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Detecting Specular Reflections and Cast
Shadows to Estimate Reflectance and
Illumination of Dynamic Indoor Scenes

Salma Jiddi, Philippe Robert and Eric Marchand

Abstract—The goal of Mixed Reality (MR) is to achieve a seamless and realistic blending between real and virtual worlds. This
requires the estimation of reflectance properties and lighting characteristics of the real scene. One of the main challenges within this
task consists in recovering such properties using a single RGB-D camera. In this paper, we introduce a novel framework to recover
both the position and color of multiple light sources as well as the specular reflectance of real scene surfaces. This is achieved by
detecting and incorporating information from both specular reflections and cast shadows. Our approach is capable of handling any
textured surface and considers both static and dynamic light sources. Its effectiveness is demonstrated through a range of applications
including visually-consistent mixed reality scenarios (e.g. correct real specularity removal, coherent shadows in terms of shape and
intensity) and retexturing where the texture of the scene is altered whereas the incident lighting is preserved.

Index Terms—Photometric registration, illumination, reflectance, diffuse, specular, shadow, texture, mixed reality, retexturing.
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1 INTRODUCTION

THE overarching goal of Mixed Reality (MR) is to provide
users with the illusion that virtual and real objects

coexist indistinguishably in the same space. An effective
illusion requires a geometrically and photometrically co-
herent registation between both worlds. In this paper, we
focus on the photometric registration task [1] which consists
in estimating surface reflectance properties and lighting
characteristics of the real world using its geometric model
and a set of photographs of its surfaces.

Usability is an important consideration for photometric
registration approaches. Proposed methods must maintain
independence from the real scene’s content (e.g. geometry,
reflectance, illumination) as much as possible. In fact, con-
straining the MR user to have a single light source [2] or a
textureless surface [3] reduces the range of possible scenar-
ios. Also, even though approaches using light probes such
as chrome spheres [4] or fisheye cameras [5] handle more
generic scenes and deliver convincing augmentations, the
use of such additional devices is neither practical nor ade-
quate for wide-reaching MR systems. Consequently, several
state-of-the-art methods aim to use a single RGB or RGB-D
camera for photometric registration. Such approaches often
rely on observed cues such as shading, shadows or specular
effects to probelessly recover reflectance and illumination.

A shadow occurs when illumination coming from a light
source is partially or totally obstructed by one or more
objects. Since less illumination reaches these regions, both
cast and self-shadows have a lower luminance in compar-
ison with their surrounding regions (Figure 1). Nonethe-
less, one can not precisely tell if a surface is "dark" due
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to its intrinsic color/texture or its shadowing/shading by
only considering its local appearance. Consider Figure 1:
the red boxes show that a patch located in a shadowed
region retains -to some extent- the same color as a non-
shadowed region. Another case where such regions can be
misinterpreted occurs when the real scene is lit by a spot
light. This type of light source has a cone of influence:
points outside of this cone do not receive illumination from
the light source. Consequently, their local appearance can
be easily confused with shadowed regions, illustrated by
the green-box patches in Figure 1. In presence of textured
surfaces, such misinterpretations occur even more often.

Fig. 1. Local analysis of shadows: the local appearance of surfaces can
be ambiguous for shadow recognition: red-box patches correspond to
points under different lighting conditions, yet they have similar colors.
The upper green-box patch is often erroneously detected as a shadowed
region due to spot light’s cone effect.

Specular reflections refer to bright pixels which can
be observed in captured images. Such reflections are in-
formative in terms of scene reflectance and illumination.
In fact, they represent useful cues regarding the direction
of the light source causing them. Hence, they should be
taken into account for this purpose within the photometric
registration task. Moreover, when cast shadows can not be
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easily detected (e.g. weak shadows) due to the presence of
spatially close specular effects, these cues can be efficiently
incorporated to estimate illumination.

Contributions. In this paper, we propose a method to
robustly detect and leverage both shadow and specularity
cues in a photometric registration framework. Specifically,
we consider indoor real scenes composed of one or more
objects with arbitrary shapes. Most importantly, scene sur-
faces can hold arbitrary textures and retain Lambertian and
specular properties. Also, our framework handles multiple
lights and their respective locations can be freely changed
by the user overtime. Using an RGB-D camera, the pro-
posed approach requires -at initialization only- a capture
of the scene under a near-ambient lighting. Then, for each
incoming frame, it jointly and robustly detects static and
dynamic specular reflections and cast shadows to estimate
the specular reflectance of scene surfaces and illumination
characteristics (number of light sources, their respective 3D
positions and colors). To summarize, our main contributions
are:

• Detection of specular reflections and challenging cast
shadows (e.g., weak shadows, overlapping shadows)
on arbitrary textured surfaces.

• Estimation of the 3D position of static and/or dy-
namic light sources for each incoming frame.

• Estimation of the color of recovered light sources.
• Estimation of the specular component parameters of

scene surfaces.
• Near real-time implementation of the proposed

method in order to meet MR requirements.

The remainder of this paper is organized as follows: we
first review related works which use a single sensor to
estimate reflectance and/or illumination. Then, we present
the inputs, assumptions and an overview of our proposed
approach. We then describe how we jointly exploit specular
reflections and cast shadows to estimate the reflectance and
illumination of the scene. Finally, we present experimental
results along with two applications: realistic mixed reality
and retexturing.

2 RELATED WORK

In this section, we present related works which use a single
sensor to estimate reflectance and illumination properties
within real scenes. The considered sensor can be either an
RGB camera (the 3D model is not required or reduced to
basic geometry such as a plane) or an RGB-D camera. A
broader overview of further approaches (e.g. using HDR im-
age/video [6] [7], chrome spheres [4], fish-eye lens cameras
[5]) is extensively discussed in [8].

SPECULARITY-BASED APPROACHES. Early work using
specular cues was proposed by Nishino et al. [9] where they
separate diffuse and specular reflection components using a
sparse image set and a geometric model of the real scene. In
[9], the scene is reduced to a single specular object assumed,
in addition to the light sources, to be static. As the camera
browses the object, specular reflections are brought out and
used to derive both illumination and reflectance properties.
Jachnik et al. [10] presented a similar method to [9] where
surface light-field is captured from a single hand-held RGB

camera by moving it around a specular planar object (e.g.,
shiny book). Though this method achieves convincing MR
renderings, it considers only a planar and small surface.
Furthermore, the illumination is recovered using an envi-
ronment map which implies distant light sources.

SHADOW-BASED APPROACHES. Early work using shad-
ows to recover static illumination was proposed by Sato et
al. [11] [12]. The authors proposed a method that estimates
the illumination distribution using cast shadows by an
object of known geometry. The main drawback consists in
requiring extensive user intervention. In fact, in order to
identify the shadowed regions, two captures of the scene are
required: with and without occluding objects. Since then,
extensive work has been carried in order to automatically
detect shadows. For instance, by considering an object with
simple and known geometry (e.g., cube), Arief et al. [3]
analyze the shadows cast on a single-color surface. The
algorithm first detects shadow contours and then, using cor-
nerness features, it recovers the lines which relate shadow
corners to their corresponding 3D points. The intersection of
these lines corresponds to the 3D position of the light source.
Panagopoulos et al. [13] [14] proposed an approach based on
a Markov Random Field (MRF) model to detect shadows in
less constraining environments. In fact, their approach han-
dles textured surfaces and further recovers multiple light
sources directions. Nonetheless, it only handles Lambertian
surfaces and takes 3 to 5 minutes to process a single image.
In [15], they proposed an approach to automatically detect
shadows in Lambertian textured scenes using an RGB-D
camera. The position of light sources is recovered within an
iterative process where detected cast shadows are correlated
with a set of candidate binary shadow maps. As shown in
this video, the approach runs at an interactive framerate and
handles both static and dynamic lighting.

MULTIPLE CUES BASED APPROACHES. The existence of
a light source is more likely if it is supported by more than
one cue. To our knowledge, there are only two related works
which fall in this category. In [16], specular reflections,
recovered as saturated regions, are used to estimate the light
sources direction. Then, a search of the light source’s 3D
position is considered along each recovered direction. The
final estimate of the light source position corresponds to the
intersection of lines connecting detected corners of shadows
(cast on a single-color and Lambertian planar surface) with
their corresponding 3D points within the occluding object.

The second method proposed by [17] considers the crit-
ical case of textured surfaces. The approach determines the
expected positions of shadow edges and specularities for
hypothetical lighting directions sampled from a hemisphere.
Then, it verifies the accuracy of recovered lighting by
analysing shadows. For instance, shadow boundary points
are computed using Canny edge filters and are compared
to the generated hypothetical shadows using Euclidean
distance. The use of the Canny edge filters is the downside
of this method as it poorly performs in case of low-quality
images or in presence of challenging textures and weak
shadows.

DATA-DRIVEN APPROACHES. Several end-to-end learn-
ing based approaches have been recently proposed to tackle
the challenge of estimating illumination from HDR [18]
or LDR [19] [20] [21] [22] images. In [18], they propose
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a method to infer high dynamic range illumination from
a single panoramic photograph. The approach follows the
work of Karsch et al [23] to detect light sources. Nonetheless,
reflectance estimation is not addressed. On the other hand,
in [19], a CNN based framework is proposed to estimate
shape and spatially varying reflectance, represented as dif-
fuse albedo and specular roughness, from a single mobile
phone photograph. In the considered context, scenes must
be captured under controlled lighting conditions. Marques
et al [22] propose an approach to estimate the main light
source in the scene from a capture of the user’s hand which
is exploited as a light probe of the 3D environment.

In this paper, we tackle several critical challenges (e.g.
presence of specular reflections, spatially-varying textures,
multiple shadows) by robustly incorporates both shadow
and specularity cues within a photometric registration
framework. In the following, we provide an overview of
the inputs, assumptions and proposed approach.

3 OUR PHOTOMETRIC REGISTRATION APPROACH

Our proposed method takes three inputs: (1) a coarse 3D
model of the scene which can be acquired with an RGB-
D sensor (e.g. Intel R200); (2) color images of the scene
from which illumination will be recovered; and (3) a color
image of the scene captured under a near-ambient lighting.
This color image mainly contains the color/texture of scene
surfaces and, ideally, does not exhibit any shadowing or
specular effects. We will refer to this image as the reference
image Iref (Figure 2). This reference image can be produced
in two different manners: (i) using a floor lamp which is
oriented towards the ceiling to create a uniform indirect illu-
mination. This is well suited for indoor movie studios where
the end-user would be able to easily achieve this step. (ii)
using natural environment lighting where an inexperienced
user can be asked to dim or turn off the light sources in
the room. Then, he/she can capture the reference image and
select a desired lighting conditions afterwards within MR.
As nowadays sensors are getting better at capturing low-
light images, the video submitted with this paper shows
a panel of MR scenarios where this capture can be easily
acquired.

We consider the case where we have a main planar
surface on which arbitrary-shaped objects, with different
reflective properties, cast shadows. Consequently, the color
of a scene point p can be described using Phong model [24]
as a combination of three components:

Ip = Ipa + Ipd + Ips (1)

where Ip, Ipa, Ipd and Ips are respectively the color, the
ambient, the diffuse and the specular components of point
p. Using Phong model [24], the reflection components in
equation (1) are described as follows:

Ip = kpdLa + kpd

M∑
i=1

(np · ωpi )LiO
p
i + kps

M∑
i=1

(rpi · v
p)αpLiO

p
i

(2)
where La, Li are respectively the color vectors of ambient
and light source i. kpd and kps are respectively the diffuse and
specular reflectances of point p, np is its normal vector, vp

is its viewpoint vector, and αp is its shininess parameter. rpi

is the ideal reflection vector at point p with regard to light
source i and ωpi is the direction of the light source i from
point p. M is the number of light sources present in the
scene. Op

i is a binary visibility term that is equal to 1 if light
i is visible from the 3D point p and equal to 0 if occluded.

Fig. 2. Inputs of the proposed approach: (a) Acquired 3D model of the
scene using the Intel R200 sensor. (b) reference image (Iref ) of the
scene. One can notice the presence of mainly the surface’s color/texture
and hardly any shadowing or specular effects. (c) Scene’s color image.

Given the color of a scene point p, its normal vector
np and its current view vector vp (all acquired or derived
from the sensor’s data), our goal is to estimate its reflectance
properties (kpd, kps , αp) and the illumination in the scene (M ,
La, Li, r

p
i , ωpi , Op

i ) under which the current color image is
captured.

OVERVIEW: in order to robustly solve this inverse prob-
lem, we use specular reflections and cast shadows as illus-
trated in Figure 3: using the reference image (Iref ), we sepa-
rate, for each incoming color image I, surface texture from
illumination effects (e.g., shading, shadowing and specular
reflections). This step results in an image of the scene which
mainly contains illumination-dependent variations and we
will refer to it as the illumination map. From this illumination
map, we detect the specular reflections and use them to
estimate a rough direction of the light sources in the scene.
Then, using detected specular effects and recovered lights
directions, an adaptive and robust cast shadow detection
is achieved and light sources positions and colors are esti-
mated. Finally, using recovered scene illumination, specular
reflectance parameters are estimated for all observed scene
points.

In the following, we describe in detail the main compo-
nents of our proposed photometric registration approach.

3.1 Per-frame texture removal
In this section, our goal is to accurately separate tex-
ture/color variations from illumination-dependent effects
such as shading, shadowing and specular reflections. This
is of interest within our framework since it allows us to ro-
bustly detect and model these cues within captured images.

The proposed approach for texture and illumination
separation is two-fold. To begin with, we are interested in
recovering the diffuse reflectance kpd, corresponding to the
intrinsic color/texture, for all scene points. Let us consider
a pixel p within the reference image (Iref ) shown in figure
4-a. The color of pixel p, corresponding to a 3D point in the
scene, is described using Phong model [24] as:

Ipref = kpdL
′
a (3)

where Ipref and L′a are respectively the color vector of
point p and near-ambient lighting (used to produce the
reference color image). We are interested in recovering the

https://youtu.be/s0lTiYpB1Ik
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Fig. 3. Outline of the proposed photometric registration approach which
jointly uses specular reflections and cast shadows to estimate the re-
flectance and illumination of the considered real scene.

texture/color of the scene which is independent from the
lighting conditions under which the image is captured. To
achieve this task, the unknown color of the near-ambient
lighting L′a must be estimated. In this work, we use avail-
able white-color regions within the scene (red boxes in
figure 4-(a,b)) to estimate this unknown as follows:

L′a =

∑
p∈W Ipref
#W

(4)

where W is a white-color region within the reference image
and #W is the pixels count within W . If no such region is
available, one can use a color constancy algorithm, such as
[25] to estimate L′a. Consequently, using equation (3), the
albedo/texture kpd of every scene points (Figure 4-c) can be

recovered as: kpd =
Ipref
L′

a
.

Now that we have recovered the diffuse reflectance
kpd of scene points, the second step of the proposed tex-
ture/illumination separation consists in recovering an illu-
mination map δ for each incoming color image. This map
must be texture-free and contain mainly shading, shadow-
ing and specular reflections. The map δ is recovered, for
each point p, using the diffuse reflectance estimate as:

δp =
Ip

kpd
=

kpd(La +
∑M
i=1(n

p · ωpi )LiO
p
i )

kpd
+

kps
∑M
i=1(r

p
i · vp)αpLiO

p
i

kpd

(5)

Fig. 4. Diffuse reflectance recovery: (a,b) are examples of reference
images of the scene with available white-color regions (W) from which
the color of lighting can be estimated using equation (4). (c) estimated
intrinsic texture/color of the scene which is independent from the lighting
conditions under which it was produced (a,b).

Within equation (5), kpd cancels out with regard to the ambi-
ent and diffuse components. Also, since specular reflections
do not cover significantly large regions of the image, and for
clarity reasons, the equation (5) is rewritten as follows:

δp = La +

M∑
i=1

(np · ωpi )LiO
p
i + εpS (6)

where δp represents the illumination map value at pixel p
and εpS corresponds to present specular highlights (Figure
5-b) at pixel p. As depicted in figure 5-b, δ contains mainly
shading effects (green boxes) which correspond to the scalar
product (np · ωpi ) in equation (6), cast shadows (blue boxes)
results from the occlusion term Op

i and specular effects (red
box) correspond to the term εpS . One can notice that in case
of a Lambertian scene (kps = 0), the εpS term is equal to 0 and
no specular effect is recovered (second row in figure 5-b).

Fig. 5. Texture removal: (a) Input color image of captured scenes. (b)
Recovered illumination maps for images in (a). Red, green, and blue
boxes correspond respectively to specular, shading and shadowing
variations in the scene. Yellow boxes are examples of noisy estimations
due to low quality images or very shiny surfaces.

In the following sections, this recovered illumination map
δ is used to detect and model both specular reflections and
cast shadows within the considered scene.

3.2 Specular highlights detection and lights direction
estimation

Specular reflections represent view-dependent cues which
are informative about the direction of the light source in
the scene. In fact, these cues are observed when the camera
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or the user’s view direction is roughly aligned with the
ideal specular reflection. In this section, our goal is to detect
specularities within the recovered illumination map and use
them to estimate the light sources direction.

To begin with, we detect specular highlights using [26].
By considering the Hue Saturation Value (HSV) color space,
the approach recovers specular reflections at pixels where
the color has high value (V) but low saturation (S). The value
(V) corresponds to the maximum within the three-channel
color vector (R,G,B) and the saturation (S) component is
computed as follows:

S =

{
V−min(R,G,B)

V , if V 6= 0

0, otherwise
(7)

The chosen thresholds for minimum value and maximum
saturation are respectively 0.8 and 0.2 (selected after exten-
sive evaluation on our scene corpus). The results are written
into a binary mask (H) with 1 where the specularity is
detected and 0 otherwise. Because white surfaces may be
misinterpreted as highlights, we make use of the reference
image to improve our detection. This is achieved using the
difference in terms of intensity (linear combination of the
three color channels) between the reference Ipref and current
frame Ip as follows:

Hp =

{
1, if Ipref < Ip + ε

0, otherwise
(8)

where ε is a threshold over intensity difference. In fact, since
the reference image Iref mainly contains the intrinsic color
of surfaces, when specular effects are captured within the
current frame, point p holds a significantly more important
brightness value in Ip than in Ipref . Both detected specu-
larities and discarded bright regions are shown in figure 6.

Fig. 6. Specular reflections detection: (a) Input color image of the scene
with two specular effects. (b) Detection of specular reflections: red pixels
correspond to the detected specularities after discarding (magenta)
pixels that do not check equation (8).

The second step consists in recovering the direction of
light sources using the detected specularities (retrieved in
the binary mask H). First, due to thresholding noise, small
and/or isolated highlights can be detected. We handle these
noisy regions using a simple blob detector: localy connected
regions are initially recovered using [27] (Figure 7-a) and,
each connected region is referred to as blob (Binary Large
OBject). Blobs with significantly low points count are dis-
carded (yellow ellipse) and the center of each kept blob is
computed along with its euclidean distance with regard to
other groups. Close blobs are merged to form one specular
effect (green and red ellipses near the specular book) and its
center and radius are computed.

Fig. 7. Lights direction estimation: (a) Detected specularities: blobs with
a small pixels count (yellow ellipse) are discarded. Spatially close de-
tected regions are merged to form a single detected specularity (green
ellipse with regard to the near red ellipse). (b) Recovered light sources
directions using the recovered specular effects (blue boxes) in (a).

Finally, for each detected specularity, the ideal specular
reflection direction rc, at the center c of each blob, is recov-
ered as aligned with the view direction vector vc (computed
using camera pose and coordinates of the corresponding 3D
point to pixel c). Consequently, an initial estimate of light
sources direction, at the center of each blob c, is recovered
as follows:

ωck = 2.(rck · nck) · nck − rck (9)

where k iterates over the number of recovered blobs, ωck
is the light direction vector estimated using the kth blob,
rck is its ideal specular reflection vector and nck is its
normal vector. In figure 7-b, the scene is represented by a
point cloud (red dots) and the recovered light directions are
reported as white lines.

Unlike [16], we do not use recovered lights directions as
search lines for their positions since it does not always de-
liver robust estimates. Our approach efficiently incorporates
the information brought by the specularity analysis and is
described in the next section.

3.3 Shadows analysis and lights position estimation
In this section, our goal is to efficiently incorporate the
information brought by specular effects within an analysis
approach of cast shadows in order to robustly estimate the
position of light sources in the scene. This goal is achieved
by considering two key steps: (i) the lighting in the scene
is approximated by a set of equally distributed point lights
(S0). By using recovered lights directions in section 3.2, we
are able to consider a small set within (S0) which is more
likely to contain actual real light sources. (ii) Using detected
specular reflections along with the recovered illumination
map δ (section 3.1), we robustly recover the 3D position
of light sources in the scene. The core idea consists in an
iterative matching procedure between δ and a set of syn-
thetic illumination maps δ̃ proper to the hypothetical point
lights. The approach to recover the light sources position is
achieved in a three-pass procedure and described in detail
in the rest of this section.

The first step consists in recovering a set (S) of hypo-
thetical point lights among which actual light sources will be
identified later on. Within this task, we initially approximate
the lighting in the scene by a set (S0) of point lights equally
distributed in the scene (Figure 8). Then, for each recovered
light direction ωck (section 3.2), we define a cone originating
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from the detected specularity’s center ck and oriented using
ωck . Finally, point lights located within the cone’s volume
constitute the set (S) as illustrated in figure 8. Beside the
fact that, in comparison to the approach in [16], this method
takes into account the inaccuracies which might exist within
the roughly estimated lights direction, it also allows us to
consider a smaller point lights set than the initial one (S0).
This is of interest for MR scenarios where the processing
time requirements must be considered as well. For instance,
from an initial set (S0) counting 1176 point lights, only 352
are comprised within the set (S) using a cone-angle β of 10◦.

Fig. 8. Definition of a set (S) of hypothetical point lights (located at the
center of red-color squares) from which actual real lights are recovered.

The second step consists in producing a synthetic illumi-
nation map δ̃ for every point light in the set (S). Let us first
consider equation (6), previously described to define the real
illumination map δ, in presence of one point light i:

δpi = La + (np · ωpi )LiO
p
i + εpS (10)

where δpi represents the illumination map value at pixel p and
εpS corresponds to present specular highlight at pixel p. The
scalar product (np · ωpi ) represents the scene’s shading and
cast shadows result from the occlusion term Op

i with regard
to light source i. When a point p is geometrically occluded
with regard to point light i, its illumination map value δpi
is equal to La and it is located within a shadowed region
(Op

i = 0 and εpS = 0). On the contrary, when a point p is
not occluded with regard to light i, its δpi value is defined
by equation (10) and it does not belong to a cast shadow
(Op

i = 1). By isolating the cast shadows effect, equation (10)
can be rewritten as follows:{

δpi = La, if p is light-occluded
δpi = La + (np · ωpi )Li + εpS , otherwise

(11)

In order to render a synthetic illumination map δ̃, we must
know all the parameters present in equation (11). However,
since lighting characteristics (La, Li, ω

p
i ) are not known in

our case (our goal is to estimate them), we recover rough
estimates of these parameters as follows:{

La = Lo, if p is light-occluded
(La + (np · ωpi )Li) + εpS = Lv + σSpi , otherwise

(12)
where:

• σ is a binary term, equal to 1 if specular reflections
are present and 0 otherwise. Specifically, specular

reflections are considered to be present if the detected
pixels count within the recovered specularity mask
(H) in section 3.2 is not null.

• Spi is a synthetic specular map rendered, for a point
light i, using Phong model [24]:

Spi = kps(r
p
i · v

p)αpLiO
p
i (13)

Because the 3D sensor delivers a coarse geometry of
the scene, the rendering of Spi is achieved as follows:
to begin with, the 3D model of the scene is clustered
using [28] where the main planar surface is detected
along with 3D objects lying on it (Figure 9-a). The
rendering of the specular map Spi is then limited
within the main planar surface, which is substituted
by a perfect plane, in order to take account of the ge-
ometry’s inaccuracies. To illustrate, in figure 9-(b,c),
one can notice the effects of noisy geometric data in
comparison with a perfectly modeled planar surface.
The specular parameters value used to render the
synthetic specular maps are respectively 1.0, 1.0 and
0.9 for kps , Li and αp.

• The terms Lv and Lo correspond respectively to
the overall brightness in non-occluded/visible and
occluded regions. Their computation is achieved in
a three-step procedure: (i) for each clustered object,
we define a proportional region of interested (ROI)
recovered as the intersection of a sphere comprising
the 3D object and the detected plane (Figure 10).
(ii) illumination map values δp, within the ROI, are
increasingly sorted out and, Lo is recovered as the
value at 25%. In fact, since these regions represent
potential shadowed regions, the underlying assump-
tion corresponds to having at least 25% of the ROI
within a shadowed region. (iii) Lv is recovered as the
mean of illumination values of pixels outside the ROI
and detected highlights map H.

Fig. 9. 3D scene clustering and geometric inaccuracies: (a) Segmented
3D model of the scene: white-color pixels correspond to the detected
plane, grayscale-color pixels represent 3D objects and black-color pixels
represent background or noisy data. (b) Rendered specular map using
the 3D model of the scene. (c) Rendered specular map using a perfect
plane corresponding to the detected planar surface in the scene.

Finally, for every point light i in the set (S), the rendering
of its synthetic illumination map δ̃i (Figure 11-a) is achieved
as follows:

δ̃pi =

{
Lo, if p is occluded
Lv + σSpi , otherwise

(14)

In practice, since the geometry is static, occlusion Op
i and

specular maps Spi (Figure 11-(b,c)) are rendered only once.
Only Lo, Lv and σ are evaluated for each incoming frame
since lighting conditions may change over time.
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Fig. 10. Region Of Interest (ROI) for brightness analysis: (a) Color image
of the scene. (b) Definition of the ROI: white-color pixels represent the
ROI, grayscale-color pixels correspond to 3D objects in the scene and
black-color pixels represent background or noisy data. (c) Recovered
Illumination map with regard to (a).

Fig. 11. Synthetic illumination maps: (a) Example of a synthetic illumi-
nation map δ̃ using rendered occlusion Op

i (b) and specular Sp
i maps

(c).

The final step consists in identifying the actual real light
sources within the subset (S). The identification is carried
within an iterative process as follows:

• We initially compute correlation values by matching
recovered illumination map δ and the rendered ones
δ̃. The light source whose synthetic illumination map
has the best correlation value is selected.

• For each iteration, previously selected light sources
are discarded. Also, previously matched pixels are
not considered and point lights which are close to
the previously selected ones are discarded. Both Lo
and Lv are re-considered to be able to take account
of shadows with different intensities (Figure 12) .

• The process ends either when the currently selected
δ̃ has a significantly low matching value or if the
number of selected lights is higher than 4. The cho-
sen correlation corresponds to Pearson’s correlation
coefficient ranging between 0 and 1.

Fig. 12. Light sources 3D position estimation approach: (a) Color image
of the scene. (b,c) Cast shadows and specular effects corresponding to
the first (b) and second recovered light sources (c).

The proposed approach in this section recovers the 3D
position of light sources in the scene. In the following
section, we estimate their respective colors.

3.4 Light sources color estimation
Illuminating virtual objects within MR scenarios requires
recovering the characteristics of light sources in the scene,

namely the 3D position and three-channel color vector
(R,G,B). In the previous section, we used both specular
highlights and cast shadows to recover the number of light
sources along with their 3D positions. In this section, our
goal is to estimate their respective colors. To achieve this
task, we consider both the recovered illumination map δ
(Section 3.1) and subset (S) of point lights (Section 3.3).
By considering equation (6) for a set of points p which
belong to the main planar surface and are not detected as
specular highlights (if the sensor saturates, their colors are
not accurate), we obtain:

La +
∑M
i=1(n

p1 · ωp1i )LiO
p1
i = δp1

La +
∑M
i=1(n

p1 · ωp1i )LiO
p2
i = δp2

...
...

...

La +
∑M
i=1(n

p1 · ωp1i )LiO
pN
i = δpN

⇒ AL = δ

(15)
where:

A =


1 (np1 · ωp11 )Op1

1 · · · (np1 · ωp1M )Op1
M

1 (np2 · ωp21 )Op2
1 · · · (np2 · ωp2M )Op2

M
...

...
. . .

...
1 (npN · ωpN1 )OpN

1 · · · (npN · ωpNM )OpN
M



L =


La
L1

...
LM

 ; δ =


δp1
δp2
...
δpN


where M is the number of recovered light sources and N
is the number of considered pixels within equation (15).
The linear system (15) is solved, for each color channel,
using iterative Least Squares with bounds and equality
constraints:

L̂ = argminL(
1
2 ‖W(AL− δ)‖2) subject to:{

0 ≤ Li ≤ 1 and 0 ≤ La ≤ 1

La +
∑M
i=1 Li = 1

(16)

where W is a diagonal matrix with weights computed using
Tukey′s bisquare loss function. Small weights are discarded
throughout iterations and we recover color vectors for each
light source in the scene.

3.5 Scene specular reflectance estimation
The estimation of scene reflectance is of interest for MR. For
instance, if one considers adding a virtual light source in the
real scene, real surfaces which retain a specular property
must exhibit specular effects when viewed near the ideal
specular reflection r of the virtual lighting. Hence, in order
to correctly render the virtual specularity, we must recover
the surface’s specular parameters, namely the specular re-
flectance kps and shininess coefficient αp for scene points p.

In section 3.2, we recovered a mask H where detected
specular reflections are retrieved. In the following, our goal
is to estimate the specular reflection component within
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detected specularities in H (points verifing Hp = 1). By
considering Phong model [24], the specular component Ips
is described as follows:

Ips = Ip − kpd(La +

M∑
i=1

(np · ωpi )LiO
p
i ) (17)

where Ip is the color of point p within the input color image
and (kpd, La, ωpi , Li, Op

i ) are all parameters which we have
estimated. Examples of recovered specular component Ips
are shown in figure 13-b. In order to estimate the specular

Fig. 13. Specular component of the scene: (a) Input images of the scene.
(b) Recovered specular reflection component for input images in (a).

reflectance kps of point p, we use Phong model [24] as
follows:

kps =
Ips∑M

i=1(r
p
i · vp)αpLiO

p
i

(18)

In fact, since specular reflections are viewed near the perfect
specular reflection direction, vectors rpi and vp are assumed
to be roughly aligned. This assumption simplifies the de-
nominator within equation (18) where the parameter αp is
unknown. Consequently, equation (18) can be rewritten as:

kps =
Ips∑M

i=1 LiO
p
i

(19)

Furthermore, because specular reflections are often ob-
served only within parts of the scene, and we aim at
estimating kps for all scene points, we assume that each
3D object in the scene retains a unique specular reflectance.
Consequently, the specular reflectance is recovered, for each
object, as the maximum value of recovered kps within points
p belonging to the same object (Figure 14).

Fig. 14. Specular reflectance of the scene: (a) Input color image of
the scene. (b) Estimated specular reflectance for each 3D object in the
scene: the higher the brightness value, the more the surface is specular.

Finally, for each 3D object in the scene, the shininess
parameter α is recovered using the following loss function:

F (α,ks, ω) =
∑
j

(Ij − Ĩj(α,ks, ω))
2 (20)

where j iterates over pixels that belong to the considered
object/cluster, I is the input color image and Ĩ is a ren-
dered color image using Phong model (equation (2)). The
optimization of function F is achieved using a Levenberg
Marquardt algorithm where only the shininess coefficient
α, specular reflectance ks and light sources positions ω are
varied by the solver. In fact, we refine ks in order to take
account for the approximation introduced in equation (19)
as the reflection and view vectors may not be at optimal
alignment within mask H. Also, since our light sources are
recovered from a discrete set of hypothetical point lights
(section 3.3), a trade-off between fine sampling and real-time
constraints must be considered. Hence, we initially define a
coarse sampling (1176 point lights with a sampling step of
20cm) and refine the positions using equation (20).

4 EXPERIMENTAL RESULTS

A calibrated RGB-D sensor browses the scene with a fixed
aperture, shutter speed and gain. Using the acquired 3D
model, we recover for each incoming color image, the re-
flectance and illumination of the scene. The framework runs
at an interactive frame rate of 4fps. In the following, we
evaluate the accuracy of the proposed framework within
both synthetic and real scenes.

Synthetic data
We consider synthetic scenes where ground-truth re-
flectance and illumination are available for comparison with
our estimates. The synthetic dataset is composed of six
scenes (’SynS1’to ’SynS6’) with various shapes of 3D objects
located on a main plane (Figure 15).

Fig. 15. Synthetic scenes: color image of six synthetic scenes (’SynS1’to
’SynS6’) with various textures and geometries.

For each virtual 3D scene, the same inputs acquired or
derived from the RGB-D sensor (R200) are rendered, namely
the reference image (Fig-16) and color images captured un-
der various lighting conditions. With regard to the scene’s
lighting, we have three lights which we freely move and
turn on/off in the scene. Although our algorithm assumes
point lights representation, we render the scenes using three
different types of lights (point lights, spot lights and area
lights). This allows us to better evaluate the limitations of
the proposed method. Furthermore, we consider different
lighting color vectors (R,G,B) to evaluate the accuracy of
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our illumination estimation. The rendering is achieved in
Unity engine using Phong model [24] where we generate
3017 color images using the 6 depicted virtual scenes. In
the following, we evaluate both illumination and reflectance
between the ground truth and estimated parameters for a set
of rendered images.

Fig. 16. Examples of rendered reference images with regard to scenes
(SynS1, SynS3, SynS6) in Fig-16.

Our first test consists in evaluating the position of light
sources. Table 1 shows a comparison between ground-truth
and recovered positions for the six virtual scenes presented
in figure 15. The results demonstrate the robustness of our
approach in presence of challenging textures and lighting. In
fact, the proposed algorithm recovers light sources position
with an average error of 13cm for a mean distance of 3m
to the light source. An interesting scenario is reported for
SynS5: the scene is illuminated by three point lights which
create overlapping cast shadows with different intensities.
The approach recovers the correct number of light sources
along with their 3D positions. Scene SynS6 is very challeng-
ing both in terms of texture and lighting: the cast shadows
are weak due to a strong lighting in the scene. Although the
3D position of the second and third recovered light sources
is not as accurate in comparison with the other scenes, we
recover the correct number and orientations of light sources
by exploiting the observed specular reflections.

Scene GT pos. (x,y,z) Estim. pos. (x,y,z) Dist. error
SynS1 -0.78 3.89 2.54 -0.75 3.85 2.57 0.058
SynS2 0.92 2.01 2.23 0.94 2.04 2.21 0.041
SynS3 -1.38 2.71 2.62 -1.37 2.66 2.69 0.086

1.57 2.65 2.16 1.62 2.67 2.11 0.073
SynS4 1.01 1.59 2.98 0.98 1.51 3.04 0.104

-0.84 1.95 2.79 -0.86 1.89 2.71 0.101
SynS5 0.54 2.91 -1.62 0.59 2.87 -1.69 0.094

0.67 1.59 1.98 0.72 1.51 2.04 0.111
-0.87 1.12 2.79 -0.92 1.07 2.71 0.106

SynS6 -1.12 2.26 2.29 -1.19 2.21 2.37 0.117
-1.32 2.41 2.47 -1.47 2.72 2.65 0.388
-1.48 2.54 2.40 -1.65 2.69 2.57 0.283

TABLE 1
Comparison between ground truth and estimated 3D position of light

sources in the virtual scenes (’SynS1’to ’SynS6’).

The second evaluation concerns the color vector (R,G,B)
of light sources as well as the specular reflectance of the
scene. Within this task, we compare ground-truth images
with rendered images using our estimates (Figure 17).

For the first three rows, scenes are lit respectively by
one, two and three point light sources, their rmse are
respectively 2.79%, 3.47% and 4.54%. Under point light
sources assumption, we observe a general agreement be-
tween input and rendered views with a RMSE less than 5%.
For instance, in row-1, the color of lighting as well as the
specular reflectance are accurately recovered. The error is
mainly present within the shadow contours resulting from

Fig. 17. Various virtual lighting conditions: (a) Input color images. (b)
Rendered images using our reflectance and illumination estimates. (c)
RMSE of the difference between images in (a) and (b): low and high
values are represented respectively by blue and red color pixels.

the recovered 3D position of the light source. The most
noticeable errors correspond to rows 4-5, where scenes are
respectively lit by spot (9.32%) and area lights (8.65%). As
can be noticed, the error is maily due to the representation
of light sources in the rendering pipeline. For instance,
in row-4, errors are present in regions impacted by the
spotlight cone effect. Similarily, in row-5, the main error is
present in regions rendered using Ambient Occlusion (AO)
within a global illumination pipeline. We also evaluate LAB
color distance between ground-truth and recovered lights.
Our algorithm recovers light sources color with an average
distance metric of 3.7 - a barely noticeable color difference
according to [29].

Real data
In the following, we illustrate our results within a selection
of five real scenes ’S1’ to ’S5’ grouped row-wise in figure 18.
The scenes are composed of more than two objects located
on a main plane. Both texture and reflectance properties
vary within scene surfaces. For instance, scenes S1, S3 and
S5 contain a planar surface with challenging textures. Also,
scenes S2 and S4 exhibit specular reflections. Illumination-
wise, scenes S1 and S2 are lit by one light source whereas
scenes S3, S4 and S5 are lit by two light sources which create
specular reflections if the scene surface is glossy (e.g. S4).

In figure 18-a, we present the captured reference images
under a near-ambient lighting. These images are used to
achieve the task of texture removal within color images (Fig-
ure 18-b) from which illumination is recovered. This results
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in an illumination map δ which mainly contains shading,
shadowing and specular effects (Figure 18-c). Our algorithm
recovers accurate illumination maps where the intrinsic
texture/albedo is accurately separated from illumination-
dependent effects.

Fig. 18. Recovered illumination maps: (a) Reference image of the scene
captured using an ambient lighting. (b) Input color image of the scene
from which illumination is recovered. (c) Estimated illumination maps for
uniform (S2,S4) and textured surfaces (S1,S3,S5): background/noise
are represented by red-color pixels and occluding objects by blue-
color pixels. Grayscale values correspond to the intensity of illumination
values δ (section 3.1).

Furthermore, recovered illumination maps are considered
to estimate the 3D position of light sources in the scene.
This is achieved by initially using specular reflections, when
available, to estimate a rough direction of light sources.
Then, within a matching process, we recover the position
of light sources represented by point lights. In figure 19-
b, we show detected specular effects (cyan pixels) for the
five real scenes and overlay the shadow maps of recovered
light sources (Figure 19-c) on the current color image. Our
approach robustly recovers illumination in the scene in
presence of specular effects (S2,S4) and challenging textures
(S1,S3,S5). Moreover, within (S2, S4), the detected specular
reflections allow us to consider less than 30% of the initial
hypothetical point lights within the cast-shadow analysis.
The proposed method handles overlapping shadows (S3),
weak cast shadows (green pixels in S4) as well as shadows
which do not retain a uniform intensity due to a strong near
lighting (S5).

In order to evaluate the efficiency of incorporating spec-
ular effects within our framework, we compare our method
with [15] where correlation is carried using binary shadow

Fig. 19. Recovered specular reflections and cast shadows: (a) Color
image of captured scenes. (b) Detected specular reflections are repre-
sented by cyan pixels. (c) Overlay of shadow maps corresponding to
estimated light sources: first and second best matches are respectively
represented by red and green color pixels.

maps. In figure 20-Scenario1, both methods achieve com-
parable results with regard to the recovered position of
the light source. However, in more criticial scenarios such
as Scenario2 where the spot-cone effect is present, pixels
belonging to this region are considered as potential shadows
and erroneously contribute to the selection of matching
shadow maps within the iterative correlation process. In
contrast, by incorporating the specular effects, detected
specular pixels allow to recover a light source whose syn-
thetic cast shadow and specular reflection match best with
the current input image. Furthermore, in Scenario3, green
pixels correspond to the second recovered light source’s
shadow map. In fact, in presence of weak shadows, the
proposed adaptive synthetic ilumination map delivers better
results.

In order to evaluate the precision of recovered light
sources positions, we used a telemeter to measure the
distance from a chosen world coordinate system to the
light sources in the scene. Results for the five real scenes
are shown in table 2. Our algorithm recovers light sources
position with an average error of 9cm for a mean distance of
1.62m to the light source and a standard deviation of 3.2cm.

The goal of photometric registration is to achieve real-
istic mixed reality scenarios. In this context, we considered
both static and moving camera scenarios. In figure 21, we
show realistic augmentations of real scenes using a static
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Fig. 20. Comparison within three different scenarios of the estimated
light sources position results without (first row) and with (second row)
incorporating specular effects analysis.

Scene Measured (m) Estimated (m) Error (m)
S1 1.83 1.92 0.09
S2 1.68 1.61 0.07
S3 1.74 1.81 0.07

1.72 1.83 0.11
S4 1.44 1.52 0.08

1.63 1.75 0.12
S5 1.12 1.19 0.07

1.52 1.61 0.09

TABLE 2
Comparison between measured and estimated distances using our

proposed approach.

camera (reference and incoming color images are aligned).
For instance, for scenes (S1,S3,S5), virtual shadows cast by
a sphere are consistent with real shadows in terms of shape
and color. Furthermore, within scene S2, we show a correct
occlusion of a real specularity by a virtual object. One can
notice the reconstructed texture within the specular area.
In the submitted video, we further address the scenario of
a moving camera by using a second fixed camera with a
bird-eye view at the MR scene. This camera is connected
to a server to which it sends the color stream. The lighting
estimation is accomplished within the server and lighting
estimates are sent to a mobile MR camera that the user can
freely move to experiment MR under arbitrary lighting.

We further consider the scenario of retexturing the scene
while preserving the current illumination. This is achieved
in real-time and corresponds to the product of the illumina-
tion map δ and a target texture T (target diffuse reflectance):

Ipretex = δpTp (21)
where Ipretex is the color of the re-textured scene and p
corresponds to points which belong to the main planar
surface in the example shown in figure 22. Inaccuracies are
mainly due to coarse or unavailable geometry (red-color
pixels in figure 18-c).

5 LIMITATIONS AND FUTURE WORK

We presented a photometric registration approach which
incorporates information brought by specular reflections
and cast shadows to recover reflectance and illumination
in the scene. Specifically, our method estimates both 3D
position and color of dynamic light sources as well as the
specular reflectance of surfaces. Our experimental results
show satisfactory results on both synthetic and real data

Fig. 21. Realistic augmentations of real scenes using our reflectance
and illumination estimates. We demonstrate visually consistent virtual
shadows in terms of shape and color with regard to real cast shadows.
The second row is an example of a virtual object occluding a real
specularity. One can notice a correct reconstruction of texture within the
specular region.

Fig. 22. Retexturing scenario: (a) Input color image of the scene with the
target texture T (top right). (b) Retextured main planar surface using the
illumination map δ and texture T.

where challenging textures are correctly handled and the
presence of specular effects is efficiently handled.

Although the assumption of having a main planar sur-
face is not very constraining for MR scenarios (e.g., table,
desk, playground, floor, etc.), one may encounter configura-
tions where this assumption does not hold. In fact, the main
reason behind this assumption is related to the coarse geom-
etry provided by common RGB-D sensors. We are therefore
interested in handling more generic 3D models. Finally, the
proposed approach requires to capture the scene under an
near-ambient lighting to accurately separate texture from
illumination in color images. An interesting and challenging
research direction corresponds to achieving this task using

https://youtu.be/s0lTiYpB1Ik
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only the color image and 3D model of the scene.
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