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Abstract. A novel workspace, called Control Stability Workspace (CSW),
is proposed and analyzed in this paper. It is a workspace from the control
perspective. It allows us to determine whether the closed-loop controller
will be able to guide a cable-driven parallel robot (CDPR) to a desired
pose, given that there are perturbations present in the system. The e�ect
of the di�erent perturbations on the CSW is analyzed for two spatial CD-
PRs with a pose-based visual servoing (PBVS) controller. Indeed, this
workspace is not only robot architecture-dependent, but also control-
dependent. It was found that the model errors, that is, the errors in the
cable exit and anchor point coordinates, have the most signi�cant e�ect
on the CSW. However, if the pulleys are small enough, then neglecting
their geometry does not lead to a signi�cant reduction of the workspace.

Keywords: cable-driven parallel robots � visual servoing � stability �
workspace

1 Introduction

Cable-driven parallel robots (CDPRs) are characterized by a large workspace.
However, knowing this workspace is not a trivial task. A workspace consists
of all the CDPR moving-platform (MP) poses, in which certain conditions are
ful�lled. Depending on the selected conditions multiple workspaces can be de-
termined [1,2,3]. The simplest one is the Static Feasible Workspace (SFW),
where the static equilibrium of the MP is used as the condition for de�ning
the workspace [1,3]. The Wrench Feasible Workspace (WFW) is based on the
static equilibrium along with the condition that the MP is able to withstand a
set of external wrenches, named Required Wrench Set (RWS), while staying in
equilibrium. SFW is a special case of WFW when the external wrench is equal to
zero and the static equilibrium is achieved by compensating only the MP weight.



2 Z. Zake, F. Chaumette, N. Pedemonte, and S. Caro

Cable-cable interferences can a�ect the pose the MP reaches. Indeed, as the
cable is no longer a straight line, but instead is bent at the interference point,
the model no longer corresponds to the real CDPR and thus a di�erent MP
pose is obtained. To avoid such situations one can compute the Interference Free
Workspace (IFW), which is the set of all MP poses without collisions between ca-
bles [4,5]. An extension of this workspace is the Collision Free Workspace (CFW),
which is the set of all MP poses without collisions between the cables, the MP,
and the environment.

For some tasks a CDPR will be required to attain high velocities and thus a
Twist Feasible Workspace should be used [6]. When the dynamics of the robot
need to be taken into account, the dynamic workspace needs to be considered. For
example, the Dynamic Feasible Workspace (DFW) is the set of dynamic feasible
MP poses. Here, a pose is dynamic feasible if the prescribed MP acceleration set
is feasible, while cable tensions are kept within their bounds. For planar CDPRs
the dynamic equations were solved analytically and thus the boundary of DFW
could be found [7]. However, the same strategy cannot be applied to spatial
CDPRs due to their increased complexity. For this reason a new workspace
called Improved DFW is de�ned in [8].

All of the mentioned workspaces portray the physical ability of the MP to
arrive at a certain pose given a set of conditions that need to be ful�lled. The
control of the CDPR is not taken into account, meaning that there is no knowl-
edge whether the controller will be able to guide the MP to the desired pose.
For a closed-loop control, such as visual servoing, one can write the closed-loop
equation and analyze the system stability with respect to perturbations [9,10,11].
Based on this analysis it was then possible to brie
y introduce a novel workspace
called Control Stability Workspace (CSW) [11]. It allows us to determine whether
the controller will be able to guide the MP to the desired pose, given that there
are perturbations present in the system. In this paper we make a thorough anal-
ysis of the sensitivity of this workspace with respect to perturbations in di�erent
parameters. Furthermore, the CSW is determined for two di�erent CDPRs, and
thus conclusions are made about the scalability of perturbation ranges as a func-
tion of the CDPR size.

2 Visual Servoing of a CDPR

A generic control scheme for visual servoing of a CDPR is shown in Fig. 1 [9,10,11].
Fig. 2 illustrates the main components of a CDPR and the frames of interest.

� � bL y
s bA d bA

CDPR&
Camera

Computer Vision Algorithm

s� e cv c
pv p _l

images

�
+

Fig. 1: Control scheme for visual servoing of a CDPR
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Fig. 2: Schematic of a spatial CDPR with eight cables, a camera mounted on the
MP and an object in the workspace

The camera is mounted on the MP in the eye-in-hand con�guration. Comparing
the current feature vector s, which is available from a computer vision algo-
rithm, to the desired feature vector s� , which is previously de�ned, it is possible
to compute the desired cable velocities that will try to make s converge tos� .
Note that the content of the feature vector s depends on the chosen visual ser-
voing approach. In case of Pose-Based Visual Servoing (PBVS), we can de�ne
s = ( ct o; � u), where ct o is the object position in the camera frameF c, and � u
is the axis-angle representation of the rotation matrix c�

R c between the current
and the desired camera frames [12].

An error e is computed by comparing s and s� . To ensure that this error
converges to zero, we select as expected behavior:

_e = � � e (1)

where � is a positive gain.
Upon derivation of e = s � s� with respect to time, we get:

_e = L s
cv c (2)

where L s is the interaction matrix and its composition depends on the chosen
visual features [12];cv c is the velocity of the camera with respect to the base
frame Fb, expressed in the camera frameF c.

It is then possible to express the camera velocity from (1) and (2):

cv c = � � bL y
s e (3)

where bL y
s is the pseudo-inverse of the interaction matrix estimation.

The relation between the camera velocitycv c and the MP velocity pvp is
expressed as:

pvp = A d
cv c (4)

where A d is the Adjoint matrix [13]:

A d =
�

pR c [pt c]� pR c

03
pR c

�
(5)
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where pt c and pR c are the translation vector and rotation matrix that form the
homogeneous transformation matrixpT c from Fp to F c.

The cable velocity vector _l is computed from MP twist pvp as follows:

_l = bA pvp (6)

where bA is the estimation of the Forward Jacobian matrix A . For the modeling,
the cables are supposed to be non-elastic and massless. The pulleys are assumed
to be small, thus their radius is neglected. The components of matrixA can thus
be expressed in the MP frameFp as [14]:

A =

2

6
4

puT
1 (pb1 � pu1)T

...
...

puT
m (pbm � pum )T

3

7
5 (7)

where pu i is the unit vector of p #        �
A i B i , pointing from the exit point A i to the

anchor point B i of the i th cable, and pb i is the vector pointing from the origin
of MP frame FP to B i .

The model of the system shown in Fig. 1 is written by injecting Eqs. (3), (4)
and (6) into (2):

_e = L s A � 1
d Ay _l (8)

The output of the control scheme, that is, the cable velocity vector _l , is
expressed by injecting (3) and (4) into (6):

_l = � � bA bA d
bL y

s e (9)

where bA d is the estimation of the Adjoint matrix A d.
The closed-loop equation of the system is expressed by injecting (9) into (8):

_e = � � L s A � 1
d Ay bA bA d

bL y
s e (10)

The stability criterion � is de�ned as:

� = L s A � 1
d Ay bA bA d

bL y
s (11)

According to Lyapunov stability analysis [15], � > 0 is a su�cient condition
to obtain global asymptotic stability. Indeed, as long as the matrix � is positive
de�nite, it is clear from (10) that the error e will converge to 0.

3 Control Stability Workspace

Before using a CDPR, one needs to know its workspace. As recalled in the
introduction, many workspace types have been de�ned [1,2]. For example, the
Static-Feasible Workspace (SFW) is de�ned as [16]:

S = f pp 2 SE(3) : 9� 2 T ; W � + wg = 06g (12)
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Namely, the workspaceS is the set of all MP posespp for which there exists a
vector of cable tensions� within the cable tension spaceT such that the CDPR
can balance the gravity wrenchwg, and W � + wg = 06. The tension spaceT
is an m-dimensional box of feasible tensionsT = f � 2 Rm : � lb � � � � ubg
where � lb and � ub are the lower and upper tension bounds, respectively [17].

SFW is a kineto-static workspace that contains all the poses that the MP is
physically able to attain.

From (11) it can be seen that the stability of the system depends on the
MP pose, because it shows up in the stability criterion� through the Jacobian
matrix A , which is a function of the MP pose. Accordingly, a novel workspace,
named Control Stability Workspace (CSW), can be de�ned as follows [11]:

Z = f pp 2 SE(3) : 8d 2 D ; � > 0g (13)

The workspaceZ is the set of all MP posespp, for which the stability criterion �
is positive de�nite for any vector of perturbations d that is within bounds D. It
means that for any MP pose within its CSW, the robot controller will be able
to guide the MP to its goal.

3.1 The De�nition of Perturbation Bounds D

As was shown in [9,10], many parameters can induce perturbations. Furthermore,
the perturbations a�ect the stability of the system simultaneously. To be able
to analyze the e�ect of the perturbations on the CSW, we must �rst de�ne the
perturbation bounds.

Parameters can be either translational or rotational. For example, if we con-
sider the camera pose in the MP frameFp, then the translational parameter
is the camera positionpt c and the rotational parameter is the camera orienta-
tion pR c expressed as the axis-angle.

Given a translational parameter T, the translational perturbation bound is
de�ned as the radius r t of the sphere shown in Fig. 3. It signi�es that the
perturbation dt of parameterT that is within the range Dt can have a magnitude
of up to r t and can be in any direction. Thus, the perturbed value of parameterT
can be anywhere within the sphere, e.g. it could take the valueTd1 or Td2.

For the rotational parameter the axis-angle representation is used. The ro-
tational perturbation bound is de�ned as the angle �� for all axis directions u.

T r t

x

y

z

Td1

Td2

Fig. 3: Translational parameter T and its perturbation radius r t
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That is a perturbation bound D� contains all rotational perturbations with the
angle less than or equal to�� and any axis u.

4 Case Study

4.1 CDPR prototypes

As can be seen from (11), the stability criterion � depends on the Jacobian
matrix A and thus we need to consider the CDPR for whom the CSW will be
obtained. Here, we use two suspended CDPRs with eight cables, named AC-
ROBOT and CAROCA, shown in Fig. 4. ACROBOT is a 1 :2 m� 1:2 m� 1:2 m
cube with a MP size 0:18 m� 0:17 m� 0:07 m and its mass is 3:5 kg. The di-
mensions of CAROCA are 7 m� 4 m � 3 m, its MP is 0:42 m� 0:32 m� 0:23 m
and its mass is 150 kg. For these CDPRs we de�ne the baseline perturbation
bounds Db = ( r bp; �� bp; r pc; �� pc; rAi ; rBi ) with the following values:

{ MP position error range r bp = 0 :03 m
{ MP orientation error range �� bp = 3 �

{ camera position error ranger pc = 0 :01 m
{ camera orientation error range�� pc = 3 �

{ cable exit point error range r Ai = 0 :005 m
{ cable anchor point error rangerBi = 0 :005 m

These values are chosen based on the geometry of ACROBOT and taking
into account some manufacturing errors that could be present on the robot. For
example, there are pulley sheaves of 9 mm diameter on cable exit points that are
not taken into account in the kinematic modeling of the CDPR. Similarly, cable
anchor points are modeled as points, while they are actually located on a sphere
of 0:008 m diameter about the modeled points. Camera position and orientation

Pulley

Base

Cable

Moving-platform

Camera

Anchor
point with
a tension

sensor

(a) (b)

Fig. 4: CDPR prototypes at IRT Jules Verne: (a) ACROBOT; (b) CAROCA
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errors can also be amounted to manufacturing errors. Finally, the MP position
and orientation errors illustrate the possible coarseness of estimation of the MP
pose. Indeed, for many CDPRs the initial orhoming MP pose is often measured
by hand and thus having a small error on the pose estimation is clearly possible.
Db is kept the same for CAROCA to simplify the comparison of results. However,
for the supplementary perturbations that will be added to Db, we will consider
the particular size of each robot.

4.2 CSW for ACROBOT with PBVS

For ACROBOT, MP positions are assigned as follows. The potential workspace
is discretized to a set of 12 planes that are parallel to the globalxy plane. Each
plane is then discretized to a matrix of 33� 33 points with X and Y coordinates
ranging from � 0:48 m to 0:48 m and the step being 0:03 m. The Z coordinate
of the planes ranges from 0 m to 1:1 m with the step being 0:1 m. Thus, the
full workspace volume is 1:014 m3. The evolution of the workspace volume is
shown in Fig. 5. Note that the vertical axis denotes the ratio of the current
volume over the maximum volume of 1.014 m3. The CSW is de�ned in (13) for
all MP poses. Thus, at each position multiple MP orientations � u are tested
with a maximum angle of � = 45 � about any unit axis u. If � > 0 for all MP
orientations associated to a given position, then that MP position is added to
the CSW.

First, the workspace corresponding to baseline perturbation boundsDb is
computed. It is shown in Fig. 6(a) and its volume is 0:88 m3, namely, 87.0%
of the full workspace volume. Then the perturbation ranges are incrementally
increased one by one, leaving the rest of perturbations as de�ned inDb. Some
examples are shown in Fig. 6. It can be seen that all workspace reduction occurs
in a downward direction along z axis no matter the perturbation. This is because
ACROBOT is a suspended CDPR and its most stable position isbt p = [0 0 0]> .
Indeed, in Fig. 6(i) the tiny workspace is centered aroundbt p = [0 0 0]> with
about 0:1 m displacement possible in any direction.

It can be observed that some perturbations have a higher impact on the
CSW size than others. Indeed, increasing camera position error ranger pc ex-
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Fig. 5: CSW volume as a function of perturbation range, ACROBOT with PBVS
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Fig. 6: Visualization of CSW for ACROBOT with PBVS

pressed inFp from 0:01 m to 0:20 m, only slightly decreases the workspace volume
from 0:880 m3 to 0:878 m3, as shown in Fig. 5(a). Indeed, only 0.4% of workspace
is lost by increasing r pc twenty times. Furthermore, considering the MP size it
means that the camera can be anywhere on the MP, without knowing where it
is. On the contrary, coarse MP position estimation leads to a steady reduction
of CSW, as can be seen in Fig. 5(a). For example, as shown in Fig. 6(b), with
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r bp = 0 :2 m, 59.1% of the workspace is still available. Of course this is only true
if the other perturbations are kept within the limits de�ned by Db.

Regarding rotational errors, the results are similar. That is, increasing the
MP rotational error �� bp has a worse e�ect on the workspace area than the
rotational error on camera pose�� pc, as can be seen in Fig. 5(b).

The errors in the CDPR model, namely in cable anchor and exit point co-
ordinates have the highest in
uence on the CSW volume, as can be seen in
Figs. 5(a) and 6. For example, forrBi = 0 :02 m, CSW volume is 0:618 m3 (shown
in Fig. 6(j)), while for r Bi = 0 :05 m the workspace reduces to 0:07 m3 (shown in
Fig. 6(k)). Similarly, when r Ai is increased, the CSW volume decreases rapidly
(shown in Figs 6(g) to 6(i)). However, this decrease is slower than for cable
anchor point coordinate errors. Note that, if the error is no more than 0:01 m,
then the workspace remains su�ciently large. For ACROBOT, the pulley sheave
radius is 0:0045 m and thus is lower thanrAi = 0 :005 m de�ned for Db. Thus, it
is clear that for ACROBOT, the pulleys are small enough to be negligible.

4.3 CSW for CAROCA with PBVS

For CAROCA, the potential workspace is discretized into 11 planes with 33� 33
points per plane, just like for ACROBOT. However, here the step between the
points and planes is larger. The full workspace volume is equal to 82:33 m3.

The CSW computed for CAROCA with baseline perturbation bounds Db

has a volume of 63:06 m3, which is 76.6% of the full workspace. The change of
the CSW volume depending on perturbation range is shown in Fig. 7, while
some examples are shown in Fig. 8. Note that in Fig. 7 the percentage shown
is the obtained volume for a given perturbation set over the maximum volume
of 82.33 m3. In general, the shape of the curves in Fig. 7 is similar to those
in Fig. 5 for ACROBOT. More precisely, perturbation in CDPR model has the
highest e�ect on CSW volume, following by the MP pose estimation and �nishing
with hand-eye calibration errors. However, in Fig. 8(a) the green curve of the
translational error r bp has an exponential shape. Furthermore, with the increased
CDPR size, the range of this perturbation has increased. Even having setr bp =

0 0.2 0.4 0.6 0.8 1
perturbation range, m

0

20

40

60

80

100

C
S

W
vo

lu
m

e,
p

er
ce

nt

r Ai
r Bi
r bp
r pc

(a)

0 10 20 30 40
perturbation range, degrees

0

20

40

60

80

100

C
S

W
vo

lu
m

e,
p

er
ce

nt

�� bp

�� pc

(b)

Fig. 7: CSW volume as a function of perturbation range, CAROCA with PBVS
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1 m does not make the workspace null, instead it is equal to approximately 10%
of the full workspace and appears to be almost 
at, as can be seen in Fig. 8(d).
Similarly, having r Bi = 0 :1 m or r Ai = 0 :1 m does not make the CSW vanish for
CAROCA. Instead, approximately 30% and 50% of the full workspace remains
available, respectively, as can be seen in Figs 8(j) and 8(l). Furthermore, even
setting the camera position error ranger pc = 0 :5 m has little e�ect on the CSW
size, which remains at 71.9%. On the other hand, rotational errors rapidly reduce
the workspace. Especially those in the MP pose estimation, where at�� bp = 10 �

the volume is at 42.1% (Fig. 8(e)) and at �� bp = 30 � the volume is only at
0.003% (Fig. 8(f)). While the rotational error �� pc on the camera pose also has
a signi�cant e�ect on the CSW size, however having �� pc = 30 � allows us to use
43.4% of the workspace (Fig. 8(h)), which is signi�cantly larger than for �� bp

of the same size.
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Having such a large CDPR also allows us to compare the change of CSW
shape when some perturbations are increased. For example, the increase ofr bp

is shown in Figs. 8(a)-8(d) and appears to 
atten the workspace by greatly
reducing the range alongz axis before a�ecting the workspace range inxy
plane. On the other hand, rotational errors in hand-eye calibration appear to
a�ect the xy range more severely. This can be seen by comparing Fig. 8(a)
with 8(g) and 8(h).

4.4 Discussion

Having computed the CSW for two di�erent CDPRs we can conclude that:
{ A perturbation on camera position in the MP frame has little to no e�ect

on CSW volume and system stability;
{ Similarly, a perturbation on camera orientation in the MP frame a smaller

e�ect than the same perturbation on the MP orientation in the base frame;
{ There can be a signi�cant perturbation on the MP position in the base frame

without making the system unstable;
{ Perturbations on the CDPR model, that is on cable exit and anchor point

coordinates, have the largest e�ect on CSW volume;
{ A perturbation on cable anchor points leads to a smaller CSW than same

perturbation on cable exit points;
{ Translational perturbation bounds scale with CDPR geometry:

� The larger the MP, the larger rBi without making the workspace vanish;
� The larger the CDPR, the larger r Ai and r bp can be without making the

workspace vanish;
{ On the other hand, the rotational perturbations �� bp and �� pc do not scale

with CDPR geometry. They remain approximately the same for ACROBOT
and CAROCA.
Note that the obtained CSW is conservative because the perturbation ranges

for each parameter were tested in many directions. Thus, the obtained CSW is
conservative, because it is the workspace where� > 0 for any perturbation
direction. An additional study could be done with a �xed set of perturbation
ranges, such asDb, to �nd perturbation direction combinations leading to the
largest or to the smallest CSW size.

5 Conclusions

A novel workspace, named Control Stability Workspace (CSW), was analyzed
in this paper. It is a workspace from the control perspective that allows us to
determine whether the controller will be able to guide the MP of the CDPR to
the desired pose in the presence of perturbations. The workspace was computed
for two CDPRs of di�erent sizes.

Many perturbations can exist in the system and all of them a�ect the system
stability in a combined way. However, the sensitivity is a function of the per-
turbed parameter, as discussed in the previous section. Most importantly, the
perturbation ranges within system stability scale with the CDPR geometry.
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To conclude, CDPRs with visual servoing control are robust to many pertur-
bations, including modeling errors and MP pose estimation errors. Computation
of the CSW is a good approach to evaluate this robustness.
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