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Abstract— This paper proposes a novel visual SLAM method

with dense planar reconstruction using a monocular camera:

TT-SLAM. The method exploits planar template-based trackers

(TT) to compute camera poses and reconstructs a multi-

planar scene representation. Multiple homographies are esti-

mated simultaneously by clustering a set of template trackers

supported by superpixelized regions. Compared to RANSAC-

based multiple homographies method [1], data association

and keyframe selection issues are handled by the continuous

nature of template trackers. A non-linear optimization process

is applied to all the homographies to improve the preci-

sion in pose estimation. Experiments show that the proposed

method outperforms RANSAC-based multiple homographies

method [1] as well as other dense method SLAM techniques

such as LSD-SLAM or DPPTAM, and competes with keypoint-

based techniques like ORB-SLAM while providing dense planar

reconstructions of the environment.

I. INTRODUCTION

Research on SLAM techniques (Simultaneous Localiza-
tion And Mapping) has drawn a big amount of attention
in the robotics community and led to implementations in
various use cases: indoor and outdoor, in the urban and in the
wild. Sparse SLAM methods either rely on direct alignment
of pixel-level information or minimization of re-projection
errors on extracted keypoints and similar low-level image
features [2], [3], [4].

However, more high-level geometric features such as lines
and planes can be exploited and integrated into visual SLAM
systems as they provide a more semantic abstraction and are
more robust over point-based image features.

Planes, for example, are ubiquitous geometric feature in
man-made environments and objects, and enjoy worthwhile
characteristics in visual tracking and SLAM tasks. Planar
models only require a small set of parameters but can recon-
struct complex scenes in a dense fashion. Planar models are
also easy to estimate and track using homographies that ex-
press relations between image and world spaces. Henceforth,
many tracking algorithms are based on single homography
transforms: SLAM [5], object visual tracking [6] or robotic
visual servoing [7].

While the single homography constraint can be easily
exploited in tracking tasks on scenes with a dominant plane,
this assumption severely limits applications to more general
environments.

A number of contributions have therefore explored the use
of multiple plane representations. Wang et al. [1] proposed a
ransac-based relative camera pose estimation under multiple
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planar structures with the help of superpixels. Inspired by
this work, this paper proposes a multiple planar SLAM
framework using template-based trackers and superpixels to
estimate camera trajectories and reconstruct a dense partial
mapping from monocular image sequences (see Fig.1).

Our contributions are: (1) a novel method of initializing
template trackers with the help of superpixels, (2) a mean
shift clustering system to handle planar segmentation and
pose estimation, and (3) a non-linear optimization refiner
for improving precision and robustness by merging template
tracker estimations.

Fig. 1: We propose a visual SLAM method which tracks and
clusters template-based trackers, estimates camera poses, and
maps three dimensional multi-planar environments on color
image sequences acquired by a monocular camera. Each
color represents a different plane.

II. RELATED WORK

A range of related work can be found under the topic
of estimating camera pose and mapping in planar worlds.
Some rely on the single homography assumption in which the
workspace is usually one-dominant-planar scenes [8]. Pirch-
heim and Reitmayr [5] designed and developed a mobile aug-
mented reality SLAM system for single planar environments.
Combining the process with IMUs (Inertial Measurement
Unit) also helps in improving the precision and eliminating
ambiguities during homography decomposition [9], [10].

Another class of approaches addresses worlds through
the Manhattan assumption: all three dimensional planes in
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the environment are perpendicular to each other. Such an
assumption is well suited in standard indoor and urban
scenarios and simplifies the model, improving performance
and precision in specific use-cases [10], [11], [12].

A number of approaches rely on planar scene SLAM and
visual tracking systems by exploiting the depth information
of RGB-D cameras. Kaess [13] proposes a quaternion for-
mulation for 3D planes to improve convergence speed during
optimization. Hsiao et al. [14] extended the previous work
to a real-time keyframe-based RGBD planar SLAM: It does
keyframe-based local odometry with help of geometric and
photometric information for fast pose estimating. Then all
the keyframes data are handled by a factor graph map using
incremental smoothing and mapping technique (iSAM).

Approaches driven by deep learning neural networks also
gained popularity and showed improved performances in
many computer vision tasks. Pop-Up SLAM [12] demon-
strates good performance for planar scene especially when
the environment is texture-less. Yang and Scherer [15] pro-
posed to add 3D object detection by bounding boxes as
another constraint for Manhattan structured environments.

The use of superpixels in SLAM techniques has raised
interest in the community. A superpixel is a group of pixels
sharing spatial and chromatic similarities, usually gener-
ated by clustering or segmentation methods: classic works
include SLIC [16], SEEDS [17] and graph-segmentation
superpixel [18]. In the computer vision and robotic visionary
domain, the technique is exploited as it provides a rough
planar estimation.

More specifically, Concha and Civera propose to integrate
superpixel techniques in sparse [19] and dense [20] SLAM
systems to enhance mapping results. The idea consists of
a Monte Carlo ranking to find the correspondence and
initial 3D pose of superpixel-represented planes. The paper
proposes an optimization framework to refine the plane poses
with already known camera pose estimated separately from
a PTAM system. Later, in DPPTAM [20], superpixels are
used in a semi-dense tracking system. Similar to [19], plane
estimation is handled in a decoupled fashion to camera pose
which is found by semi-dense SLAM system. Ransac and
SVD on three dimensional points is used for estimating the
plane equation. A dense mapping optimization technique is
therefore designed with superpixels information too.

Recently, [1] proposed a coupled estimation of multiple
planes and camera pose based on multiple homographies. A
dedicated RANSAC is applied on keypoints and ambiguities
in plane estimation are eliminated via multiple homographies
in order to simultaneously achieve sparse tracking and dense
mapping.

Template-based trackers is a well-known technique in
robotics to track and estimate planar image patches by
registering different primitive geometric models w.r.t various
metrics: e.g., sum of square difference (SSD), zero-mean
normalized cross-correlation (ZNCC), and mutual informa-
tion (MI). Planar trackers usually estimate a homography
transform between a template patch and query image via
optimization method. Many applications are derived from

template-based trackers including augmented reality [21],
robot control [22], etc. Compared with RANSAC methods
(e.g., [1]), using template trackers to continuously extract
homographies has the following advantages: 1) it solves
well the data association problem when multiple planes are
present in the scene; 2) it provides continuous observation of
the tracking results, therefore the system has more flexibility
to deal with the keyframe selection problem; 3) RANSAC
method tends to require higher computational cost when
dealing with multiple planes, as template trackers are much
lighter and deterministic in terms of results.

Combining the advantage of template tracker and the work
of multiple homographies pose estimation [1], we present a
novel method of multiple planar vSLAM. It supports: 1) a
novel method of tracking camera pose and mapping multiple
planar environments simultaneously in a dense fashion; 2)
a method of generating, clustering and utilizing template
trackers with support of superpixel images for vSLAM
applications; 3) a mean of applying homography-based non-
linear optimization on template trackers as a refiner for
achieving better pose estimation and mapping quality.

III. OVERVIEW

We propose TT-SLAM as a novel visual SLAM technique
which relies on template trackers (TT) for planar environ-
ments. It comprehends the following modules (see overview
in Fig. 2): (a) generation and tracking of template trackers:
we add template trackers on regions of superpixelizd images
and track them in the sequence of images; (b) clustering
of decomposed planes: we rely on a mean shift cluster-
ing algorithm to group similar decomposed planes from
homographies to extract a multi-planar structure; (c) non-
linear refiner: we apply a non-linear optimization framework
on template trackers to refine camera pose and multiple
planes simultaneously on both the single incoming image and
whole the image sequence (Bundle Adjustment-like). All the
modules are presented in details in the following sections.

IV. MULTIPLE TEMPLATE TRACKERS

The main idea of our work is to rely on multiple template
trackers to both estimate a camera pose and a dense planar
mapping of a 3D scene.

Planar template tracker is a technique which tracks a
planar image region on a sequence of frames. The technique
outputs a homography transform H from a reference region
in the first image to the current one. In a planar scene, the
homography transform 2

H1 2 SL(3) is used to describe the
transformation of a three-dimensional plane from one image
I1 to another I2. When the camera is intrinsically calibrated,
i.e. the intrinsic matrix K is known, all pixels from I1
and I2 can be presented as normalized three dimensional
coordinates denoted as: p1 and p2 2 R

3. The homography
matrix is therefore a constraint between those points within
the planar region:

p2 = 2
H1p1
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Fig. a: input image
Fig. b: polygonized region Fig. c: tracking and clustering of template trackers

Fig. d: multiple planar map

Fig. 2: Pipeline of our system which processes an input image sequence (subfig.a) to perform superpixelization (subfig.b).
In subfig.c, tracking and clustering template trackers is performed (different colors represent different found planes in 3D,
see subfig.d). Finally, passing through the refiner module, our method is able to recover camera trajectories together with a
dense planar environment which conserves well plane perpendicularity without applying any Manhattan assumption.

This transform is actually composed of a rotation matrix
2
R1 2 SO(3), a translation vector 2

t1 2 R
3 and a normal

vector in the first frame I1: n1 = (a, b, c)> 2 R
3 (Eq. 1).

The three dimensional plane associated is then formulated as
p
>
n1 = d, where p 2 R

3 are three dimensional points on
the plane and d is the perpendicular distance to the origin:

2
H1 = 2

R1 +
2
t1

d
n1

> (1)

Different methods have been proposed to compute a
homography matrix between images, some rely on key-
points [23] and others exploit pixel-level information [24].
For most template tracking problems, it is regarded as a
differential image alignment problem at a pixel level.

The objective of differential image alignment is to estimate
a displacement ⇢ of an image template I⇤ in multiple frames.
It can be treated as a frame-to-frame tracking process, where
the I⇤ is usually a Region-of-Interest (RoI) extracted from
the reference frame. One then requires a similarity measure
f to represent the distance between the reference image
and the warped image. With the above definitions, one can
describe the differential image alignment problem under an
optimization problem:

b⇢t = argmax
⇢

f (I⇤, w (I, ⇢)) (2)

where we aim at finding the displacement b⇢t which maxi-
mizes the similarity under a given measure f . For the purpose
of clarity, the warping function w is an abused notation to
define a general transformation of the image I parameterized
by ⇢. In the context of planar homography estimation, we
search on ⇢ 2 sl(3) which has 8 parameters. In order to
accelerate the searching process, the inverse compositional
formulation technique is proposed by precomputing deriva-
tives of the reference image (see more details in [25], [6]).

Unlike common applications of template-based trackers
where the regions-of-interest are usually known a priori
or selected by user interaction, our system needs to au-
tomatically determine the regions-of-interest by computing
adequate regions in terms of area and location consistent with
a rough planar assumption. To address this problem, we rely

on superpixel image decomposition. A superpixel is defined
as a group of connected pixels sharing strong chromatic
consistency (e.g., SLIC [16]). We make an assumption here
that each superpixel can be regarded as a potential planar
region suitable for template-based trackers.

Fig. 3: An example of template tracker generation process.
The left image shows the cluster contours of a superpixelized
image. Polygonized regions and corresponding template
trackers with triangulated RoIs are displayed in the middle
and right images respectively.

During the initialization procedure, each superpixel is as-
signed as a RoI for a template-based tracker in order to track
the regions in the following frames. Since superpixel borders
are often non-planar and perturbate tracking quality, we pro-
pose to simplify the contour of superpixels by applying Teh-
Chin chain approximation [26] and Ramer–Douglas–Peucker
algorithm [27] on eroded superpixel contour. The regions are
then represented as a Delaunay triangulation and considered
as a tracking RoI (see Fig.3). Though the superpixels only
provide a rough a priori on region planarity, trackers which
are assigned with non-planar or multi-planar regions will
quickly lead to divergence during the tracking optimization
process and can be removed.

By contrast with our previous work [1] where all homogra-
phies are estimated from one given keyframe (i.e. the same
reference image), new template trackers can be considered
and added at any time. This reduces the risk of wrong
keyframe selection, a issue identified in [1]. A policy is
therefore devised to decide when to add new template
trackers by selecting superpixels which fail to superpose with
an already existing template tracker, by simply measuring
their ratio of region overlapping on the image surface. For
every new incoming frame, we therefore compare the newly
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computed superpixels with current valid trackers and add
new trackers on those not covered. Our ratio is defined as
follows for each superpixel:

r =
Stt \ Ssp

Ssp
(3)

Stt and Ssp are the regions of template tracker and
superpixels respectively.

V. CLUSTERING AND DECOMPOSITION

Once we obtain a set of homographies from different
template trackers {H}, the next step consists in clustering
homographies to obtain a simplified and better multi-planar
representation. In our previous work [1], this was achieved
by a Winner-Takes-All RANSAC on detected keypoints to
identity multiple planes. Here we rely on a mean shift
clustering technique to decide if some trackers belong to the
same plane.

Clustering is a task of grouping similar data together
and classifying according to specific metrics: classic works
including K-means [28], mean shift [29], etc. Clustering is
popular in computer vision and visionary robotics applica-
tions as it’s able to reveal patterns from data aspect: e.g., [30]
use mean shift technique for estimating undrifted rotation
from vanishing points in indoor scenarios to decouple the
rotation and translation in SLAM.

In our work, we expect a clustering system to separate
different trackers and group similar ones as they are tracking
the same three dimensional plane. As we do not know in
advance the number of planes in the scene, it makes mean
shift clustering an appropriate method to deal with the case
as it doesn’t require an initial seed number, unlike other
clustering methods. Ideally, if all the trackers are initialized at
the same reference frame, we may directly apply mean shift
on the space of homography H 2 SL(3). However, because
of the aforementioned trackers adding policy, classification
cannot be performed directly on the homography space since
we are dealing with trackers initialized from different refer-
ence frames. Instead, since pose estimation is a sequential
tracking problem, we propose to perform the classification on
the decomposed planes represented in world coordinates (see
Eq. 1), and clustering them in the space of plane parameters
⇧ = {n, d} where n is the normal vector of the plane and
d is the perpendicular distance to the origin.

A classical issue, however, is the ambiguity in homography
decomposition. Inevitably, decomposing a single homog-
raphy yields two sets of results of R, t,n which both
are geometrically valid. Without extra information, at least
two ambiguities exist even after applying positive depth
condition, unless one element among R, t,n is known
in a priori, e.g., by IMU information or known surface
normal. For multiple planar homographies, we addressed the
problem [1] by proposing voting on the common direction
of the translational vector. We adopt the same method in this
work for not only eliminating ambiguities but also filtering
low quality template trackers by measuring their translational
vector to the voted common direction: if none of translational

vectors is close enough to the common direction among
ambiguity sets, we consider the template tracker itself may
be wrongly initialized or assigned with non-planar regions.

After decomposition, we obtain a set of planes represented
in world coordinates, denoted as {⇧}. Instead of clustering
naively on the space of planes ⇧ = {n, d} where the
euclidean distance not defined properly, a hierarchical mean
shift scheme is applied by considering first the normal
vectors {n}, then second the d parameter and the on-image
barycenter position {d, pc} of each template trackers for
grouping planes locally. We utilize the euclidean metric
on both hierarchies of clustering and find the results are
good enough though the space of plane normal has its own
geodesic metric on the sphere group (see Fig. 4 for clustering
results and correspondent depth image).

Fig. 4: Clustered and matched template trackers in middle
subfig (same color represents same clustered 3D plane), and
correspondent depth is generated on trackers region (right).

VI. NON-LINEAR MULTI-PLANE REFINER AND BA
A. Non-linear Refiner on Current Image

Given the clustering performed on the image planes, we
then design a refining process to better exploit the informa-
tion from multiple trackers and improve the estimation of
both the camera pose q 2 se(3) 2 R

6 (the minimal repre-
sentation of transformation {R, t}) and planar equations ⇧

simultaneously. In traditional SLAM systems, this process
is usually handled by a non-linear optimization framework,
which minimizes the re-projection error on image space of
extracted landmarks such as keypoints (Bundle Adjustment).

To handle homography transformations, a similar process
can be applied via a non-linear least square Gauss-Newton
optimization process which minimizes the re-projection error
E between pixels (pn

2 � 2
H1p

n
1 )

2, n = 1, .., Np as number
of pixels, w.r.t. camera pose q and the plane parameter ⇧1 =
{n1, d}. This is expressed as:

{bq, c⇧1} = argmin
q,⇧1

E(q) = argmin
q,⇧1

NpX

n

�
p
n
2 � 2

H1p
n
1

�2

(4)
To compute the re-projection error, we use vertices from

the Delaunay triangulation process of each template tracker.
Similarly to [1], sharing multiple homographies in a static

environment can be interpreted as the relation of a set of
homographies estimated by trackers {Hi} and a shared
transformation in world coordinate frame w

To 2 SE(3) (o
represents origin of the frame) represented by local trans-
forms w

Tri (from the reference frame ri of template tracker
i to its current position) for all trackers, where i = 1, .., Ntt

as the number of trackers:
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w
Tr = w

To
r
T

�1
o ,wTr = {wRr,

w
tr}

H
i = w

Rri +
w
tri

di
nri

> (5)

We can therefore propose a refiner for estimating camera
pose and planar equations simultaneously from multiple
trackers homographies. Note that we already know the cor-
respondence mapping from {⇧i} to clustered and grouped
planes {⇧c} by mean shift and data association. Rather than
considering each plane separately for each tracker, during
the optimization process we group planes together in {⇧i}
following the mean shift clustering.

{cqw, {d⇧c
w}} = arg min

qw,{⇧c
w}

NttX

i

NpiX

n

�
p
n
wi

� w
Hrip

n
ri

�2

(6)
with p

n
w and p

n
ri are the vertices of tracking regions from

the current frame and the corresponded reference frame of
the template tracker i respectively, their sum quantity is
Npi and number of trackers Ntt. Remember that the camera
pose cqw and planar equation d⇧c

w are actually in the world
coordinates, thus a transform of Eq. 5 from global coordinate
to local coordinate is mandatory as the homography is
defined only between the reference frame and current one.
For simplicity, we denote w

Hri by an abuse of notation and
hide the transform in Eq. 6.

A warm start for the optimization can be given directly
from the last camera pose and also by searching for the
previous global planar results for each template tracker. With
the help of template trackers, plane data association is no
longer a problem as we already know which template tracker
generates each plane. Simple searching and comparing of
trackers is performed.

B. Bundle Adjustment-like Refiner

The plane map refiner consists of an optimization frame-
work that refines all keyframes’ poses and their common
planes found by the plane matching process. Each keyframe
contains multiple planes and their vertices. Once the joint
plane information is gained over different keyframes, like
global BA for point-based SLAMs, this procedure eliminates
the drifting problem, alleviates scale ambiguity, and refines
camera trajectory w.r.t whole sequence.

By analogy, we propose a Bundle Adjustment (BA) system
for refining every frame’s pose and the joint plane informa-
tion by mutually minimizing their re-projection error:

arg min
qt,{⇧c

t}

NtX

t

NttX

i

NpiX

n

�
p
n
t � t

Hrip
n
ri

�2 (7)

where t and i are the index of frame and tracker number,
Nt and Ntt represent the total frame and template trackers
number respectively.

C. Planar Map

1) Plane merging and keyframes: We also deploy a plane
merging scheme to fuse close planes given a metric on
plane normal vector n and orthogonal distance d. Ideally,
we don’t rely on well-selected keyframes such as [1] since
keypoint homographies are prone to errors with insufficient
translations. In contrast, template trackers allow us to track
planes along the sequence, and wait until the estimation is
stable before generating keyframes.

2) Template rejection: Unlike RANSAC-based methods,
template trackers maximize the similarity of all pixels in the
region. This makes the outlier rejection critical for a SLAM
system: any ill-tracked template tracker is capable of adding
noise in the overall camera and plane estimation. Besides
applying a robust loss function such as Huber loss [31], we
also propose a template rejection procedure for preventing
ill-tracked templates. Three main points are chosen here to
filter out bad trackers:

• The lack of convergence or high tracking cost led
by tracker’s optimization, which usually occurs when
initialising on texture-less or non-planar regions.

• The voting distance during the ambiguity elimination
process: if none of the computed solution is close to
the common voted translational direction.

• Unstable templates: we monitor each template in terms
of their plane equations and prune trackers which fail
to generate stable plane in measure of their parameters.

VII. EXPERIMENTS AND DISCUSSIONS

We test our proposed method in two different scenarios:
indoor and outdoor environments.

For the indoor environments, we test three levels of diffi-
culty and complexity from simplest to most complex: single
plane scenario, multiple planes scenario, and a complex
multiple planar real room.

Single (fr nstr loop) and multiple (fr str far)
plane scenarios are tested with the TUM RGB-D dataset [32]
which is also utilised by many planar or dense SLAM
methods [20], [33], [1]. The scene is composed of rich
textured planar structures and relative homogeneous color
distribution area. It raises challenges for superpixel decom-
position and template trackers as sometimes RoIs might
spawn at the middle line of two different planes and mislead
the following estimations. However, the proposed system
handles well the single and multiple planar scenes, as dis-
played in Table. I for the comparison of Absolute Pose
Error (APE) with ORB-SLAM [2], LSD-SLAM [3], Multi-
Level Mapping [33], DPPTAM [20] and our previous work:
a ransac-based multi-planar method [1]. We demonstrate in
subtables fr nstr loop and fr str far for single and
multiple plane scenarios. Our method outperforms all dense
and RANSAC methods and reaches a good level of precision
against a state-of-the-art monocular sparse keypoint-based
SLAM [2] which only provides a sparse point cloud map-
ping. One explanation about the precision drop comparing
with [2] in the single planar scene (fr nstr loop) is that
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without using keypoints and specially designed relocalization
module, the system tends to accumulate errors along the
tracking and is negatively influenced by motion blur taken
during the image acquisition. It also explains other dense
methods’ ill-performance. Comparison of APE along the
sequence fr str far is shown in Fig. 5, our method yields
lower level error along the whole trajectory. Generated planar
maps are viewed in Fig. 6. Dense planar maps are created
by reprojecting tracker regions according to computed planar
equations at each frame. It’s observed that the map conserves
well the perpendicularity without applying any Manhattan
assumptions.

The second experiment of the indoor scene is a drone
dataset EuRoc [34]: a drone recorded grey-level dataset in a
test room of a flight sequence. We take a segment (⇠ 400
frames) of the scene v1 01 easy as the environment is not
specifically designed for planar SLAM and some texture-less
sections and regions fail template trackers. As shown by the
results in the third section of Table. I, we also achieve a good
level of precision compared to all dense methods and even
better than ORB-SLAM [2] on the median error metric.

Fig. 5: Absolute Pose Error (APE) metric for the sequence
fr str far of Dataset [32] shows that our dense mapping
method outperforms all dense and semi-dense methods and
reaches a decent precision level compared to ORB-SLAM
which only provides a sparse point cloud map.

(a)

(b)

Fig. 6: 3D multiple (subfig a) and single plane map (subfig
b) of the dataset TUM [32] generated by our method. Our
proposed method is able to estimate camera trajectory and
planar map representation simultaneously.

Data Methods Mean (m) Median (m) RMSE (m)

f3
st

r
fa

r

[2] 0.010 0.009 0.012

[3] 0.157 0.124 0.170
[33] - - 0.17
[20] 0.063 0.063 0.065
[1] 0.023 0.017 0.027

TT-SLAM 0.018 0.014 0.021

f3
ns

tr
lo

op [2] 0.012 0.011 0.013

[3] 0.733 0.649 0.867
[33] - - 0.22
[20] 0.180⇤ 0.159⇤ 0.197⇤

TT-SLAM 0.110 0.098 0.120

v1
01

ea
sy [2] 0.091 0.085 0.094

[3] 1.205 1.107 1.406
[20] x x x

TT-SLAM 0.099 0.080 0.112

TABLE I: ATE Evaluation: The proposed method (TT-
SLAM) outperforms DPPTAM [20], LSD-SLAM [3] and
Multi-Level Mapping [33], ransac-based pose estima-
tion from multi-homographies [1]. Despite behind ORB-
SLAM [2] performance (a keypoint sparse SLAM without
planar assumption), our approach provides a dense map
representation. (* means lost a portion during tracking, -

means no reported data, x means initialization failure)

For the outdoor experiment, we test our system on a
sequence from a hand-held gray-level dataset [35], in a
scene of a corridor-like environment. Fig. 7 displays that our
system retrieves the corridor’s perpendicular planar structure
as well as a camera trajectory from the input sequence.

Fig. 7: Reconstructing on the dataset [35], coordinates repre-
sent the camera poses. The multi-planar environment is well
conserved without applying Manhattan assumptions.

VIII. CONCLUSION

We proposed a novel way of estimating camera pose
and generating dense planar mapping via template trackers.
Trackers are created from superpixelized image regions. A
mean shift clustering technique is applied to merge similar
planes. Finally, a optimization-based refiner is designed to
achieve better performance.

Our perspective comprehends three directions: first relying
on heterogeneous information such as keypoints, and depth
information to improve robustness and tracking quality. The
second direction consists in using a deep-learning segmen-
tation and planar region detection rather than superpixels.
Third, we aim at exploiting planar maps for relocalization
tasks and data association in general SLAM systems.
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