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Abstract— Cable-Driven Parallel Robots (CDPRs) are well-
adapted to large workspaces since they replace rigid links by
cables. However, they lack in positioning accuracy and new
control methods are necessary to achieve profile-following tasks.
This paper presents a control scheme designed for these tasks,
relying on a combination of accurate boarded distance sensors
and of a less accurate remote camera. The profile-following
task is divided into two subtasks that are partially conflicting:
maintaining a parallel orientation and a constant distance with
the surface to follow, and following a trajectory between two
points on the surface. The data fusion to solve the redundancy is
based on the Gradient Projection Method. This control scheme
is validated experimentally on a CDPR prototype and shown
to provide the expected behaviour.

I. INTRODUCTION

Cable-Driven Parallel Robots (CDPRs) are robots able to
carry loads in large workspaces, and thus hold a potential
for industrial applications in large assembly operations, for
instance in the aeronautics or naval sectors. However, these
robots are still lacking in precision, including in tasks requir-
ing an accurate positioning with regards to a given object.
This adds to the complexity of profile-following tasks. Most
of the research works focus on improving the CDPR model,
especially regarding cable elasticity and sagging [1], [2], [3],
[4], [5], [6], [7] but other approaches such as vision-based
control have also been proposed to improve the precision of
CDPRs [8], [9]. The robustness of trajectory planning and
tracking for CDPRs was evaluated in [10].

As the accuracy of vision-based pose estimation decreases
with the distance to the cameras, external vision-based
systems have limited performance in large workspaces. For
large-workspace applications, this results in often needing
multiple and high-resolution cameras, costly systems that
require a high computing power to operate in real-time. In
order to achieve precise relative positioning of the robot
with regard to a given object, both camera/robot and cam-
era/object poses need to be measured precisely. Sensors
boarded on the end-effector (EE) allow a more accurate
relative positioning with respect to such an object. For
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instance, visual servoing was used in [11] to perform an
unknown profile following task with a camera mounted on
the EE of a robot arm. This method however requires that
three parallel curves to follow are drawn on the surface.
Untextured surfaces are common in industrial applications,
and other solutions such as using structured light [12]
or distance sensors [13] can prove effective in this case.
These boarded sensors cannot however position the moving-
plaform (MP) of a CDPR in a large workspace alone, because
of their restrained range and field of view. Conversely, one
or multiple camera(s) fixed in the base reference frame
can observe a large workspace and estimate the MP pose,
with a lesser accuracy. Combining boarded sensors and
external cameras allows to benefit from the advantages of
both local and precise measurements around the end-effector
and of less precise measurements but a global view of the
workspace. This combination enables profile following tasks.
However, the two information sources are redundant and may
conflict with each other. A solution to correctly combine their
measurements is thus necessary. Multiple sensor fusion ap-
proaches to solve the redundancy exist [14], notably the well-
documented Gradient Projection Method (GPM) designed for
prioritizing tasks [15], [16], [17]. In particular, this method
is used in [18] to perform a cooperation between eye-to-hand
and eye-in-hand cameras to control the pose of a robot EE.

The purpose of this work is to design a control architecture
able to closely follow at a constant distance and relative
orientation the profile of a curved surface without any
prior information on its shape. The available information
when launching the robot is limited to the current location
of the MP, a starting point and a target point, given by
a remote vision system observing hand-placed AprilTags
marking these points in the robot base reference frame. The
trajectory following has to be played between these starting
and target points. During the profile following, three boarded
distance sensors and the remote camera provide the system
with three distances to the surface and the MP pose in the
robot base frame. In order to perform the task, an appropriate
data fusion method based on the GPM is implemented to
combine the measurements from both sensors. While this
work was designed for and experimented with a CDPR, the
results are applicable to any kind of robots.

The robot control strategy is presented in Section II: two
subtasks are first presented and the fusion using GPM is then
detailed. In Section III, an experiment designed to assess the
performance of this control scheme is presented. The results
are analyzed and discussed, and conclusions are drawn in
Section IV.



II. ROBOT CONTROL

The profile following task can be divided into two sub-
tasks: maintaining the MP parallel to the followed surface at
a constant distance and moving from the starting pose to the
target pose. The control of the robot stems from sensor-based
control, especially visual servoing, and combines measure-
ments provided by two types of sensors: an array of three
distance sensors boarded on the MP, and an external camera
placed in front of the robot. These measurements allow to
complete the two subtasks that need to be conciliated.

The MP to control and the reference frames used in
this work are shown in Fig. 1. The three distance sensors
S1, S2, S3 and the external camera are also represented.
Several AprilTags are placed in the workspace. The pose
of the reference tag in Fc is measured precisely offline in
order to compute the transformation matrix from Fc to Fw.
The AprilTag placed on the MP allows its pose estimation in
Fc and then in Fw. The trajectory start and trajectory target
tags mark the points between which the profile following
is played. The trajectory planner computes a straight line
trajectory between the starting pose of the platform, above
the start tag, towards the target tag. The robot then has
to follow this trajectory while also respecting the distance
and orientation constraints above the ground then above the
curved surface to follow, as shown in Fig. 1.
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Fig. 1: Parametrization and main components of the robotic
platform. The AprilTags are represented by black squares.

A. Sensors

1) Distance sensors: Three SICK UM18 ultrasonic dis-
tance sensors are placed below the MP, facing downwards
along the z-axis of Fp. These sensors have a resolution of
0.2 mm and an accuracy at 200 mm (working distance) of
0.3 mm. They provide the system with three distance mea-
surements each 80 ms. Their current output is processed by
an analogic-digital converter (ADC) connected to the robot
control. The ADC introduces a quantum error corresponding
to σs,q = 0.04 mm. Their calibration also introduces an
error, estimated to 2 mm. The combined distance error for a
distance sensor is then estimated to σd = 2.01 mm.

The relative distance between the three sensors was chosen
to minimize the perturbations from reflections. Since all
sensor directions are parallel, for the MP to be locally parallel
to the surface, the three sensors must return the same distance
(see Fig. 2).

In the eye-in-hand configuration used for the boarded
sensors, the time variation of the measured distance is given
by the proximity sensor model presented in [17]:

ṡi = − 1

nTi
nSi

(nTi
νS − ([sinSi

]×nTi
) ωS) (1)

with nTi
the unit vector normal to the surface at the target

feature point and nSi
the unit vector defining the axis of the

sensor (see Fig. 2). νs is the linear velocity of the sensor and
ωs is its angular velocity, both expressed in the sensor frame.
Note that due to the chosen configuration of the sensors,
nSi

= (0, 0, 1) in Fp, i = 1, . . . , 3.

Fig. 2: Sensor model: only the bottom plane of the MP is
shown.

Knowing the position OpSi = (xi, yi, 0) of the sensors
in Fp, it is possible to express their time variation in function
of the instantaneous velocity vp of the MP, expressed in Fp

from Eq. (1):

ṡi = − 1

nTi nS
(nTi νp − ([sinS +OpSi]×nTi) ωP ) (2)

for i = 1, . . . , 3. Doing so, the feature variation, noted ṡ
where s = (s1, s2, s3) is related to the instantaneous veloc-
ity vp = (νp,ωp) of the MP expressed in Fp through:

ṡ = pL1 vp (3)

pL1 is the interaction matrix of the distance sensors [17],
[19]. Eq. (2) can be reshaped into the form of (3) and
evaluated for the particular case where s = s∗, for which
nTi

= (0, 0, 1) in Fp for i = 1, . . . , 3:

pL1|s=s∗ =

0 0 −1 −y1 x1 0
0 0 −1 −y2 x2 0
0 0 −1 −y3 x3 0

 (4)

Using a constant value of the interaction matrix correspond-
ing to the desired configuration is indeed a usual choice in
sensor-based control [19].



2) External camera: The external camera is an IDS uEye
3240CP with a resolution of 640× 480 px at 30 images per
second. The images acquired are processed by an algorithm
recognising the AprilTags and estimating their relative pose
with regard to the camera frame Fc. April Tags were chosen
because they offer a simple solution for pinpointing locations
on an unknwown and untextured surface. Then, this pose is
expressed in Fw, and, as for Pose-Based Visual Servoing
(PBVS), the visual features are selected as:

sv =

(
wtp
θu

)
(5)

where wtp is the position of the platform in the world
reference frame and θu is the axis-angle representation of
the rotation matrix p∗

Rp. The target pose is defined by:

s∗v =

(
wt∗p
03

)
(6)

where wt∗p is the position of the target AprilTag in Fw. The
interaction matrix of these visual features is well known and
given by [19]:

wL2 =

[
I3 −[wtp]×
03 Lω

]
(7)

with [wtp]× the skew-symmetric matrix of wtp, I3 the three-
dimensional identity, and Lω can be approximated by I3.
This interaction matrix is then expressed in Fp with:

pL2 = wL2
cVp (8)

such that:
wVp =

[
wRp [wtp]×

wRp

03
wRp

]
(9)

The accuracy of the pose estimation by the vision system
depends on several factors: the resolution of the camera, but
also the size and the pose of the observed object. Here,
all AprilTags have a side of 80 mm, except for the one
attached to the MP, which is 64 mm, while the observed
objects are placed within a range of 1−1.5 m away from the
camera. Angles between the image plane and the AprilTags
are comprised between −90◦ and +10◦. The accuracy along
the optical axis of the camera is worse because the depth
estimation is based on the perceived size of the tracked
object, accumulating the errors of several measures. The
depth error increases with the distance. In the working
area, the accuracy of the position estimation (neglecting the
rotation errors) was measured using a Creaform C-Track
(see Section III-A) to σv = 70 mm.

B. Choice of a fusion method

On one hand, performing the first task with the three
distance sensors locks three degrees of freedom (DoF) : two
rotations and one translation. On the other hand, controlling
the MP pose with the remote camera, required to complete
the trajectory tracking involves six DoF. Since the MP has
only n = 6 DoF, the degree of measurement redundancy r
is equal to three considering all available measurements.
Various sensor fusion techniques allow to deal with this

redundancy, and two main approaches are available: feature-
level fusion (fusing errors) and control-level fusion (fusing
velocities).

The respective precision of the two sensor sets needs to
be taken into account by the fusion algorithm. For instance,
inverse variance weighting gives for the zp coordinate of the
platform:

zp = (σ−2
d zp,d + σ−2

v zp,v)/σ
2 (10)

with σ2 = (σ−2
d + σ−2

v ). The variances can be calculated
from the precision of the distance sensors and the vision-
based pose estimation. σ is the standard deviation of the
combined measurements:

σd = 2.0 mm; σv = 70 mm; σ = 4.0 mm (11)

While values of zp,d and zp,v have the same order of magni-
tude, it follows that σ−2

d zp,d >> σ−2
v zp,v and the resulting

standard deviation σ is twice superior to the theoretical
precision σd when taking into account only the distance
sensors. Combining information with such a technique is
thus detrimental to the precision of the system and a strict
decoupling of the two sensor sets is more adapted to control
this DoF with the best precision possible. In other words, the
vision input can be neglected for this component zp, which
is equivalent to using binary weights (1 for zp,d and 0 for
zp,v). This is the same for the other two rotational DoFs that
can be controlled by the three distance sensors. The same
reasoning is valid for a fusion at the control level. The best
is thus to use the well-known Gradient Projection Method
that is perfectly suited in this case. Indeed, it consists in
projecting a secondary task on the kernel of a main task,
which ensures that the main task will not suffer from any
perturbation induced by the secondary task.

C. Fusion using the Gradient Projection Method

With this method, the main task T1 is considered as
a priority, while only the part of the secondary task T2
compatible with the realization of the main one is retained.

We naturally select for the main task the measurements e1
provided by the distance sensors, that is:

e1 = (s1 − s∗, s2 − s∗, s3 − s∗)T (12)

where si is the distance measured by the sensor Si and s∗

is the common reference distance so that the MP is lo-
cally parallel to the followed surface (in practice, we select
s∗ = 0.2 m).

The next step is to determine the Jacobian of the main
task. As already seen in Section II-A.1, the time variation of
the main task is related to the MP twist vp through (3). As
the inputs of the low-level controller of the CDPR are the
velocities l̇ of the m cable lengths, we use:

l̇ = A vp (13)

where the forward Jacobian matrix A of the CDPR is given
by [20]:

A =

[
u1 . . . ui . . . um

b1 × u1 . . . bi × ui . . . bm × um

]T
(14)



where ui are the cable direction unit vectors, pointing from
the exit points (pulleys) of the CDPR to the anchor points
placed on the MP, and where bi are the position vectors
of the anchors points, known from the platform design. All
these vectors are expressed in Fp. ui vectors are calculated
geometrically from the MP pose expressed in Fw using
the straight and inelastic cable model [20]. We recall that
the MP pose in Fw is estimated from its pose in Fc and
the known transform wTb between the reference AprilTag
(whose pose is also estimated in Fc) and Fw.

Finally, from (3) and (13), we obtain:

ė1 = J1 l̇ (15)

where the Jacobian J1 of the main task is given by

J1 = pL1A
+ (16)

A+ being the pseudo-inverse of A.
Regarding the secondary task T2, it is given by:

e2 = sv − s∗v (17)

where sv and s∗v are given by (5) and (6). From (8) and (13),
we have:

ė2 = J2 l̇ (18)

where the Jacobian J2 of T2 is given by:

J2 = pL2 A+ (19)

In practice, the exact value of J1 and J2 is not perfectly
known, that is why approximations Ĵ1 and Ĵ2 have to be
used in the control scheme. Doing so and applying the GPM,
the cable velocity vector l̇ to be sent to the low-level robot
controller has the following form:

l̇ = Ĵ+
1 ė1 + P̂1 z (20)

where P̂1 = (Im − Ĵ+
1 Ĵ1) is a projection operator on the

kernel of Ĵ1, and P̂1z is the part of the secondary task
that can be realized without disturbing the main one. For
considering the potential part of T2 achieved by T1, the term
z can be chosen as [21]:

z = (Ĵ2P̂1)
+(ė2 − Ĵ2Ĵ

+
1 ė1) (21)

Since P̂1 is Hermitian and idempotent, we have
P̂1(Ĵ2P̂1)

+
= (Ĵ2P̂1)

+
. Eq. (20) can thus be rewritten as:

l̇ = Ĵ+
1 ė1 + (Ĵ2P̂1)

+(ė2 − Ĵ2Ĵ
+
1 ė1) (22)

To end with the design of the control law, an exponential
decoupled decrease of each error ei is specified, that is,
ėi = −λiei, λi > 0, i = {1,2}. The control law can then be
expressed in terms of e1 and e2:

l̇ = −λ1Ĵ
+
1 e1 − λ1(J2P̂1)

+(rλe2 − J2Ĵ
+
1 e1) (23)

where rλ = λ2/λ1 is the gain ratio. To simplify the nota-
tions, the term ẽ2 = rλe2 −J2Ĵ

+
1 e1 and matrix ̂̃J2 = J2P̂1

are defined such that the control law has finally the simple
form (see Fig. 3):

l̇ = −λ1(Ĵ
+
1 e1 +

̂̃J+

2 ẽ2) (24)

Fig. 3: Control scheme of the robot with the GPM.

Note that, in practice, reaching the desired pose wt∗p is
done by subdividing the trajectory from the starting pose to
wt∗p by a series of intermediate poses.

III. EXPERIMENTS

A. Experimental setup

The robot used in the experimental platform is a six
degrees of freedom Cable-Driven Parallel Robot named
ACROBOT, located at IRT Jules Verne, Nantes, France. It
consists of a cubic cell within a frame measuring 1.2 m × 1.2
m × 1.2 m in which a platform is suspended to 8 actuated
cables. The moving-platform of the robot is 0.18 m long,
0.18 m wide and 0.150 m high. It boards 3 SICK UM18
ultrasonic distance sensors, placed on the bottom and facing
downwards, measuring the distance between the MP and the
surface below. The external camera is placed in front of the
cell so as to observe the MP inside the robot workspace and
estimate its pose using a set of AprilTags. The setup is shown
Fig.4.
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Fig. 4: The ACROBOT prototype, an eight-cable suspended
CDPR located in IRT Jules Verne, Nantes, France.

The robot is controlled by a B&R automation interface
connected to a PC where a ROS system computes and
transmits the input velocities to the robot through an Ethernet
link. Trajectories are generated with a trapezoidal speed



profile and, as already said, are composed of intermediary
waypoints placed at each timestep (0.1 s) so that the desired
path is a straight line. The starting point of the trajectory
is located above an AprilTag placed on the bottom plane of
the CDPR workspace and the target AprilTag is placed on
an unknown piece of fuselage with a small curvature. The
trajectory between these points allows testing the surface
following and the steep change of curvature between two
surfaces. A view of the MP above the curved surface at the
end of the trajectory is shown Fig 5.

Targeted AprilTagInitial pose

Ultrasonic sensors

x
y

zp,i

p,i

p,i

Fig. 5: View of the moving-platform reaching the targeted
pose, marked with the AprilTag placed on the curved surface.

All the data exchanged between the various ROS control
modules is recorded for the analysis, and the trajectories
are also filmed using an additional camera. To assess the
MP positioning accuracy obtained with the vision system,
a Creaform C-Track device observes the scene and tracks
the MP pose in the target frame Ft (see Fig. 1). The mea-
surement accuracy and repeatability of this optical metrology
device are equal to 0.01 mm and 0.02 mm, respectively.

B. Experimental results

The behavior of the robot with regard to the main task
(profile following) can be assessed by observing the curves
of the distance sensors output along the trajectory shown in
Fig. 6.

From Fig. 6, it should be noted that s1 value decreases
below the target when the MP starts crossing the threshold of
the curved surface. The distances s2 and s3 briefly increase
(peaks at t = 13 s) while the MP is pivoting around its x-
axis until all the sensors correctly face the surface to follow
for the remainder of the trajectory (t ≥ 15s). The settling
time on the plane surface, measured between t = 2 s and
t = 8 s, is τr = 3.4 s. Figure 6 shows that the control
method is able to correctly solve the task conflict and to
satisfy both the orientation and the distance constraints since
all sensors measurements correctly converge to zero, namely,
s− s∗|t≥17 s = 0.

Results regarding the secondary task can be analyzed
from Fig. 7. The Cartesian coordinates of the MP position
measured by the external camera are expressed in the target

Fig. 6: Distance error e1 measured during a trajectory.

(a) Position of the MP in Ft.

(b) Angular position (axis-angle) of the MP in Ft.

Fig. 7: Translational and rotational displacements of the MP
along a trajectory.



frame Ft. Figure 7a shows that txp and typ coordinates
correctly converge towards zero (±10 mm) and the shape
of the typ coordinate corresponds to the variation in position
resulting of a trapezoidal velocity profile. The tzp coordinate
value reaches 238 mm, higher than the reference target
distance of 200 mm but within the margin of error for
the vision-based estimation. This demonstrates the inacuracy
of the vision sensor to estimate this component that is
hopefully not used in the control scheme thanks to the
GPM that prioritizes the distance sensors. Figure 7b shows
that the rotation of the platform along the y and z axes
remains close to zero during the whole trajectory, and the
only significant rotation is about xt. Finally, the rotation
components correctly converge towards zero, satisfying the
orientation constraint given by the main task.

C. Accuracy

The ground truth measurements obtained with the C-track
are shown Fig. 8. They show that all the coordinates from
the vision-based position estimation share the same evolution
with their ground truth counterpart, with an offset. The offset
is approximately 35 mm on the x axis, 50 mm for the y axis
and 36 mm on the z axis.

Fig. 8: Position of the MP in Ft, ground truth obtained with
the C-Track measurement system.

The vision-based position estimation error at time t is
given by:

ep(t) = ∥txp,v(t)−t xp,c(t)∥2 (25)

where txp,v is the position of the platform estimated by the
system and txp,c is the position obtained from the C-track.
The final vision-based position estimation error of the MP
is ep = 50 mm. The distance error when the platform is
parallel to the surface is given by:

edist = si − zp,c (26)

The final distance error is edist = 3 mm. This error could
be reduced by a better calibration of the distance sensors.
While the error due to the inaccuracy of the vision system

is significant, the proposed control scheme manages to keep
an error on the main task more than 15 times lower than the
position estimation error.

IV. CONCLUSIONS
This paper proposed a control scheme to perform a profile

following with a CDPR using a combination of boarded
sensors and an external camera while implementing the
Gradient Projection Method to deal with the measurement
redundancy. The validity and the performance of this control
scheme were assessed experimentally.

In spite of the poor precision of the external camera and
thanks to the distance sensors, the proposed method is able to
follow the surface with a positioning accuracy 15 times better
than the precision provided by the external camera. The robot
is thus able to follow a trajectory on an unknown profile with
the vision system, while a purely distance-based approach
would not be possible, but with an increase in precision
compared to a pure visual control performed with the same
camera. This validates the proposed approach, opening the
possibility to implement this control strategy on a larger
CDPR to really benefit from the advantage of the sensor
cooperation.

However, several limitations exist and could be worth
exploring for improvements. An assessment of the robustness
of the system, as well as the maximum admissible curvature
of the followed surface are still required. This curvature
is limited by the size of the CDPR moving-platform and
by potential interference between the ultrasound sensors. A
possible solution to handle this problem would be to replace
the latter by more costly, but more precise and more directive
LASER rangers to reduce interference. These sensors could
then be placed closer to each other and thus follow higher
and/or more localized variations in curvature. The precision
of the cameras does not hamper the surface following on
simple profiles, but a better resolution is likely needed for
any potential industrial applications, especially in a larger
workspace. Another possibility would be to use a pan-tilt-
zoom camera to follow the MP in the workspace.
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