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Abstract— In this paper, we propose a novel method to si-
multaneously track the deformation of soft objects and estimate
their elasticity parameters. The tracking of the deformable
object is performed by combining the visual information
captured by a RGB-D sensor with interactive Finite Element
Method simulations of the object. The visual information is
more particularly used to distort the simulated object. In
parallel, the elasticity parameter estimation minimizes the error
between the tracked object and a simulated object deformed
by the forces that are measured using a force sensor. Once the
elasticity parameters are estimated, our tracking algorithm can
be used to estimate the deformation forces applied to an object
without the use of a force sensor. We validated our method
on several soft objects with different shape complexities. Our
evaluations show the ability of our method to estimate the
elasticity parameters as well as its use to estimate the forces
applied to a deformable object without any force sensor. These
results open novel perspectives to better track and control
deformable objects during robotic manipulations.

I. INTRODUCTION

Nowadays, robots are efficient in manipulating rigid ob-
jects. However, simultaneous manipulation and tracking of
deformable objects remains a challenging problem and could
improve different applications, such as humanoid robots
interacting with soft objects, compliance testing in product
manufacturing or detection of abnormal skin stiffness in
preventive healthcare. The aim of our approach is to auto-
matically estimate the elasticity parameters of a soft object
that is being deformed by the end-effector of a robot. For that
purpose, we propose a closed-loop method consisting of: a) a
deformation tracking method and b) an elasticity estimation
algorithm. This closed-loop method allows to achieve two
objectives: STEPE (Simultaneous Tracking and Estimation
of Parameters of Elasticity) and remote force estimation. The
required inputs of STEPE are a coarse 3D geometric model
(mesh) of the object to track and the external measurements
of the forces deforming the object. The deformation tracking
method uses a depth sensor to capture the deformation and
tracks it using a physics-based simulation of the object
deformations. The elasticity estimation algorithm uses the
result of the deformation tracking method and measurements
of the deformation forces, obtained from an external sensor,
to estimate the elasticity parameters of the object. Once
the elasticity estimation is achieved, the parameters can be
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used by the deformation tracking method, thereby closing
the loop. The method will iteratively converge towards a
correct estimation of the elasticity parameters of the object.
The elasticity parameters obtained at the convergence of the
method are thereafter used for remote force estimation. From
this stage, the deformation tracking method can be used to
estimate the deformation forces acting on the object without
any external force sensor.

A. State of the Art

1) Deformation tracking: There are two possible ap-
proaches for tracking the deformation of non-rigid objects,
using either a physics-based model, or a geometric-based
model for computing the deformations. Both physics-based
model such as [1], [2] or geometric-based models such as [3],
[4] offer efficient mechanisms to track complex 3D shapes
without relying on any kind of training data. However, it is
not possible to use them to iteratively update the physical
parameters of the object being tracked. Zhang et al. used a
RGB-D camera to track external forces applied to an object,
but with specialized soft robots for the purpose, instead of
arbitrary deformable objects [5]. The approach of Petit et al.
[6] is more suitable for the purpose of deformation tracking
using a physics-based model. However, since they rely solely
on depth data to determine the direction and magnitude
of deformation, their approach is more susceptible to error
induced from incorrect correspondences due to heavy occlu-
sions. Among some learning-based approaches for tracking
deformation, Varol et al. used a constrained latent variable
model for learning the deformation behavior of an object
from a latent state to an output state [7]. The results from
this approach have however only been validated on planar ob-
jects. Among the available literature, the approach of Frank
et al. [8] is the closest to the method proposed in this pa-
per for simultaneously tracking deformation and estimating
parameters. The approach utilizes a tightly coupled tracking
and elasticity estimation module with a point-to-point ICP
[9] for pointcloud registration along with a linear, tetrahedral
FEM as underlying deformation model. The use of linear
FEM makes this approach not suitable when large rotational
deformations occur. Additionally, point-to-point ICP cannot
handle occlusion adequately, which compels them to utilize
a narrow wooden manipulator to avoid occlusion. To the best
of our knowledge this approach has not been used as a force
estimator.

2) Physical parameter estimation: Manipulation of de-
formable objects is facilitated when the elasticity parameters
of the objects are known. Sedef et al. proposed a method



Fig. 1. Overview of the STEPE and Remote Force Estimation architecture.

using a haptic device and a force sensor to estimate the
linear viscoelastic parameters of a homogeneous soft tissue
[10]. Bickel et al. proposed a method handling heterogeneous
elastic objects [11]. A deformable object, observed by a
marker-based stereovision system, is stimulated by a probe
equipped with a force sensor to estimate the Lamé’s co-
efficients of heterogeneous deformable objects. Data-driven
methods have also been developed to determine elasticity
parameters of heterogeneous elastic objects. For instance,
Wang et al. proposed an approach that iteratively performs
physics-based deformation tracking and physical parameter
estimation using a two-step optimization method [12]. A
method, based on the static Euler-Bernouilli deformation
model along with a tracking method based on a multi-section
parameterization, was proposed for simultaneous tracking
and estimation of deformable object [13]. The method is
based on two assumptions: on the one hand the object is
homogeneous and linearly elastic, on the other hand the
deformation is the bending of the object subject to gravity.
However, this method has only been tested on planar object.

B. Contributions

We perform simultaneous tracking and elasticity estima-
tion of arbitrary soft objects using the same physical model,
which can be updated iteratively, as opposed to [8]. The
deformation tracking does not require any external fiducial
markers. A coarse model of the object is enough for both
deformation tracking and elasticity parameter estimation.
Contrary to [5], the remote force estimator does not require
a prior knowledge of the elasticity parameter to estimate
the deformation forces. The STEPE method can run on
inexpensive hardware requiring only a RGB-D sensor and
force measurements.

The remainder of the article is divided into three sections.
The next section details the methodology for the proposed

method. The experimental results are presented next, fol-
lowed by discussions and perspectives about our method.

II. APPROACH FOR ELASTICITY ESTIMATION
PROCESS

Our goal is to simultaneously track a deformable object
and estimate its elasticity parameters. To achieve this goal,
we propose a method composed of three different modules:
one performing the deformation tracking, one estimating
the elasticity parameters and one measuring the external
deformation forces applied to the object. In STEPE, all the
modules are involved. When doing remote force estimation,
only the module performing the deformation tracking method
is considered. The overall method is depicted in Fig. 1.

A. Modeling

We chose to model the objects using the Finite Ele-
ment Method (FEM) [14]. Objects are represented using
tetrahedral meshes, such as the cube depicted in Fig. 1.
To avoid large rotational deformation artefacts, we use the
corotational FEM variant of this method [15]. In this paper,
we use the Hooke’s law that relates the stress and the strain
applied to an object using a linear equation that depends on
the elasticity parameters of the object, that are the Young’s
modulus and the Poisson ratio. This law is valid only for
small deformations of linear elastic objects.

Let n be the number of vertices of the mesh, M ∈ R3n×3n

the mass matrix and D ∈ R3n×3n the damping matrix of the
whole object, K ∈ R3n×3n the stiffness matrix of the whole
object that depends on the Young’s modulus and Poisson
ratio of the object, x(t) ∈ R3n (resp xu ∈ R3n) the position
of each vertex of the mesh at time t (respectively in the
undeformed state), fext ∈ R3n the external forces applied to
the object and fint ∈ R3n the internal forces resulting from
the deformation. The linear algebraic equation of motion of



an object is given by:

M
d2

dt2

(
x(t)−xu)+D

d
dt

(
x(t)−xu)+K(x(t)−xu) = fext +fint (1)

This equation is used both to estimate the elasticity pa-
rameters from deformation observations and to estimate the
external deformation forces from deformation observations
when the elasticity parameters converged.

B. STEPE

1) External measurements module: The external measure-
ments module is in charge of measuring the deformation
forces that are applied to the object. To ensure repeatability
of experiments, we decided to use a robot equipped with a
force sensor both to deform the object and to measure the
resulting forces. The end-effector deforms the object while
recording the forces that are exerted. The end-effector motion
is stopped at one point in order to maintain a static deformed
state. The module stores the external force measurements and
timestamps at which they were acquired to transmit them
to the estimation algorithm when a steady-state has been
reached in the deformation tracking.

Fig. 2. Every node that needs to be tracked is perturbed by a small force
along 3-axis. Computation of (4) for each deformed configuration is used
to compute the gradient of the error at that particular node.

2) Deformation tracking method: In this paper, we im-
plemented a deformation tracking method similar to the one
proposed in [16]. The initial pose of the object(O) with
regards to (w.r.t.) the camera (C) is obtained in the first
image frame using pre-trained markers [17]. The pose of
the camera w.r.t. the object, denoted by the homogeneous
matrix CTO, is updated at the beginning of each frame,
using an approximate rigid object tracking method with the
assumption that the object is rigid. The cost function jointly
minimized for approximate rigid tracking of the object is
given by:

eD(k−1qk) =
(k−1Rk

k−1P + k−1tk
)
· n j − d j (2)

eK(k−1qk) =

(
x(k−1qk) − x∗

y(k−1qk) − y∗

)
(3)

where k−1qk = (k−1tk, θu), such that θ and u are the angle
and axis of the rotation k−1Rk from the current image frame
’k’ to the previous image frame. k−1P =

(
X,Y,Z

)
represents

an arbitrary 3D point from the last pointcloud, which has
been matched to the j-th plane of the object’s 3D model,
denoted by the normal vector n j = (nX

j , n
Y
j , n

Z
j ) and distance

to origin d j. (x(k−1qk), y(k−1qk)) are the projection of the same
arbitrary point in the (k-1)-th image while (x∗, y∗) are the
same image points matched in the k-th image using Harris
corner features.

Once an approximate estimate of k−1qk has been obtained,
the non-rigid tracking is done by minimizing the point-to-
plane error, given by:

eN(P) = n j ·
k−1P − d j (4)

The Jacobian (J) is computed using the method shown in Fig.
2. Every node is subjected to a small force given by ∆Fx,
∆Fy and ∆Fz, acting along the three axes. The displacement
of all vertices of the mesh are computed by solving (1)
using an Euler-Implicit mechanism of a conjugate gradient
based linear solver [18]. The Jacobian J is computed using
finite differences in the value of eN obtained from the three
deformed configurations. The force update is given by:

∆F = −λ
(
WJ

)+WeN(k−1P) (5)

where W is a weighting matrix from Tukey based M-
estimator [19], and λ =

(
λX λY λZ

)
is a scaling factor.

The deformation caused in the mesh due to the Jacobian
computation is discarded and the update k−1F+∆F is applied
to the node, where k−1F is the external force already existing
on the node at the previous image frame. This Iteratively
Re-weighted Least Squares scheme is allowed to repeat for
a fixed number of iteration at every image frame.

3) Estimation algorithm: In this paper, we chose to use
the Hooke’s law evoked in II-A to represent the deformable
objects. Consequently the elasticity parameters that can be
estimated are the Young’s modulus and the Poisson ratio.
In order to estimate the elasticity parameters ξ at a contact
point of a deformable object, the algorithm relies on the
tracking results xt and the external measurements of the
deformation forces fmeas taken at the same point. Let V
be the list of vertices that the camera can see denoted
by v and used to compute a cost-function S , minimized
using the Levenberg-Marquardt algorithm [20]. S is given by
S =

∑
v∈V eE

v(ξ)2. In this expression, eE is the error function
defined by eE

v(ξ) = ‖xt
v − xs

v(fmeas, ξ)‖ and is equal to the
Euclidean distance between xt

v and xs
v, which are respectively

the tracked and simulated 3D positions of v. xt
v is taken at

the final deformed state and xs
v at the end of the simulation.

The estimated parameters are the ones for which the cost-
function S is minimized.

The simulation applies a force field, which replicates
the forces that were recorded during the experiment, on
the region surrounding the contact point location on the
simulated object. The Jacobian matrix of the cost-function
is needed to compute the update of the elasticity parameters
between two steps k and k+1 of the minimization algorithm.
This Jacobian matrix is numerically estimated by running
several corotational FEM simulations using different values
of elasticity parameters and computing the error between the
experimental data and the simulation result. Let ∆ξ(k) be
the update of the elasticity parameters at the kth step, JE

be the Jacobian matrix at this step of the function eE w.r.t.



the elasticity parameters ξ and µ be a damping factor that
is adjusted at each Levenberg-Marquardt step. The update
of the elasticity parameters can be computed by solving for
∆ξ(k) the linear equation:

∆ξ(k) =
(
(JE)>JE + µdiag

(
(JE)>JE))−1(

(JE)>eE
)

(6)

ξ(k + 1) = ξ(k) − ∆ξ(k) (7)

In this paper, we focus on estimating the Young’s modulus E.
The Poisson ratio is assumed to be known a priori. Thus, the
elasticity parameters vector is given by ξ = (E) ∈ R. At this
stage, the method permits to estimate the Young’s modulus
Ê of a deformable object from deformation observations and
external force measurements.

C. Remote force estimation

When doing remote force estimation, the deformation
tracking module can be used without external force sensor.
Let A be the set of vertices representing the active region
of the object. The active region is an approximation of the
surface of the model where the deformation is happening.
This region is determined using some practical heuristics
e.g., neither the vertices lying on the ground plane nor the
vertices not visible from the camera are taken into account.
Active vertices, denoted by a, are the vertices belonging to
the active region. The method is able to estimate the external
deformation forces, given by f̂ext =

∑
a f̂ext

a , which are applied
to the object in the active region, as shown in Fig. 3.

The estimated forces are projected onto the normal of
the active surface nA =

∑
a na

‖
∑

a na‖
because the tracking method

cannot have information about tangential forces, since (4) is a
point-to-plane distance. This produces the following estimate
of the magnitude of the deformation forces: ‖f̂ext‖ ≈ f̂ext ·nA.

Fig. 3. Force estimation in the active region.

III. EXPERIMENTS

A. Experimental setup

Our experimental setup shown in Fig. II-C consists of a 6-
DOF anthropomorphic robot arm (a Viper 850 from ADEPT)
equipped with a ATI’s Gamma IP65 force/torque sensor and
a 3D-printed stylus used as an end-effector distal tool. A
RGB-D Intel Realsense D435 camera is used for the tracking.

Fig. 4. Experimental setup showing the robot (Rr) deforming a plush
toy (Ro) while the data is captured from an Intel RealSense D435 RGB-
D Camera (Rc.) The other objects that have been experimented upon are
shown in the inset above.

Our method has been implemented on a computer that has
an Intel Xeon CPU working at 3.70GHz with 16 logical
cores. Our method has been tested with different soft objects:
a foam block, a soft ball and a complex-shaped plush toy.
The transformation between the robot frame and the object
frame is computed once at the initialization of our method.
Thereafter, it is used to express measured forces into the
object coordinate frame. The mesh of the plush toy has been
generated by photogrammetry using the Meshroom software
[21], [22]. The corotational FEM simulations are performed
using SOFA framework [18].

B. Results

The following section describes a series of experimental
conditions and their corresponding results1. Each condition
represents a particular position of a specific object, e.g.,
the first condition describes the rectangular foam being
deformed at the center of its largest face, while being placed
horizontally on a table. To evaluate the accuracy of the
estimation process, the ground truth of Young’s modulus
EGT has been determined through indentation tests for each
condition of experiment [23]. The indentation tests are re-
peated, slow and incremental vertical displacements applied
to the objects using the robot while measuring the forces
and the displacements. Forces are measured from the force
sensor while displacements are obtained using the odometry
of the robot. For each condition of experiment, the average
of several indentation tests is taken as ground truth EGT .

Let Ê(i) be the estimated Young’s modulus obtained from
the ith deformation tracking results. The Young’s modulus
that is thereafter used for the external force estimation, de-
noted by Eest, is the one for which the following convergence
criterion is respected:

Ê(i) − Ê(i − 1)
Ê(i − 1)

< 0.05 (8)

Some examples of the output of the deformation tracking
method are shown in Fig. 5. The mean of the norm of the

1Additional material can be found at https://youtu.be/k1MPnmqmovQ



Fig. 5. Tracking of the objects for estimating their elasticity parameters. The first and the fourth columns show the color image, the second and the fifth
columns show the tracked object model and the third and the sixth columns show the value of eN , color-coded and augmented on the object

error (‖eN‖) was found to be 1.53 mm, 0.51 mm and 0.21 mm
for the foam block, soft ball and plush toy, while the standard
deviations were 7.2 mm, 0.7 mm and 1.4 mm respectively,
across all the experiments reported in this article. In the
three example sequences shown in Fig. 5, the mean of the
norm of error varied between a maximum of 0.381 mm (for
the plush toy, deformed by its nose) to as low as 3 µm
(for the undeformed sponge block), despite having outlying
correspondence or noise in the range of -5.5 cm to +9.0 cm
(which gets rejected by the M-estimator). In the experiments
shown in Table I, the time required for tracking varies
between 1.21 to 3.1 sec/frame. However, it was possible to
run the same algorithm on the foam block at ∼ 800 ms/frame
without using any GPU based computation, with negligible
loss of accuracy (< 10%).

Our method can be evaluated on different criteria. The
first set of experiments was conducted to evaluate the time-
performance of the tracking and the quality of the Young’s

modulus estimation w.r.t. the number of vertices of both the
visual mesh and the mechanical mesh. The results of this
set of experiments are grouped in Table I. In this table,
#Visual designates the number of vertices of the visual mesh
while #Mechanical designates the number of vertices of the
mechanical mesh. ttr is the average deformation tracking
time, std(ttr) is its standard deviation, tst is the time that was
required to deform the object and reach a steady-state and test

is the time to estimate the Young’s modulus. All the times are
expressed in seconds. EGT and Eest correspond to the average
ground truth of Young’s modulus and estimated Young’s
modulus respectively, both expressed in kilo Pascals. Finally,
Error designates the percentage of error of the estimation and
is given by Error = 100 ∗ abs(EGT − Eest)/EGT where abs
designates the absolute value.

The second set of experiments, whose results are grouped
in Table II, was conducted to evaluate the consistency of the
Young’s modulus estimation w.r.t. the initial estimate E0.

TABLE I
Evaluation of tracking and estimation times and Young’s modulus (in kPa) estimation accuracy w.r.t. different quality of visual and mechanical meshes.

Objects #Visual #Mechanical ttr (s) std(ttr) (s) tst (s) test (s) EGT Eest Error (%)

foam 35 1049 1.94 0.14 62 310 454 431 5.08

foam 415 1049 2.37 0.15 122 180 454 438 3.62

foam 178 554 1.21 0.02 60 180 454 497 9.47

ball 404 627 1.38 0.03 126 70 156 136 12.8

ball 404 1060 1.61 0.02 118 96 156 149 5.0

ball 404 1954 3.09 0.07 130 330 156 148 5.1



TABLE II
Evaluation of the estimation of the Young’s modulus (in kPa).

Objects E0 EGT Eest Error

foam middle
200 454 480 5.7%

1500 454 451 0.7%

15000 454 488 7.5%

foam corner 200 247 224 9.3%

ball 1000 156 154 1.3%

toy nose 200 51 53 3.7%

toy leg 50 42 43.1 2.6%

Experiments have been conducted on two locations of the
foam and the plush toy, as indicated in the first column
of Table II, to evaluate if the method can handle non-
homogeneous objects. Low initial estimate are of the order
of 0.1×EGT and high initial estimate of the order of 10×EGT .

TABLE III
Comparison of the average norm of the measured and estimated forces.

Objects Orientation Depth
(cm)

fGT
(N)

fest
(N)

∆ f
(N)

foam horizontal 2 18.8 20.6 1.8

foam tilted 2 21.36 23.11 1.75

foam horizontal 4 45.46 42.67 -2.79

foam tilted 4 38.94 35.59 -3.35

ball horizontal 2.5 9.49 8.57 -0.92

toy horizontal 2 5.32 5.81 0.49

The last set of experiments was conducted to evaluate the
estimation of the deformation forces in different conditions
of experiments. For these experiments, the estimated Young’s
modulus values summarized in Table II were used by the
deformation tracking method. The results of this set of
experiments are grouped in Table III. fGT and fest designate
the average norm of the ground truth forces measured by
the force sensor and the norm of the forces estimated by
the deformation tracking method respectively, expressed in
Newtons. ∆ f = fest − fGT represents the error between the
estimated and ground truth forces. The estimated forces are
projected onto the measured forces when compared with the
ground truth. The force experiments have been conducted
with different orientations of the objects (horizontal and tilted
by approximately 25 degrees w.r.t. the z-axis of the object
frame). Different depths of stimulation have also been tested
and are indicated in the depth column of Table III.

Finally, Fig. 6 depicts a possible use case of our method
to estimate deformation forces exerted on an object in an
environment where no force measurements are available.

IV. DISCUSSION

The first set of experiments whose results are summa-
rized in Table I shows that the accuracy of the Young’s
modulus estimation is improved as the resolution of the

Fig. 6. Force estimation while the plush toy gets freely deformed by hand.
The deformation forces (13.8 N) are in the expected range.

mechanical mesh increases. This results from the fact that
the deformation can be represented with finer details and is
thus closer to the reality. Table II shows that our method is
able to estimate the Young’s modulus of an arbitrary object
even when the initial estimate is much different from the
ground truth. A future work would consist in using our
method to estimate both Poisson ratio and Young’s modulus
within an iterative process. Table III shows that the estimated
Young’s modulus could be used by our method to accurately
estimate the deformation forces from visual information
only. The use case scenario depicted in Fig.6 shows one
possible application of our method in environments where no
force sensor could be used, for instance in human-performed
manipulation tasks. This application opens novel perspectives
for better estimating the forces applied to a deformable object
by different operators, as well as on a cooperative task on
such objects.

V. CONCLUSION

In this paper, we proposed a method for simultaneously
tracking arbitrary linear elastic objects and estimating their
elasticity parameter. For estimating the elasticity parameters,
our method requires only a coarse 3D mesh of the object and
external force measurements. Deformation tracking and elas-
ticity parameter estimation are run alternatively. We showed
experimentally that the method is able to correctly estimate
the Young’s modulus of an arbitrary soft object, even when
starting from a highly coarse initial estimate. Finally, we
demonstrated that our method could be used for remotely
estimating the deformation forces applied to an arbitrary
object using visual information only. These results pave the
way for better control of deformable objects manipulated by
a robot.
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