
1

Automatic Shape Control of Deformable Wires
based on Model-Free Visual Servoing

Romain Lagneau1, Alexandre Krupa2 and Maud Marchal1

Abstract—In this paper, we propose a novel approach to
automatically control the 3D shape of deformable wires using
robots. Our approach proposes a novel visual feature along with
a novel shape servoing method to enable dual arm manipulation
of deformable wires. The visual feature relies on a geometric
B-spline model and the use of Sequential Importance Resampling
(SIR) particle filtering to track the 3D deformed shape of a wire
over time. The shape servoing method is an adaptive model-
free method that iteratively updates the deformation Jacobian
matrix using weighted least-squares minimization with sliding
window and an eigenvalue-based confidence criterion. We per-
formed several experiments on wires with different mechanical
properties. The results show that our approach succeeded to
control the 3D shape of various wires for many different desired
deformations, while working at an interactive time. It has also
been shown that the shape servoing method can be used to
handle large deformations by subdividing the task in successive
intermediary targets to reach. These promising results pave the
way for automatic control of the 3D shapes of deformable wires
in many fields such as catheter insertion in medicine or wire
manipulation in industry.

I. Introduction

Deformable wires are used in various fields and the control
of their shapes by robots is of interest for many applications,
such as in medicine for robotic needle insertion [1] or the
control of catheter [2]–[4] or in industry for automatic routing
of wires [5]. However, as of today, industrial robots still cannot
perform easily such tasks due to the complex behavior of wires
subject to deformations.

In this paper, we propose a novel approach to automatically
control the 3D shape of deformable wires. The automatic
control of the shape of an object will be thereafter denoted
shape servoing. Our contributions are as follows:
• a novel visual feature that permits to determine at an

interactive time the 3D shape of wires using a geometric
model that is independent from the mechanical properties
of the wire ;

• an adaptive model-free shape servoing method that con-
trols two robot end-effectors to make a wire reach a
desired 3D shape moving solely its extremities.

Our approach does not need any mechanical information on
the wire nor marker on it to perform the control of the 3D
shape. In addition, computation time performances allow its
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use at an interactive time for handling various manipulations
and transformations, even for large deformations.

The remainder of this paper is organized as follows: Sect. II
presents the related work on wire tracking and wire shape con-
trol, Sect. III describes the proposed methods while Sect. IV
details the experimental evalutation. Finally Sect. V ends the
paper with a discussion on the approach.

II. Related work

Controlling the shape of a deformable wire requires to track
its 3D shape at an interactive time and to provide a control
law to make it converge towards a desired 3D deformed shape.
Therefore, in this section, we first review wire shape control
and then wire tracking.

A. Wire shape control

We will divide wire shape control methods into two cate-
gories, whether they are using or not mechanical models.

To control the shape of a deformable wire, methods relying
on physics-based models have been proposed to predict the
behavior of the wire. For instance, Laranjeira et al. proposed
a visual servoing method to control the slackness of a tether
that connects two robots [6]. This method uses a mechanical
model based on the cathenary analytic formulation to represent
the tether. A dead zone compensation and a Coulomb friction
compensation models have been employed in a combined
force-position control method in [3]. This method permits to
make a catheter-like robot capable of coming into contact with
a moving target at a desired force. Alternatively, mass-spring
models have been used to control the deformation of a wire.
For instance, controlling the oscillations that occur when a
wire is manipulated at one of its extremities by a gripper has
been addressed in [7]. The wire is modeled as a 1D mass-
spring model. for the oscillations. The oscillation attenuation
challenge has also been addressed using the Finite Element
Method (FEM) [8]. A local dynamic model of the wire is
proposed. This model is used to derive a position-based control
law whose stability is ensured using the Lyapunov theory. The
method has been tested only by simulations.

To avoid the complexity of accurately modeling the wire de-
formation behavior, model-free methods have been proposed.
For instance, a method to automatically control the shape of
a deformable object based on the online estimation of pseudo
stiffness matrices has been proposed in [9]. However, the
method does not handle well wire manipulation when the wire
presents a small bending, nor cases where the feature points
are not well spread on the object. A method based on a
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novel online Gaussian Process Regression has been proposed
in [10]. The method requires a preliminary learning phase
during which a set of feature points velocities is acquired
along with the corresponding manipulated points velocities.
This training set can be heavy depending on the manipulation.
A learning-based approach relying on the Coherent Point Drift
(CPD) method has been used both for wire tracking, task
planning and trajectory planning in [11]. The CPD method
permits to compute the non-rigid transformation of a point
set into another one and to determine if the current tracked
state of the wire is identified in a knowledge database of wire
predetermined states. If it belongs to the database, the next
manipulation command is provided from the database. Other
planning methods have been proposed, such as the method of
Zhu et al. to perform wire-routing tasks [5]. The planner takes
both visual and force measurements as inputs. The planner
controls in position two effectors: one mobile that moves one
extremity of the wire and one that can only release or hold
more firmly the second extremity. This approach relies on
a pre-selected set of contact points with the environment to
achieve a desired configuration. Wire shape control has also
been addressed using visual servoing methods. For instance, an
adaptive model-free control method for catheter-like soft robot
has been proposed in [12]. This method permits to align the
eye-in-hand camera with an optical target when the catheter
is inserted into a constrained environment. This method relies
on several assumptions: viscoelastic and frictional losses are
neglected and shearing is ignored. Another method to control a
3-Degree-Of-Freedom (DOF) catheter-like soft robot has been
proposed in [13]. This method permits to make the tip of
the catheter converge towards a desired position. To do this,
six arbitrary operating points are selected anywhere on the
catheter. For each of them, a local controller computes the
control law to achieve this objective. A fuzzy controller mixes
the results of the six controllers to generate the global control
law. The system has been tested on Matlab simulation only.
More recently, a method to control the 2D shape of a wire
using several effectors has been proposed by Zhu et al. [14].
Each effector has 3 DOFs (2 translations, 1 rotation). The
wire shape is approximated by a Fourier series. The geometric
deformation model is adapted online, assuming that a change
in the Fourier coefficients depends linearly on a change in
robot position. Sets of changes in Fourier coefficients and sets
of changes in robot position are continuously acquired. These
sets are used in a least-square minimization to compute the
Jacobian matrix that relates the robot motions to the changes of
shape. However, if the robot did not move in all the affordable
directions, the Jacobian matrix estimation update is delayed
to avoid singularity. The Jacobian matrix is finally used to
compute the control law. The method was tested using a wire
held by two grippers.

B. Wire tracking

In order to control the deformation of a wire, it is necessary
to be able to track its shape. Matsuno et al. proposed a method
that focuses on a particular case of deformation: the knotted
wire [15]. The method uses a topological model that relies on

knot theory in order to represent a wire. The use of invariants
of knots allows to assess whether two knots are similar or not.

Image processing techniques have been used to track a
deformable wire in the image plane in [16]. In the initialization
phase, the user must select a seed point in a region of the
image that corresponds to one extremity of the wire. Some
characteristics of this region are extracted, such as luminance
or global orientation. Then, the method scans the whole image
region by region to detect the global shape of the wire by
finding a region with similar characteristics.

More recently, Padoy et al. proposed a wire tracking method
based on texture augmentation of the wire [17]. The wire tex-
ture is augmented by adding a pattern composed of alternating
colors. An energy minimization method is used to adapt a
NURBS spline model, representing the 3D configuration of
the wire, with the visual information captured by calibrated
stereo cameras.

Probalistic methods have been proposed for deformable ob-
ject tracking. For instance, a probabilistic framework working
with physical simulations to track deformable wires using
point clouds is proposed in [18]. Consequently, knowledge
of the physical properties of the object is required. Another
method is proposed in [19], which consists of a probabilistic
registration method that uses visibility information for not con-
sidering occluded model points for the registration. An history
of previously faced situations is saved in order to perform a
k-Nearest Neighbors (k-NN) template recovery when tracking
failures occur. Finally, a probabilistic approach that considers
a physical model of the object has been proposed in [20] for
tracking deformable objects from point clouds.

C. Our contributions

Our contributions to the automatic shape control of de-
formable wires are as follows: the definition of a new visual
feature permitting to model the 3D shape of a wire and a novel
shape servoing method to control its deformations. Unlike the
tracking methods mentioned above, such as [18] or [20], the
visual feature that we propose does not require any marker
nor any mechanical model to infer the 3D shape of a wire.
Instead, it relies on a geometric model based on B-splines [21]
combined with the use of Sequential Importance Resampling
(SIR) particle filtering [22]. The use of B-splines allows
our method controlling the 3D shape of a wire, while the
method proposed in [14] handled only 2D shapes. Moreover,
it permits to handle small bending situations and to ensure
having equally spread feature points on the length of the
object, contrarily to the method proposed in [9]. The use
of SIR particle filtering permits to determine which B-spline
best matches the visual observations provided by a RGB-D
camera. The shape control is carried out by a closed-loop
visual servoing. Two end-effectors holding the wire extremities
are controlled in order to make the wire converge towards a
desired 3D shape. The control law is computed using a model-
free shape servoing method inspired from [23]. Contrarily to
[10], the shape servoing method that we propose does not
require a complex initialization phase. The Jacobian matrix
that relates the motions of the end-effectors to the deformation
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of the wire is initialized by small motions in every direction
the system can afford and is adapted online using weighted
least-squares minimization with sliding window. A confidence
threshold permits to update solely the parts of the Jacobian
matrix impacted by the most recent directions of motion of the
robots, while the method proposed in [14] keeps the Jacobian
matrix constant when the robots have not been moved in all
the possible directions.

III. Methodology

The challenge addressed in this paper is the automatic 3D
shape control of deformable wires. To address this challenge,
we first propose a novel visual feature that permits to infer
the 3D shape of a deformable wire based on particle filtering.
Secondly, we propose a visual servoing approach to control
two end-effectors holding the extremities of the wire. This
approach has the advantage of not relying on any a priori
mechanical model.

In this section, we will first explain the novel visual feature
. Then, we will present the active shape servoing method.

A. Visual feature for deformable wire

We developed a novel visual feature that permits to infer
the 3D shape of a deformable wire from a point cloud using
a RGB-D camera. The shape of a wire is represented by a
geometric model based on B-splines. A B-spline is a piecewise
polynomial function with a user-defined number of segments
and order θ. A B-spline can be constructed from a set of
control points c , whose number depends on the number of
segments and the order of the B-spline.

We propose to use a SIR particle filter to track the wire.
A particle filter generates χ particles, also known as sample
states, representing the internal state of a system that is
observed. At each time step, it updates each sample state
according to a predictive update rule. Once updated, the
likelihood between each sample state and the observations
of the system is computed. Finally, a weighted sum of all
the sample states is performed to generate an estimate of the
internal state of the observed system. The weight of a sample
is proportional to its likelihood.

In our case, the SIR filter sample states are B-splines and
the observation is a segmented 3D point cloud of the wire. Let
ψ be a B-spline of the SIR filter, p̃ ∈ R3 a point of a B-spline,
η the number of equidistant points used to model the wire and
p an observed point of the wire in the point cloud.

1) Update of a particle: Let mac j and mbc j be the predictive
motions of an arbitrary control point c j of a B-spline that result
respectively from the motion of each end-effector. A prediction
of these motions can be defined by:

mac j = (υa + (c j − p̃1) ∧ ωa)∆t

mbc j = (υb + (c j − p̃η) ∧ ωb)∆t

where:
• υ =

(
υx, υy, υz

)T
denotes the linear velocity of an end-

effector while ω =
(
ωx, ωy, ωz

)T
denotes its angular

velocity. The subscript ”a” represents the first end-effector
and the ”b” the other one,

• a ∧ b is the vectorial product between two vectors,
• ∆t is the robot control law sample time.

The update rule that we propose to compute the new
position of each control point c j of a B-spline model is as
follows:

c j(k) = c j(k − 1) + (tc j ·mac j )
θ − j
θ

mac j

+ (tc j ·mbc j )
j
θ

mbc j + ν (1)

where:

• k is the current discrete time,
• tc j is the tangent of the B-spline at the control point c j,
• ν is a vector of Gaussian noise with a zero mean and a

standard deviation σν,
• θ is the order of the B-spline,
• a·b is the scalar product between two vectors.

The whole B-spline model is updated accordingly to the
new position of its control points.

2) Likelihood evaluation: Let pclosest be an observed point
in the point cloud that is the closest from a B-spline point p̃.
The likelihood of a B-spline point w(p̃) is evaluated on a win-
dow of the depth map taking into account Ω ×Ω neighboring
points, as depicted in Fig. 1. The further a neighboring point
is from the evaluated point p̃ the smaller is its weight in the
likelihood computation.

Let G ∈ RΩ,Ω be the Gaussian weight matrix of standard
deviation σw defined by:

Gi, j =
1

2πσ2
w

exp−
(i − 1 − A)2 + ( j − 1 − A)2

A2 (2)

where A ∈ N such as A ≤ Ω
2 < A + 1 .

Let g be a Gaussian function of standard deviation σg that
represents the similarity between a B-spline point p̃i and its
closest observed point pclosest. It is defined by:

g(p̃,pclosest) =
1

σg
√

2π
exp−

‖p̃ − pclosest‖
2

2σ2
g

(3)

Control points c𝑗
B-spline candidate

B-spline point  𝐩

Neighboring point  𝐩𝑤
Window in the depth map

Observed point 𝐩 in the point cloud

 𝐩 − 𝐩𝒄𝒍𝒐𝒔𝒆𝒔𝒕

Overview of the whole B-spline

Fig. 1: 2D illustration of the likelihood computation.
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The likelihood of a B-spline point w(p̃) is defined by:

w(p̃) =
1∑Ω

i, j=1 Gi, j

Ω∑
i, j=1

Gi, jg(p̃w(i, j),pclosest) (4)

with p̃w(i, j) = p̃ + 2σw(
i − 1

A
− 1)tp̃ + 2σw(

j − 1
A
− 1)np̃

where tp̃ is the tangent of the B-spline at the wire point and
np̃ is the normal, located in the XZ plane of the depth camera,
of the B-spline at the wire point.

The likelihood of a B-spline W(ψ) is defined as:

W(ψ) =

∑η
i=1 w(p̃i)
η

(5)

We obtain the optimal B-spline that represents the current
state of the wire resulting from the SIR filter ψ̂ by:

ψ̂ =
1∑χ

i=1 W(ψi)

χ∑
i=1

W(ψi)ψi =
(
ˆ̃p1, . . . , ˆ̃pη

)
(6)

B. Adaptive shape servoing method

Let s be the current deformation feature vector that repre-
sents the 3D shape of a wire and s∗ be the desired one. In
this paper, we propose to use η equidistant B-spline points to
construct the deformation feature vector s used in the control
law. The deformation feature vector is defined as follows:

s =
(
ˆ̃p1x, ˆ̃p1y, ˆ̃p1z, . . . , ˆ̃pηx, ˆ̃pηy, ˆ̃pηz

)T
∈ R3η (7)

Let define m as the sum of the number of DOFs of the end-
effectors, which is 12 in our case since two 6-DOF robotic
arms are used to manipulate the wire. Let J denote the defor-
mation Jacobian that relates the evolution of the 3D shape of
the wire with the end-effectors velocity v =

(
υT

a ,ω
T
a , υ

T
b ,ω

T
b

)T

such that ṡ = Jv. In our shape servoing method, we propose
to online estimate the deformation Jacobian matrix. By con-
sidering that small motion will be applied by the end-effectors
between successive control law sample time ∆t, the variation
of the deformation feature vector ṡ is linear with regards to
the motions of the end-effectors. This relation can be written
as:

ṡi = Ĵi,:v + νi ∈ R for i ∈ {1, ..., 3η} (8)

where ṡi is the ith element of the variation of the deformation
feature vector, the vector Ĵi,: corresponds to the ith row of the
estimated Jacobian matrix Ĵ and νi is the ith element of the
measurement noise vector.

To determine the Jacobian matrix that respects (8) for
the current and previous measurements, we propose to use
a weighted least-square minimization with sliding window
method. Let define the quadratic cost-function C

(
Ĵi,:

)
by:

C
(
Ĵi,:

)
=

k∑
j=k−N

( λk− j

m2( j − 1)
(
ṡi( j) − Ĵi,:v( j − 1)

)2
)
∈ R (9)

where N is the size of the sliding window, 0 < λ ≤ 1
is a constant forgetting factor giving less importance to the
oldest measures, ṡi( j) are the variations of the deformation
feature vector at the previous discrete times j and m(k) =√

1 + vT (k)v(k) is a normalization signal.

Let define:

R =

k∑
j=k−N

( λk− j

m2( j − 1)
v( j − 1)vT ( j − 1)

)
∈ Rm,m (10)

Q =

k∑
j=k−N

( λk− j

m2( j − 1)
ṡi( j)v( j − 1)

)
∈ Rm,1 (11)

The cost function is convex with regards to ĴT
i,: thus its

minimum is obtained for the value of Ĵi,: that nullifies its
gradient 5C, where 5C = −2Q + 2RĴT

i,:.
The estimated Jacobian matrix raw that nullifies the gradient

can be written as follows:

ĴT
i,: = R−1Q ∈ Rm,1 (12)

One can notice that the eigenvalues of the matrix R tend
towards 0 when the system converges to the desired shape.
Therefore, directly inverting the matrix would induce instabil-
ity in the Jacobian matrix estimation. To avoid this problem,
we propose to use the following confidence criterion based
on eigenvalue decomposition in the Jacobian estimation. The
matrix R being a positive-definite symmetric m×m matrix, it
can be decomposed such as:

R = ΦΓΦ (13)
with Φ =

[
φ1 . . . φm

]
∈ Rm,m

and Γ =


γ1 . . . 0
...

. . .
...

0 . . . γm

 ∈ Rm,m

where γ1 ≥ · · · ≥ γm ≥ 0 are the eigenvalues of R and
φ1, . . . ,φm are its eigenvectors. Finally, the new estimate of
the deformation Jacobian is computed depending on a user-
defined confidence threshold ε:

ĴT
i,:(k) =


R−1Q if γ1 > ε, . . . , γm > ε

ĴT
i,:(k − 1) if γ1 ≤ ε, . . . , γm ≤ ε

V1Q + V2ĴT
i,:(k − 1) otherwise

(14)

with V1 = Γ:,1: jΦ
−1
1: j,1: jΓ

T
:,1: j

and V2 = Γ:, j+1:mΓ
T
:, j+1:m

with φ sorted such as φ j > ε and φ j+1 ≤ ε

The subscript “:” indicates that all the rows (respectively
columns) are selected when it appears before (respectively
after) the comma, while the subscript “1:j” indicates that all
the rows (or columns) from index 1 to index j are selected.
The V1 term in (14) allows to update the Jacobian in the
directions where the eigenvalue-based confidence criterion is
met, while the term V2 allows to ignore the information in the
noisy directions.

The velocity control law finally applied to control the two
end-effectors is defined by vctrl = −αĴ+(s − s∗

)
∈ Rm where

α ∈ R+ denotes the control law gain and Ĵ+ denotes the Moore-
Penrose pseudo-inverse of the estimated deformation Jacobian
Ĵ.
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Fig. 2: Experimental setup composed of two robot arms
that manipulate a wire tracked by a RGB-D camera. (top-
right) Resting state common to every experiments. (bottom)
The different types of wires that were tested.

IV. Experiments

A. Experimental Setup

The experimental setup, shown in Fig.2, is composed of two
6-DOF anthropomorphic robot arms (Viper 650 and 850 from
ADEPT). Their end-effectors permit to attach a deformable
wire. The length of the deformable wires section that is
considered during the experiments is around 150mm.

A remote Intel Realsense D435 RGB-D camera is used for
tracking the deformable wire. For all the experiments, the wire
was placed approximately at 400mm of the RGB-D camera,
so the depth information is accurate within ±0.6mm [24]. To
improve the accuracy of the depth measurements, the texture
of the wire has been augmented by randomly sticking some
colored pieces of paper. These are not used for the tracking.
Color and depth segmentation are performed using PCL library
[25] to isolate the wire from the rest of the observed point-
cloud.

The homogeneous transformation matrix between the cam-
era coordinates frame and the robots fixed coordinates frames
is computed during an initialization step using markers stuck
on the end-effectors thanks to ViSP library [26].

To define a desired wire shape, the robots are moved before
an experiment and the resulting shape is recorded. The robots
and the wire are thereafter put back in their resting state,
common to every experiments and depicted in Figure 2 .

To initialize the deformation Jacobian, an open-loop initial
procedure is performed where both end-effectors move in
every possible direction successively on a very short distance
while measuring the resulting deformation variation of the
wire. The initial values of the components of the deformation
Jacobian are then numerically computed by finite difference.
Since this initial excitation is performed for each DoF of
the system, the initial value of the deformation Jacobian is
therefore full rank. Moreover, it will maintain full rank during
the shape visual control thanks to the Jacobian update (14)
that is performed only along with the sufficiently excited
directions.

For all the experiments, the parameters were set empirically
as follows: α= between 0.0125 and 0.025, λ=0.99, N=10 and
ε=0.001. For the SIR particle filter parameters: η=50, χ=50,

θ=3, number of segments=3. The control law sample time ∆t
is set to 40ms.

B. Performances evaluation criteria
The method is evaluated with regards to several criteria: the

average displacement dav, the average error eAv, the relative
norm error en, the median duration of computation process
tmed.

The average displacement between the undeformed wire
shape and the one at the final discrete time k f is defined by:

dav =

∑η
i=1 ‖p̃i(k f ) − p̃i(0)‖

η
(15)

The average error is the average of the Euclidean distance
between a current wire shape point and its desired position. It
is defined by:

eAv(k) =

∑η
i=1 ‖p̃i(k) − p̃∗i ‖

η
(16)

The relative norm error, expressed in percentage, is defined
by:

en =
100
η

η∑
i=1

‖p̃∗i − ˆ̃pi(0)‖ − ‖ ˆ̃pi(k f ) − ˆ̃pi(0)‖

‖p̃∗i − ˆ̃pi(0)‖
(17)

This error expresses the ratio of the difference between the
expected deformation and the final one.

The median duration is the duration required to perform
the tracking of the wire, the update of the Jacobian and the
computation of the control law. It is defined by:

tmed = mediank f

k=0

(
∆t(k)

)
(18)

The convergence duration presented in Tables I and II
corresponds to the duration that was required to make the
shape of the wire converge towards the desired one.

C. Influence of the type of robots actions
We first evaluate the performances of the method with

regards to the robots actions responsible for the deformation
of the wire. Shape servoing involving translation only, rotation
only and a combination of rotations and translations of both
end-effectors have been tested. Table I presents the results
of these experiments. The method was able to converge
below 5mm in terms of average error eAv and below 13% in
terms of the relative norm error en for every translation-based
experiment. It was harder to notice deformations using only
X-axis and Z-axis rotation-based motions of the end-effectors
because the resulting deformation was mainly occurring in
the Z axis of the camera frame. The measurements in this
direction are approximate due to the quality of the RGB-D
sensor. Consequently, the relative norm error is greater for
the rotation-based experiments. For the combined rotations-
translations experiments, the method was able to converge to
2.8mm in terms of average error and below 12% in terms
of the relative norm error. In almost all experiments, the
average displacement is lower than the average initial error. It
indicates that the method did not over-deform the wire during
the experiments. For all the experiments, the median duration
of computation process was around 20ms, proving that the
method can work at an interactive time.
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TABLE I: Results of experiments where the deformation resulted from different robots DOF motions. The four first columns
give the average displacement, the relative norm error, the initial average error and the final average error respectively. The
fifth column indicates the duration required to make the wire converge towards the desired shape. The last column indicates
the robots actions that generated the desired deformed shape. “tx”, “ty” and “tz” correspond to translations along each axis,
while “rx”, “ry” and “rz” correspond to rotations. The last three lines correspond to combination of translations and rotations.

dav (mm) en (%) eAv(0) (mm) eAv(k f ) (mm) Convergence duration (s) Robots actions
17.6 9.3 17.5 2.5 70 tx

10.5 10.6 10.3 2.7 170 ty

11.7 12.2 12.2 3.6 70 tz

12.9 27.3 11.2 4.7 190 rx

11.6 15.7 11.6 2.1 70 ry

9 20.6 8 4.1 50 rz

13.2 12.9 15.1 4.7 150 txtytz

16.2 8.6 15.5 2.8 130 rztxtytz

12.6 11.4 12.7 2.8 70 rxryrztxtytz

TABLE II: Evaluation criteria with regards to the resolution of the B-Spline. The four first columns are the same as in Table I.
The fifth column indicates the median duration of computation process. The sixth column indicates the convergence duration
defined as in Table I. The seventh column indicates the number of points used to model the wire. For each experiment, a
combination of translations along every axis of the robots has been performed, as shown in the last column.

dav (mm) en (%) eAv(0) (mm) eAv(k f ) (mm) tmed (ms) Convergence duration (s) η Robots actions
13.4 16.0 14.6 3.5 3.1 100 10 txtytz

15.3 13.2 15.2 3.2 5.6 140 25 txtytz

13.5 5.5 13.7 4.6 10.3 100 50 txtytz

13.3 16.2 15.8 5.5 14.8 90 75 txtytz

15.5 18.9 16 3.1 19.8 100 100 txtytz

D. Influence of the wire material

We tested the independence of the method from the mechan-
ical properties and visual properties of the wire. We performed
several experiments using wires of different materials, diam-
eters and colors: two twined elastic ropes of eight-millimeter
in different colors and a 13-millimeter flexible pale grey gas
pipe. The different objects are presented in Fig. 2 as insets.
The experiment combined deformations due to the rotation
along the Z axis and translations along every axis of both
end-effectors coordinates frame. Figures 3a to 3c illustrate the
final shape of the deformable wire projected on the XY, XZ,
YZ planes in order to observe the 3D deformation for each of
these experiments, as well as the evolution of the average error
over time. In these figures, the relative norm error is coded
according to a color scale: the greener the wire the closer to 0%
the error is, the redder the wire the closer to 30% the en error
is. From similar initial and desired shapes, the method was able
to converge with a similar accuracy: the final average error is
3.3mm for the red wire, 4mm for the green wire and 2.9mm
for the gas pipe. However, one can notice in the different plan
projections that the gas pipe converged to a smoother shape
than the elastic ropes. The relative norm error is also lower
in the gas pipe experiment: 3.9% against 10.6% for the red
wire and 9.4% for the green wire. The material of which it is
composed may have induced smoother deformations that are
therefore easier to control than the twined ropes. The median
duration of computation process was around 17ms for each
wire.

E. Influence of the resolution of the B-Spline

We also performed tests to determine if the accuracy of the
method is related to the number of points η of the B-spline
used to model the shape of the wire. Experiments have been
conducted combining translations along every axis of both
end-effectors coordinates frame. The same initial and desired
shapes were used for each of these experiments, which were
performed using η = 10, 25, 50, 75 and 100 points respectively.
Table II presents the results of these experiments. Starting
with similar initial and desired shapes, the method was able
to converge with a similar accuracy: the final average error
is 3.5mm for 10 points, 3.2mm for 25 points, 4.6mm for 50
points, 5.5mm for 75 points and 3.1mm for 100 points. In
terms of time performance, the method was still working at
an interactive time using η = 100, with a median duration of
computation process of 19.8ms.

F. Large deformation experiments

The deformation Jacobian is only valid for a small range
of wire shape deformations. We carried out an experiment to
determine if it could prevent the method to be used to generate
large deformations. The initial shape of the wire is depicted
as inset in Figure 2, while the desired shape is depicted in
Figure 4a. Figure 5 shows the evolution of the average error
between the current shape and the desired one, as well as the
initial, final and desired shapes of the wire displayed in the
XY, XZ and YZ planes. The final shape of the wire uses the
same color-coded representation as in IV-D. One can notice
that the method failed to converge towards the desired final
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(b) Second rope
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(c) Gas pipe
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(d) Large deformation with intermediary targets.
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Fig. 3: Initial, final and desired shapes displayed in different planes and evolution of the average error over time for the
manipulations of three different wires (TL, TR: two ropes with different colors; BL: higher diameter wire). Figure 3d presents
one of the intermediary targets used in Section IV-G along with the moments at which the target was changed.

(a) Desired shape (b) Final shape

Fig. 4: Experiment with large deformations of the wire.

shape. This is due to the fact that it fell into a local minima at
time t=25s. This motivated us to conduct experiments aiming
at generating large deformations by considering a succession
of desired intermediary shapes.

G. Adaptation of the method to handle large deformations

To enable our method to reach a desired deformation that
differs too largely from the initial state, we can define succes-
sive intermediary targets. We carried out an experiment using
this approach by defining before the experiment a trajectory
composed of four desired intermediary shapes and a desired
final shape. The intermediary shapes are chosen between the
initial and desired shapes such as they describe a sequence

-0.1 -0.05 0 0.05 0.1

x(m)

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

y
(
m
)

XY plan

-0.1 -0.05 0 0.05 0.1

x(m)

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

z
(
m
)

XZ plan

0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

y(m)

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

z
(
m
)

YZ plan

Final

Initial

Desired

0 50 100 150 200 250 300

t(s)

0

10

20

30

40

50

e
A
v
(
m
m
)

e
Av
 = f(t)

Fig. 5: Large deformation case: initial, final and desired shapes
shown in different planes and average error over time.

from the furthest to the closest shape of the final desired shape,
as depicted in Figure 6. The overall experiment lasted 380s.
The median duration of computation process was 16.6ms. The
average displacement between the initial and final shape was
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(a) 1st intermediary target (b) 3rd intermediary target

(c) Final target. (d) Final configuration

Fig. 6: Intermediary targets for reaching large deformations of
the wire. Three first pictures: some of the intermediary targets.
Last picture: final target and final configuration reached at
convergence.

39.3mm. The initial average error was eAv(0) = 39mm while
the final one was eAv(k f ) = 3.9mm. Fig. 3d shows the evolution
of the average error between the current shape and the desired
final one, as well as the initial, final and desired shapes of
the wire displayed in the XY, XZ and YZ planes. The final
shape of the wire uses the same color-coded representation
as in IV-D. It is possible to notice that the average error
between the current shape and the final desired one decreased
regularly during the experiment. The change of intermediary
targets did not disturb this convergence. It is possible to notice
that the relative norm error is greater on an extremity of the
wire where the torsion was the most important. However, the
relative norm error is only 6.1%, which proves that the method
has converged well towards the desired final shape.

V. Conclusion
In this paper, we addressed the challenge of the automatic

3D shape control of deformable wires. First, we proposed a
novel visual feature that permits to model the 3D shape of
a deformable wire. This visual feature relies on a geometric
model and the use of SIR particle filtering. Second, automatic
shape control is ensured by an adaptive model-free shape
servoing method. Controlling two end-effectors that hold both
extremities of the wire, the method permits to make the wire
reach a desired 3D shape. Experiments demonstrated that the
method could be used to reach complex 3D shapes by defining
intermediary targets. As future work, it would be interesting
to automatically generate these intermediary targets from the
initial and desired shapes.
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L. Karstensen, “Deep reinforcement learning for the navigation of
neurovascular catheters,” Current Directions in Biomedical Engineering,
vol. 5, no. 1, pp. 5–8, 2019.

[3] S. B. Kesner and R. D. Howe, “Force control of flexible catheter robots
for beating heart surgery,” in Proc. of the IEEE Int. Conf. on Robotics
and Automation, 2011, pp. 1589–1594.

[4] G. Fang, X. Wang, K. Wang, K.-H. Lee, J. D. Ho, H.-C. Fu, D. K. C.
Fu, and K.-W. Kwok, “Vision-based online learning kinematic control
for soft robots using local gaussian process regression,” IEEE Robotics
and Automation Letters, vol. 4, no. 2, pp. 1194–1201, 2019.

[5] J. Zhu, B. Navarro, R. Passama, P. Fraisse, A. Crosnier, and A. Cheru-
bini, “Robotic manipulation planning for shaping deformable linear
objects with environmental contacts,” IEEE Robotics and Automation
Letters, vol. 5, no. 1, pp. 16–23, 2019.

[6] M. Laranjeira, C. Dune, and V. Hugel, “Catenary-based visual servoing
for tethered robots,” in Proc. of the IEEE Int. Conf. on Robotics and
Automation, 2017, pp. 732–738.

[7] A. Schlechter and D. Henrich, “Manipulating deformable linear objects:
Manipulation skill for active damping of oscillations,” in Proc. of the
IEEE Int. Conf. on Intelligent Robots and Systems, vol. 2, 2002, pp.
1541–1546.

[8] F. Ding, J. Huang, Y. Wang, T. Fukuda, and T. Matsuno, “Adaptive
sliding mode control for manipulating deformable linear object with
input saturation,” in Proc. of the IEEE Int. Conf. on Mechatronics and
Automation, 2012, pp. 1862–1867.

[9] D. Navarro-Alarcon, H. M. Yip, Z. Wang, Y.-H. Liu, F. Zhong, T. Zhang,
and P. Li, “Automatic 3-d manipulation of soft objects by robotic arms
with an adaptive deformation model,” IEEE Transactions on Robotics,
vol. 32, no. 2, pp. 429–441, 2016.

[10] Z. Hu, P. Sun, and J. Pan, “Three-Dimensional Deformable Object
Manipulation Using Fast Online Gaussian Process Regression,” IEEE
Robotics and Automation Letters, vol. 3, no. 2, pp. 979–986, 2018.

[11] T. Tang, C. Wang, and M. Tomizuka, “A framework for manipulating
deformable linear objects by coherent point drift,” IEEE Robotics and
Automation Letters, vol. 3, no. 4, pp. 3426–3433, 2018.

[12] M. Verghese, F. Richter, A. Gunn, P. Weissbrod, and M. Yip, “Model-
free visual control for continuum robot manipulators via orientation
adaptation,” arXiv preprint arXiv:1909.00450, 2019.

[13] P. Qi, C. Liu, L. Zhang, S. Wang, H.-K. Lam, and K. Althoefer, “Fuzzy
logic control of a continuum manipulator for surgical applications,” in
Proc. of the IEEE Int. Conf. on Robotics and Biomimetics, 2014, pp.
413–418.

[14] J. Zhu, B. Navarro, P. Fraisse, A. Crosnier, and A. Cherubini, “Dual-arm
robotic manipulation of flexible cables,” in Proc. of the IEEE Int. Conf.
on Intelligent Robots and Systems, 2018, pp. 479–484.

[15] T. Matsuno and T. Fukuda, “Manipulation of flexible rope using topo-
logical model based on sensor information,” in Proc. of the IEEE Int.
Conf. on Intelligent Robots and Systems, 2006, pp. 2638–2643.

[16] F. Abegg and H. Worn, “Robust algorithms for recognizing shape
changes of deformable linear objects in video image sequences,” in Proc.
of the IEEE Int. Conf. on Image Processing, vol. 1, 2000, pp. 335–338.

[17] N. Padoy and G. D. Hager, “Deformable tracking of textured curvilinear
objects,” in Proc. of British Machine Vision Conference, 2012, pp. 1–11.

[18] T. Tang and M. Tomizuka, “Track deformable objects from point clouds
with structure preserved registration,” The International Journal of
Robotics Research, pp. 1–16, 2018.

[19] C. Chi and D. Berenson, “Occlusion-robust deformable object tracking
without physics simulation,” in Proc. of IEEE Int. Conf. on Intelligent
Robots and Systems, 11 2019, pp. 6443–6450.

[20] J. Schulman, A. Lee, J. Ho, and P. Abbeel, “Tracking deformable objects
with point clouds,” in Proc of the IEEE Int. Conf. on Robotics and
Automation, 2013, pp. 1130–1137.

[21] C. De Boor, “On calculating with b-splines,” Journal of Approximation
theory, vol. 6, no. 1, pp. 50–62, 1972.

[22] N. J. Gordon, D. J. Salmond, and A. F. Smith, “Novel approach to
nonlinear/non-gaussian bayesian state estimation,” in Proc. of the IEE
Conf. F (radar and signal processing), vol. 140, no. 2, 1993, pp. 107–
113.

[23] R. Lagneau, A. Krupa, and M. Marchal, “Active deformation through
visual servoing of soft objects,” in Proc. of the IEEE Int. Conf. on
Robotics and Automation, 2020.

[24] Intel. Tuning depth cameras for best performance. [Online]. Available:
dev.intelrealsense.com/docs/tuning-depth-cameras-for-best-performance

[25] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”
in Proc. of the IEEE Int. Conf. on Robotics and Automation, 2011.
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