPE of the formation. Although a coordinated rotation
was proposed as a reference trajectory satisfying the BPE
condition [5], this strategy may not be desirable in practical
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applications where more generic motions are needed. An
alternative approach proposed in this work is to instead make
use of an active sensing strategy that enables the optimization
of robot motion for gathering informative measurements about
the system state [7]–[9]. This can be exploited for producing
a group motion that can (i) actively satisfy the necessary
BPE conditions and (ii) be generic enough for fulfilling at
the same time other tasks of interest related to the particular
mission.

In the past, active sensing has been applied to the
cooperative localization problem, e.g., in [10]–[12]. where
distance measurements together with rigidity and the presence
of multiple anchors (i.e. robots knowing their poses) was
assumed. An active sensing strategy was then used to steer
the formation towards the best geometry from the localization
point of view, without considering any PE condition. In
[13], the authors considered the active information gathering
for ensuring observability of a multi-robot system with two
anchors and range measurements. In our previous work
[14], we considered a formation with relative distance
measurements, and we maximized the observability of the
system over a future prediction horizon. The proposed method
could be made distributed but at the cost of being suboptimal
w.r.t. the centralized one and it was computationally heavy. In
[15], an active sensing strategy to estimate the scale of an IBR
formation was proposed. Most of the previous works mainly
consider relative distance measurements instead of bearings,
which are instead quite interesting from an application point
of view. Some of these previous works also solely focus on
optimizing the geometric arrangement of the group instead
of the robots trajectories. In addition, the assumption of rigid
formations is also often exploited (which, as explained, can be
quite restrictive in terms of group mobility when considering
sensing constraints).

In this paper, we propose a gradient-based control law
that can address the above shortcomings. We consider maxi-
mization of the group observability by optimizing a global
information measure: the derivative of the minimum nonzero
eigenvalue of the weighted Observability Gramian (OG).
This approach is simpler and computationally cheaper than
receding horizon strategies and it allows maximizing a global
quantity in a distributed way. Additionally, we address the
coupling of the active cooperative localization strategy with
presence of an independent primary task (formation control)
whose performance is however enhanced by the active sensing
action. This is obtained by leveraging distributed Quadratic
Programming (QP)-based Control Lyapunov Functions (CLFs)
[16]. The combination of active sensing and CLFs has
previously been successfully applied to single robot scenarios
employing a receding horizon strategy [9]. We believe that



the approach we propose is a promising direction as it allows
to achieve cooperative tasks while optimizing the trajectories
to enhance the observability of the formation.

The rest of the paper is organized as follows: Section II
introduces the main modeling assumptions and the employed
observer. Section III presents a gradient-based active sensing
controller. Section IV outlines a strategy to integrate active
sensing into a position-based formation control task, accom-
modating not necessarily bearing rigid formations. Section V
presents statistical results on various graph topologies, and
finally, Sect. VI concludes the paper.

II. MULTI-ROBOT SYSTEM MODEL

A. Graph Theory

We consider a group of N connected drones. The drone
sensing and communication interactions are modeled by a
constant connected and undirected graph G := (V, E), where
V = {1, ..., N} is the set of vertices and E ⊆ V×V is the set
of edges. Two drones i and j are called neighbors if (i, j) ∈ E .
The set of neighbors of drone i is denoted by Ni := {j ∈
V|(i, j) ∈ E} and its cardinality is |Ni|. With a slight abuse
of notation, we may refer to variables related to the edge
ek := (i, j) with a subscript k or ij. The incidence matrix
for an arbitrary orientation of the graph is denoted by E, with
[E]ik = 1 if vertex i is the head of the edge k and [E]ik = −1
if it is the tail, [E]ik = 0 otherwise. The Laplacian matrix
associated to the graph G can be computed as L = EET ,
while a weighted Laplacian is given by LW = EWET , with
W ⪰ 0 (i.e. positive semidefinite). The Laplacian matrix is
positive semidefinite with L1N = 0, i.e. it has zero row-sum,
and it has positive diagonal and non-positive off-diagonal
entries. Its eigenvalues are 0 = µ1 ≤ µ2 ≤ ... ≤ µN with
eigenvectors {1N/

√
N,v2, ...,vN} and µ2 > 0 if and only

if the graph is connected.

B. Formation Model

Each drone state is represented by its position pi ∈ R3

and we refer to the stack of the drones position as
p = [pT

1 . . . pT
N ]

T ∈ R3N . The positions and linear veloc-
ities of the drones are expressed in a common inertial frame
and the velocity of drone i is indicated as ui ∈ R3 while the
stack of the drones velocities as u = [uT

1 . . . uT
N ]

T ∈ R3N .
The dynamics of each drone is modeled as a simple single
integrator:

ṗi = ui. (1)

Each drone is able to measure the relative bearing with respect
to its neighbors, i.e.:

βij :=
pij

dij
∈ S2 (2)

where pij = pj − pi and dij = ∥pij∥2. We also define the
stack of bearing measurements β =

[
βT
1 ... βT

|E|

]T
∈ R3|E|.

The inclusion of sensing limitations is left as a future work.

C. Localization of Bearing Formations

The matrix-valued Laplacian [17] associated to the classical
position-based formation control is given as L3 := E3E

T
3

[18], with E3 = E⊗ I3 where ⊗ is the Kronecker product
and I3 the identity matrix. If the graph is connected, then
rank(L3) = 3N − 3 and the null-space is N (L3) = U,
where U = 1N ⊗ I3 represents a basis for a common 3D
translation of the formation. For bearing formations the bear-
ing Laplacian matrix is defined as Lβ := E3diag(Πβk

)ET
3 ,

with diag(Πβk
) being the block diagonal matrix with blocks

Πβk
:= I3 − βkβ

T
k ⪰ 0, which is an orthogonal projector,

i.e. Πβk
Πβk

= Πβk
and Πβk

= ΠT
βk

. A bearing forma-
tion in R3 is defined infinitesimally bearing rigid (IBR)
if rank(Lβ) = 3N − 4. IBR is a necessary and sufficient
condition to localize the relative positions of the robots up to
a scale factor from constant bearing measurements. As it was
shown in [5], this condition can be relaxed if the bearings
are time-varying, implying the IBR condition is not anymore
necessary and the scale ambiguity can be resolved. We give
some necessary definitions before proceeding.

Definition II.1. Given a system with state x ∈ Rd, state
sensitivity matrix Φ(t, t0) =

∂x(t)
∂x(t0)

, output y(t), and output
Jacobian H(t) = ∂y(t)

∂x(t) , the Observability Gramian (OG) is
defined as follows [7]:

G(t) := G(t0) +

∫ t

t0

Φ(τ, t0)
TH(τ)TH(τ)Φ(τ, t0) dτ (3)

Observability of the system linearized along the nominal
trajectory is characterized by the invertibility of the OG [19],
i.e. the state can be observed from the measured output y(t)
if there exists some ϵ > 0 such that:∫ t

t0

Φ(τ, t0)
TH(τ)TH(τ)Φ(τ, t0) dτ ⪰ ϵId. (4)

Definition II.2. [5] A formation is defined bearing persis-
tently exciting (BPE) if the graph G is connected and given
T > 0 and γ > 0 the following PE condition holds:

1

T

∫ t+T

t
Lβ(τ) dτ ⪰ γL3 (5)

It should be noted that this condition is less stringent than
the classical PE condition since dim(N (L3)) = 3.

We point out that the previous integral in (5) represents
a weighted Observability Gramian (OG) of the system. In
fact, the state sensitivity matrix for a single integrator is
the identity matrix and the output Jacobian is the so-called
bearing rigidity matrix, i.e.:

B =
∂β

∂p
= diag

(
Πβk

dk

)
ET

3 . (6)

From (4) and (6), using the properties of the orthogonal
projector, it follows that the OG of the system can be
expressed as:

G(t) = G(t0) +

∫ t

t0

E3diag

(
Πβk

(τ)

dk(τ)2

)
ET

3 dτ (7)

where we see the similarity to (5), in which the information
associated to each edge is weighted by the squared distance.
Since the scaling by the positive distances does not affect the



rank of the matrix, it follows that the formation being BPE
is a local observability condition of the subspace orthogonal
to the common translation.

We now introduce the observer presented in [5], which we
use for localizing the drones in a bearing formation. In [5], it
is shown that, if the formation is BPE, the bearings are always
well-defined (i.e. no collisions occur) and the velocities are
bounded, then the following distributed observer achieves UE
convergence to the true state up to a common translation:

˙̂p(t) = u(t)− keLβ(p(t))p̂(t) (8)

where p̂ is the estimated position vector and ke > 0.
The convergence rate of this observer depends on the BPE

parameter γ [5]. The aim of the following section is to then
provide a control law that aims at indirectly increasing the
value of γ for ensuring a satisfactory observer performance
even for non-rigid bearing formations.

III. ACTIVE SENSING CONTROL

In this section, we propose a gradient-based control law
for actively collecting information about the drone relative
positions. To quantify the amount of information, we adopt
the minimum nonzero eigenvalue, specifically the fourth
eigenvalue denoted as λ4, of the weighted OG (5) but with
an additional forgetting factor, that is, an OG with dynamics

Ġβ(t) = −ρGβ(t) + Lβ(t). (9)

The forgetting factor ρ > 0 ensures that the OG remains
bounded, since otherwise the term Lβ ⪰ 0(t), ∀t ≥ 0 would
make the OG grow unbounded over time. Notice that if
Gβ(t0) is a matrix-weighted Laplacian [17] associated to
the graph G, then this also holds for Gβ(t), ∀t ≥ t0, that
is, (i) the required definiteness pattern of the matrix weights
(negative semidefinite off-diagonal terms) is preserved:

[Gβ(t)](ij) = e−ρ(t−t0)[Gβ(t0)](ij) +

∫ t

t0

e−ρ(t−τ)[Lβ(τ)](ij) dτ

= e−ρ(t−t0)[Gβ(t0)](ij) −
∫ t

t0

e−ρ(t−τ)Πβij
(τ) dτ ⪯ 0

(10)
where [Gβ(t0)](ij) ⪯ 0 is the ij-th block of Gβ(t0) and
Πβij

⪰ 0; (ii) U ⊆ N (Gβ(t)):

Gβ(t)U = e−ρ(t−t0)Gβ(t0)U+

∫ t

t0

e−ρ(t−τ)Lβ(τ)U dτ = 03N×3N

(11)
and; (iii) if ij /∈ E then [Gβ(t)](ij) = 0 ∀t ≥ 0. These
properties are used in the next derivations. In particular, the
preservation of the sparsity pattern allows for a distributed
implementation of the proposed control law.

Consider the state of the full system
ζ =

[
pT vec

(
Gβ

)T ]T , where vec(·) is the vectorization
operator. Then, the system dynamics can be written as:

ζ̇(t) = f(ζ) + g u (12)

where the system has a cascade structure with

f(ζ) =

[
0T
3N vec

(
Ġβ

)T ]T and g =
[
I3N 03N×(3N)2

]T .
Note that the first derivative of λ4 (our ‘information metric’)
depends on the positions of the drones, so that λ4 has

relative degree 2 w.r.t. the drone velocities (the available
control inputs). This poses a challenge for direct control
since the drone positions are solely involved in the dynamics
of λ4 within the orthogonal projector Πβ . However, the
derivative of λ4 can be more easily controlled. This has
expression

λ̇4 = Lfλ4 = (v4 ⊗ v4)
T vec(Ġβ)

= −
∑

(i,j)∈E
(v4i − v4j)

T [Ġβ(t)](ij)(v4i − v4j) (13)

where Lfλ4 = ∂λ4

∂ζ f(ζ) is the Lie derivative of λ4

along f (analogously we also define Lgi) and v4 =[
v41 . . . v4N

]T
is the eigenvector associated to λ4. For

convenience, let us define v4ij := v4i − v4j . The second
order derivative of λ4 is then

λ̈4 =

N∑
i=1

Lgi
Lfλ4ui + L2

fλ4

= −
1

2

N∑
i=1

∑
j∈Ni

[v4ij ⊗ v4ij ]
T ∂ vec([Ġβ ]ij)

∂pi

ui

+ vec(Ġβ)
THλ vec(Ġβ)− ρ(v4 ⊗ v4)

T vec(Ġβ)

(14)

where Hλ := ∂2λ4

∂ vec(Gβ) vec(Gβ)T
is the hessian of λ4 with

respect to the matrix entries. The important point to note
here is that (14) has a direct (affine) dependence on the
control inputs ui, which can then be exploited for controlling
the quantity λ̇4, for instance by applying the gradient-based
control law

ui := k (Lgi
Lfλ4)

T . (15)

The control action (15) implements the sought active sensing
since it aims at maximizing λ̇4 that, indirectly, maximizes the
eigenvalue λ4 itself (which is the metric we care about, but
which is less directly controllable by acting on the control
inputs ui).

We now discuss some properties of the control law (15).

Proposition III.1. From an information perspective, it is
intuitive that the gradient of λ̇4 associated to an edge is
orthogonal to the corresponding bearing, i.e.:

[v4ij ⊗ v4ij ]
T ∂ vec([Ġβ ]ij)

∂pi
βij = 0 (16)

Proof. First of all, notice that [Ġβ ](ij) = −ρ[Gβ ](ij) − Πβij

and the first term does not depend on pi. Furthermore,
using the properties of the Kronecker product, we have
vec(βijβ

T
ij) = βij ⊗ βij . It follows that:

∂ vec(Πβij
)

∂pi
= −

∂(βij ⊗ βij)

∂pi
=

1

dij

(
Πβij

⊗ βij + βij ⊗Πβij

)
(17)

One can then use the Kronecker product properties and show
that: (

Πβij
⊗ βij + βij ⊗Πβij

)
βij

=
(
Πβij

⊗ βij

)
(βij ⊗ 1) +

(
βij ⊗Πβij

)
(1⊗ βij)

=
(
Πβij

βij ⊗ βij

)
+
(
βij ⊗Πβij

βij

)
= 0.

(18)



Proposition III.2. Assuming that no collisions happen i.e.
dij ≥ Dmin > 0, ∀i, j ∈ {1, 2, ..., N}, then the resulting
input is always bounded.

Proof. w.l.o.g. considering k = 2:

uT
i =

∑
j∈Ni

[v4ij ⊗ v4ij ]
T 1

dij

(
Πβij

⊗ βij + βij ⊗Πβij

)
(19)

and

∥ui∥2 ≤
∑
j∈Ni

∥v4ij ⊗ v4ij ]∥2
2

Dmin

∥∥∥Πβij
⊗ βij

∥∥∥
2

≤
8

Dmin
|Ni|

(20)

where we used the subadditivity property of norms, the
facts that ∥v4i∥2 ≤ ∥v4∥2 = 1, ∥X⊗Y∥2 = ∥X∥2 · ∥Y∥

2
,

∥Πβ∥2 = 1 and
∥∥βij

∥∥
2
= 1.

Finally, the active sensing gradient control (15) requires
each robot i to only know quantities which are locally
available or communicated by neighboring robots, i.e.,

• v4i: the components of the eigenvector corresponding
to the i-th robot itself, which can be estimated in a
distributed way by suitably modifying the distributed
power iteration method (see e.g. [20], [21]) as done e.g.
in [22];

• v4j∀j ∈ Ni: which can be communicated by neighbor-
ing robots;

• dij : for which an estimate d̂ij can be computed from the
estimated positions; p̂i, locally available, and p̂j which
can be communicated by the neighbors

• βij which is measured.
In the next section, we show how to embed the active

sensing action (15) within a primary task of formation control.

IV. FORMATION CONTROL

We establish a hierarchical framework that prioritizes
position-based formation control over active sensing by using
distributed QP-based Control Lyapunov Functions [16]. We
now formally introduce the definition of CLFs which will be
instrumental for the next developments.

Definition IV.1. A function α : R≥0 → R≥0 is of class K if
it is strictly increasing and α(0) = 0

Definition IV.2. [23] A smooth positive definite function
V : Rd → R is a Control Lyapunov Functions (CLF) for a
given system ẋ = f(x) + g(x)u if it satisfies:

inf
u∈Rm

{LfV (x) + LgV (x)u} ≤ −α(V (x)) (21)

with α of class K.

The position-based formation control task considered in this
work is defined based on the error associated with each edge,
denoted as eij = pj − pi − pd

ij . Here, pd
ij represents the

desired relative position between robot i and j. We also define
the desired position vector as pd = [(pd

1)
T ... (pd

N )T ]
T ,

which relates to the relative desired position vector pd
E =

stack(pd
ij) through pd

E = ET
3 p

d. It is worth noting that pd is
defined up to a common translation. Then, the position error

is e = p− pd = [eT1 ... eTN ]
T with dynamics ė = u− ṗd.

We consider the following potential function:

V (e) =
1

2

∑
(i,j)∈E

∥ei − ej∥22 . (22)

We emphasize that, while this function is only pos-
itive semidefinite i.e. V (w) = 0 for any vec-
tor w ∈ span(U) representing a common transla-
tion, it is positive definite with respect to the de-
sired equilibrium set {e1 = e2 = ... = eN}. Let us de-
fine ci(ζ) := (Lgi

Lfλ4)T /
∥∥Lgi

Lfλ4

∥∥
2

if
∥∥Lgi

Lfλ4

∥∥
2
̸= 0 and

ci(ζ) = 0 otherwise (vector ci(ζ) is thus the unit-norm direc-
tion of the active sensing control (15)). The centralized QP,
including the active sensing task, is formulated as:

min
ui,i=1,...,N

.
1

2

N∑
i=1

[(
ci(ζ)

T (ui − kci(ζ)
)2

+ η ∥Πciui∥22

]

s.t.
N∑
i=1

∑
j∈Ni

(ei − ej)

T

ui +
1

2

∑
(i,j)∈E

αi(∥ei − ej∥22) ≤ 0

(23)
where Πci = I3 − cic

T
i is the orthogonal projector onto the

plane perpendicular to ci, η > 0 and αi(·) is an extended
class K.

The first term in the cost function aims at achieving the
same information gain as the one obtained by ui = kci(ζ)
and, therefore, it represents the active sensing task. The
second (regularization) term in the cost function is meant
to address two issues, namely (i) avoiding excessive inputs
in the direction orthogonal to the active sensing task due to
constraint satisfaction, and (ii) obtaining a strongly convex
cost function. Indeed, the Hessian of the QP is given by
HQP := diag(HQP,i) = diag(cic

T
i + ηΠci ) ≻ 0.

Our objective now is to transform this problem into
one that is suitable for distributed implementation. Inspired
by [24], we compute the analytical expression for the
solution of the QP. First, we define a = [aT

1 ... aT
N ]

T ,
with ai :=

∑
j∈Ni

(ei − ej), and b =
∑N

i=1 bi, with
bi :=

1
4

∑
j∈Ni

α(∥ei − ej∥22), so that the constraint can
be written as

∑N
i=1(a

T
i ui + bi) ≤ 0. We point out that, in

absence of input limits, the constraint is always feasible, i.e.
a = 0 implies b = 0, in which case the constraint is trivially
satisfied. The analytical solution to the QP can be obtained by
using the Karush–Kuhn–Tucker (KKT) optimality conditions.
Let us define the Lagrangian of the problem

L :=
1

2

N∑
i=1

[(
ci(ζ)

T (ui − kci(ζ)
)2

+ η ∥Πciui∥22

]
+λL(a

Tu+ b),

(24)
with λL being the Lagrange multiplier. The resulting KKT
conditions, using ∗ to indicate the optimal solution, are:

∂L
∂ui

= (u∗
i − kci)

T cic
T
i + η(u∗

i )
TΠci + λ∗

La
T
i = 0 ∀i∑N

i=1(a
T
i u∗

i + bi) ≤ 0

λ∗
L ≥ 0

λ∗
L = 0 if

∑N
i=1(a

T
i u∗

i + bi) < 0

. (25)

From the first equation one obtains:

u∗
i = H−1

QP,i(kci − λ∗
Lai) (26)



from which two cases are possible: 1) the constraint is not
active at the unconstrained solution kH−1

QP,ici, hence from
the last condition one has λ∗

L = 0 and u∗
i = kH−1

QP,ici; 2) the
constraint is active, hence substituting (26) into the constraint
equation with equality yields

λ∗
L =

∑N
i=1(a

T
i H−1

QP,ikci + bi)∑N
i=1 a

T
i H−1

QP,iai

. (27)

Substituting back in (26), one obtains the complete solution
for the two cases as:

ui = kH−1
QP,ici −max

(
0,

∑N
i=1(ka

T
i H−1

QP,ici + bi)∑N
i=1 a

T
i H−1

QP,iai

)
H−1

QP,iai.

(28)
Since HQP,i ≻ 0, a zero denominator implies ai = 0 ∀i, that
is, accomplishment of the formation control task. Hence, in
this case the input can be set to zero. Otherwise, the first term
represents the solution to the unconstrained problem. The term
in the numerator

∑N
i=1(ka

T
i H

−1
QP,ici + bi) is negative when

the constraint is satisfied by the solution to the unconstrained
problem. Since the term at denominator is always greater than
zero, then the second term is different from zero only when the
constraint is active and it acts to correct the input in order to
satisfy the constraint. Also, notice that the proposed controller
is piecewise (because of the eigenvalues re-ordering) locally
Lipschitz continuous [25].

The two terms
∑N

i=1(ka
T
i H

−1
QP,ici + bi) and∑N

i=1 a
T
i H

−1
QP,iai are not locally available but one

can estimate their average through dynamic consensus,
e.g. [26]. Finally notice that the terms ai and bi depend
on the estimated positions of robot i and its neighbors,
which must then be estimated as accurately as possible to
correctly achieve the formation task. This is achieved by the
gradient-based active sensing strategy embedded in the cost
function of (23).

V. SIMULATION RESULTS

In this section, we show the effectiveness of our approach
through extensive numerical simulations. We compare the
results obtained applying the proposed control law (28),
which achieves the desired formation while performing
active sensing against a control law which only implements
formation control by satisfying the constraint in (23) while
minimizing the input norm. For convenience, we refer to the
two methods, respectively, as AS and CLF-only. We consider
a group of N = 7 drones, which can sense the neighboring
robots without any sensing constraints and three different
graph topologies with different levels of connectivity. We
performed a set of 50 simulations starting from random initial
positions for each of the following graph topologies (ordered
in increasing connectivity level): line graph, cycle graph
and 1-redundantly bearing rigid (RBR) graph [4] (Fig. 1).
Notice that the first two graphs are not bearing rigid. The
drones initial estimated position is drawn from a gaussian
distribution centered around the real position with standard
deviation 0.8m2 along each axis. As desired formation, we
chose to have the drones equally spaced along a circle lying
on a plane parallel to the x-y plane.

(a) Line graph (b) Cycle graph (c) 1-RBR graph
Fig. 1: Graphs corresponding to the sets of simulations.

The decrease of the CLF imposed in the constraint is
the same for CLF-only and AS, hence, the converge speed
of the formation is not of particular interest. We instead
focus on the (more relevant) evaluation of the steady state
formation error at convergence, and of the estimation error.
In the simulations, we used the following parameters: the
observer gain is ke = 0.1, the forgetting factor is ρ = 0.04,
the OG is initialized as a matrix weighted Laplacian with
matrix weights 0.5I3, the active sensing gain is k = 0.2,
the regularization term is η = 0.01. We also implemented
Control Barrier Functions (CBFs), which filters the inputs
provided by the proposed controller to ensure collision-free
trajectories [27].

We present the results for the line graph in Fig.2, the cycle
graph in Fig.3, and the 1-redundant bearing rigid graph in
Fig. 4. In each case, the figures are arranged from left to right
to display: (a) the trajectory of λ4(t), (b) the estimation error,
(c) the formation error, (d) and (e) the violin plot respectively
for the estimation and formation error at the end of the
trajectory. As a reminder, λ4(t) is the minimum non-zero
eigenvalue of the OG and it is a measure of the collected
information which affects the worst case convergence rate
of the employed localization observer. The plots (a), (b) and
(c) show the average trajectories along with the standard
deviation of the results across simulations.

The results clearly show that the use of active sensing leads
to higher acquired information and, thus, a more accurate
localization and, as a consequence, a better performance for
the formation control. The use of active sensing provides
benefits, particularly in scenarios where the connectivity is
lower, as for the line and cycle graphs. In these cases, the
active sensing task reduces both the estimation and formation
errors. Conversely, in highly connected and rigid graphs like
the 1-redundantly rigid graph, the improvement margin is
quite small. Indeed, in this case, rigidity of the graph greatly
simplifies the localization task since the robot group becomes
“instantaneously localizable” (up to a scale factor). This is
also evident from Fig.4(c), where the information growth
is considerably high even when active sensing is not used
(CLF-only case).

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we have presented a novel distributed
control strategy for bearing formations to maximize the
information gathered for cooperative localization. Our active
sensing strategy is based on the minimum eigenvalue of
the weighted Observability Gramian with a forgetting factor
as an information measure. This active sensing strategy
can be combined with other additional tasks of interest (a
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Fig. 4: 1-Redundantly Rigid Graph.

position-based formation control task in our case) by making
use of distributed QP-based control with Control Lyapunov
Functions. This integration enables the execution of higher-
level tasks while concurrently enhancing the minimum level
of ”localizability” for the robot group, thereby improving the
overall task execution.

Numerical simulations over graphs with different levels of
connectivity demonstrated the benefits of the approach, in
particular for non-rigid graphs. Future works will focus on
including sensing constraints such as limited range and field
of view, as well as accounting for the drones orientation. By
addressing these factors, we can develop a more comprehen-
sive and practical framework that considers the corresponding
directed time-varying graph. Such advancements will enhance
the applicability and robustness of our proposed strategy in
real-world scenarios.
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