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Abstract— In this paper, we propose a novel approach for
transferring a deep reinforcement learning (DRL) grasping
agent from simulation to a real robot, without fine tuning in
the real world. The approach utilises a CycleGAN to close the
reality gap between the simulated and real environments, in
a reverse real-to-sim manner, effectively “tricking” the agent
into believing it is still in the simulator. Furthermore, a visual
servoing (VS) grasping task is added to correct for inaccurate
agent gripper pose estimations derived from deep learning. The
proposed approach is evaluated by means of real grasping
experiments, achieving a success rate of 83% on previously
seen objects, and the same success rate for previously unseen,
semi-compliant objects. The robustness of the approach is
demonstrated by comparing it with two baselines, DRL plus
CycleGAN, and VS only. The results clearly show that our
approach outperforms both baselines.

I. INTRODUCTION

In recent years, we have witnessed considerable progress
in the use of deep learning (DL) for a variety of robotic
applications, and specifically in the field of vision-based
robotic manipulation [1]–[5], either as a valid addition or
an alternative to traditional robot control. Although DL
approaches to vision-based robotic manipulation are popular,
they require a huge volume of labelled image data with
correct grasp poses for training [2], [3]. Substantial work has
been done to collect large-scale datasets [2], [6] and utilizing
the data more efficiently, e.g. through multitask learning [4],
or by making DL methods faster and more applicable to
robotics [1]. The need for large realistic data sets has turned
out to be time-consuming and expensive, and one way to
avoid this is deep reinforcement learning (DRL).

DRL is a class of machine-learning techniques by which a
policy for acting in the environment is learned by maximizing
a perceived reward. The use of DRL methods, such as for
example proximal policy optimization (PPO) [7], applicable
to continuous action spaces such as robotic grasping, has
become very popular, in particular after the work presented
by Mnih et al., with many reported applications specifically
on vision-based grasping [7], [9]–[13]. The need for self-
exploration makes it impractical to train a DRL-agent on a
real robot due to the potential for erratic behavior in the early
stages of training, which can result in damage to the robot
or its environment. This consideration has promoted the use
of simulated data for training. As an example, [14] train a
grasp quality convolutional neural network (CNN) solely on
synthetic data, and use the model to perform grasp planning
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Fig. 1. (a) Our approach: A real image from the camera is adapted directly
to simulation using a CycleGAN. The adapted image is fed to a PPO-agent,
which calculates a new grasping pose before a VS task is activated to refine
the final pose. (b) Robot after successfully grasping a salmon fillet, as a
challenging object, during testing trials. The VS assisted grasping agent was
not presented with any instances of the salmon during training in simulation.
This shows that the agent generalizes well to previously unseen objects.

with a success rate of 80% on novel objects.
However, these approaches entail a serious drawback,

namely the reality gap between the simulator and real world,
which creates challenges when transferring the learned inter-
action experience from simulation into the real world. Pas et
al. [5] note this for depth data, reporting a large decrease
in performance when training on simulated data. A variety
of transfer learning techniques are thus being developed
with the aim of achieving successful transfer learning from
simulation to a real robot. These include domain adaptation
(DA) [15]–[17] and domain randomization (DR) [18]–[21].

DR is a transfer learning technique in which the training
environment is randomised, with the aim of making the
agent robust to handle the real world simply as another state
variation [20]. However, several disadvantages have been
observed using this technique, such as a failure to detect
objects on the edge of the image frame [19] or a failure to
grasp irregular objects [20]. It is also shown that domain
randomisation is less efficient than a combination involv-
ing domain-adaptation methods [22]. DA methods, such as



splitting the model into a perceptual and control module and
then retraining the perceptual module for new environments,
have been proposed in [23], [24] to improve transfer learning,
however the drawbacks include expensive retraining and that
the representation connecting the two modules limits the
information available to the control module.

Another interesting approach to transfer learning is to
make input images from two different domains appear similar
to the system. Such an approach can enable an agent to
operate in a completely new environment, without the need
for fine tuning. This type of domain-adaption has been
investigated using generative models such as variations of
the generative adversarial network (GAN) [25], which con-
sists of two networks, a generator G that generates images
and a discriminator D that discriminates between real and
generated images. The networks are trained in an adversarial
fashion, until G learns to generate realistic images.

The CycleGAN [26] is a particular extension of the GAN,
consisting of two GANs. By training these in tandem, the
system learns to map between images in two domains, such
as a real and a simulation domain. The CycleGAN has
been used extensively for domain-adaptation tasks, such as
music genre transfer [15], chest X-ray segmentation [16],
and person re-identification [27]. James et al. [17] use a
conditional GAN (cGAN) [28] trained to adapt randomised
simulated environments to a canonical simulated environ-
ment. The same cGAN is used to adapt from real to
simulated images, combining domain adaptation using both
cGAN and DR. They report the presence of artifacts in
the adapted images that make grasping objects challenging,
and an overall success rate of 70% on previously unseen
objects. Our work differs from [17] in that we map real to
simulated images directly without an adaptation step, and
show improved grasping results. The downside is that we
need a (small) set of data from the real robot to train our
generator, while theirs can be trained only from simulated
scenes. However, the collection of such a small dataset is
typically cheap, and the gained performance justifies its cost.

Bousmalis et al. [29] show the use of a GAN for un-
supervised domain adaption of RGB-D-images, introducing
the use of a task-specific loss and a content-similarity loss to
further guide the training of the GAN. The main difference to
our approach is that theirs requires a task-specific network
to be trained in parallel to the domain-adaption, which is
unrealistic when performing unsupervised learning.

The aforementioned methods for transfer learning of a
grasping pose agent to the real world commonly suffer from
an inability to correctly position the gripper to the targeted
pose [20]. To tackle this issue, we propose to supplement the
grasping agent with a visual servoing (VS) task that can be
activated in situations where the grasping pose is incorrectly
estimated, and whose goal is to refine it prior to grasping.
VS is a collection of closed-loop robotic control techniques
based on visual feedback [30]. This paper uses a geometric
VS task dependent on a segmentation of the scene, similar
to [31], however in this work the segmentation network is
trained with the domain adaption network, instead of using

a separate video object segmentation network.
In this work, a novel approach for the transfer learning of a

robotic gripper pose estimation to the real world is presented.
First, in a reverse real-to-sim manner, real camera images are
transformed to simulated ones by a CycleGAN for domain
adaptation. The grasping pose estimation agent is trained in
simulation using the PPO algorithm prior to using VS to
refine the final grasping pose in the real world (see Fig. 1a).
Although a similar approach to reality-to-simulation transfer
has been investigated for robotic driving [32], this is, to the
best of our knowledge, the first work using a GAN to achieve
direct real-to-sim image mapping for domain adaptation of
a robotic grasping policy. Moreover, our approach, involving
addition of the VS task, largely solves the problem that
commonly arises when transferring a grasping agent to the
real world [20], namely the failure of the agent to correctly
position the gripper to the final target grasping pose. The
robustness of our approach using real-to-sim transfer learning
and VS refining (Fig. 2) was evaluated by comparing it with
two baselines on a YCB object set [33] and a testing set of
previously unseen compliant objects. Our approach clearly
outperformed both baselines, with a success rate of 83% for
both sets of objects.

II. METHODOLOGY

The method proposed in this paper has two primary stages.
For three discrete timesteps, the DRL and CycleGAN is
used to iteratively improve the grasping pose. After reaching
the pose calculated by the DRL and CycleGAN, the VS
task further refines the grasping pose prior to grasping the
object. In the following descriptions, the coordinate system
is defined as follows: x is the direction parallel to the gripper,
the y-axis is perpendicular to the gripper, and the z-axis is
the direction the gripper is pointing. For images, the same
coordinate axes are used, except that they are relative to the
camera.

A. Deep Reinforcement Learning

The DRL agent is trained in simulation using an actor-
critic version of the PPO algorithm [7]. The simulator is
created in Unity3D, and includes a robot gripper, identical
to the one used by the real robot in the experiments, objects
to be grasped, cameras for capturing color and depth images,
and a semantic segmentation mask used by the CycleGAN.
An example of such images is shown Fig. 3.

When run, the DRL system takes the current RGB-D
image of the scene as an input, and calculates a Cartesian
pose p for the robot to move to, relative to the current pose.
The z-component of the poses from the first and second DRL
steps are set to move the gripper 15 cm towards the ground,
to ensure a combination of registering more detail in the
frame while not moving too close, possibly loosing a part of
the object from the image. For the last step, the z component
is calculated by the agent when VS is inactive, and set to
0 when VS is active. The reward function during training
is based on a set of predefined successful grasp poses, and
rewards the agent for being close to these poses. Between
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Fig. 2. Our approach (DRL+GAN+VS) compared to two baselines. The first baseline is a classical VS grasping task. The second baseline is the DRL+GAN.

(a) RGB (b) Depth (c) Segment
mask

Fig. 3. Example simulated images. The color and depth images are used
by the PPO, while the segmentation mask is used to train the CycleGAN.

two and ten good poses were defined for each training object,
and some examples of such poses for a single object can be
seen in Fig. 4. The reward function is defined as

R =
λd(1− ed)2 + λo(1− eo) + λgrg − λl

λn
(1)

where ed and eo are the linear and angular distances from
a good grasp, respectively, and rg equals −1 if any point
of the gripper is below ground and 0 otherwise. λd, λo, λg
are balancing terms, set to 0.5, 0.5 and 0.05, respectively.
λl and λn are used to normalize the reward, both set to 0.5,
yielding a reward in the range [−1.1, 1].

Fig. 4. Example of predefined successful gripper poses used for training
the DRL agent in simulator.

B. Semantic CycleGAN for Image-to-Image Translation

A CycleGAN was used to map RGB-D images from the
real world to the simulated environment. In addition to the
adversarial and cycle-consistency losses used in the original
CycleGAN model, two other losses were used. First, an
identity loss, defined by

Lid = Ex∈X
[
||G(x; θGy )− x||

]
+Ey∈Y

[
||G(y; θGx)− y||

]
(2)

where, X,Y are the simulated and real image domains, and
θGx , θGy are the generator parameters for the generator trans-
lating in the Y → X and X → Y direction, respectively.
The loss is used to ensure the output images are not too far
from the input. This idea is similar to the content-similarity
loss of [22], [29]. Second, similar to [34], a semantic loss
was added. This was achieved by generating a semantic
segmentation mask from the discriminator along with the
discriminator value, and using a pixel-wise cross-entropy
loss. As ground-truth segmentation masks are, in general,
only easily available from the simulated environment, this
loss was calculated on raw and adapted images from that
domain, and not on images from the real robot. The semantic
loss is:

Lsem =E(x,s)∈X′

[
H
(
Dsem

(
G
(
x; θGy

)
; θDy

)
, s
)

+H
(
Dsem

(
x; θDx

)
, s
) ] (3)

where H is the pixel-wise cross entropy loss, Dsem the
segment mask output by the discriminator, θDy , θDx are the
discriminator parameters for the GANs in the X → Y and
Y → X directions, respectively, and X ′ = {(x, segx)|x ∈
X} is a set consisting of paired images from the simulator
and their ground-truth segment mask. The use of these
additional losses significantly improved the CycleGAN’s
ability to preserve geometry in initial experiments.

Altogether, the total loss function becomes

L = LGAN + λcLcyc + λiLid + λsLsem (4)

where λc, λi, and λs are weights to balance the different
terms, respectively 10, 1, 1 in this work. Lcyc is the cycle-
consistency loss from [26], i.e.,

Lcyc =Ex∈X ||G
(
G
(
x; θGy

)
; θGx

)
− x||

+Ey∈Y ||G
(
G
(
y; θGx

)
; θGy

)
− y||

(5)

In this work, LGAN is set to the LSGAN loss [35], as it con-
sistently outperformed the WGAN-loss [36] in preliminary
experiments. The LSGAN-loss is [35]:

LLSGAN (D) =
1

2
Ex∈X

[(
D(x; θDx)− 1

)2]
+
1

2
Ey∈Y

[
D(G(y; θGx); θDx)2

]
LLSGAN (G) =

1

2
Ey∈Y

[(
D(G(y; θGx); θDx)− 1

)2] (6)



Only the loss in the Y → X direction is shown, but the
definition in the X → Y direction is identical.

The network architectures for both the generator and
discriminator networks, in this work, are U-nets [37], with
seven layers in the encoder and seven in the decoder. In
the generator, dropout is applied to all layers in the decoder
except the first. The discriminator value is calculated as the
mean of the hyperbolic tangent of the third layer in the
discriminator, while the segment mask is the output of the
full network. For training the CycleGAN, a dataset of 655
RGB-D images were manually collected from the real robot,
and the same amount of images were automatically generated
from the simulator. Images were augmented by horizontal
flipping, and training was done for 200 epochs.

C. Visual Servoing

The aim of the VS task in this work is to refine the final
grasp pose estimated by the DRL system. To do this, the
following visual features were selected:
• The x coordinate xg of the object centroid should be

positioned at the value x∗g , chosen as the coordinate of
the midpoint between the gripper fingers.

• The y coordinate yg of the object centroid should be
positioned at the value y∗g , chosen so the object is
between the gripper fingers when moving the gripper
towards the object in the camera depth direction.

• The orientation α of the objects primary axis in the
image should reach the angle α∗ to be perpendicular
to the angle of the line between the gripper fingers. If
the difference of the sizes of the objects primary and
secondary axes in the image is small, this feature is
disregarded, and no angular correction is performed.

The features are illustrated in Fig. 5. From the features, the
lateral translational components tx and ty and the rotational
component θ around the optical axis are given by:

tx = Zg(xg−x∗g) , ty = Zg(yg−y∗g) , θ = −(α−α∗) (7)

where Zg is the distance in the z axis from the camera
to the object, measured in the depth image. By using a
classical pose-based visual strategy [30], the control output
v = (vx, vy, ωz) has the following simple form:

v = −λ

 cos θtx + sin θty
− sin θtx + cos θty

θ

 (8)

where λ is a positive gain.
The image measurements used for VS are calculated using

the image moments of a segmentation mask. Specifically, the
semantic discriminator trained with the CycleGAN was used
to obtain a segmentation mask. Then the largest segment
with the class ”object” was chosen as the object and used
for tracking, feature extraction, and control law computation
using the ViSP library [38]. The segmentation and tracking
procedure is shown in Fig. 6.

Since the segmentation network is trained with the Cy-
cleGAN, its use comes at no additional cost. Nevertheless it
was compared to other methods. Fig. 7 compares our method

Fig. 5. Illustration of the features used for the VS in this work: the object’s
centroid and orientation. The blue cross shows the target position (x∗

g , y
∗
g).

to a histogram-based segmentation using K-means and the
Watershed algorithm, showing that DL is most efficient in
separating the background, object and gripper fingers.

(a) Input Images (b) Raw seg-
ments

(c) Cleaned
segments

(d) Tracked
blob

Fig. 6. Tracking objects in the VS module. RGB-D images (a) are fed
to a network that generates a segmentation mask (b). The mask is cleaned
up using morphological operations (c). The largest segment in this mask
is found, and the blob tracker of ViSP is used to track the object (d). The
blob tracker calculates the image moments of the segment, which are used
to find the centroid and orientation of the object.

(a) Color (b) Histogram (c) Watershed (d) Semantic
Discriminator

Fig. 7. Segmentation using a variety of methods. It is shown how the
semantic discriminator, in this work, outperforms the traditional methods.

In preliminary experiments, it was observed that large
angular errors led to an excessive velocity being applied to
the end-effector during VS, leading to the object disappearing
from the image frame. Hence, a two-step VS-approach was
adopted, where the first step consists of using only the linear
features (x and y position of the object centroid) for VS,
while the second step uses the full feature set. Initially, the
linear step is performed, and when it convergences the full
VS is initiated. If at any point of the full VS the object moves
too close to the image border, the system reverts to the linear
step to avoid losing the object, and this process is repeated
until VS converges. For the experiments in this work, the VS
policy uses an adaptive gain [39], so λ varies between 0.7
and 0.3 depending on the feature error.

The final step of the VS is to move the gripper down along
the camera z axis, to grasp the object. The distance to move
is obtained from the depth camera.



III. RESULTS AND DISCUSSION

Testing trials were performed to evaluate our approach for
transfer of the grasping agent from the simulation to the real
robot, in a reverse real-to sim manner, with VS.

A. Experimental Setup

The experiments were performed with a Panda robot arm
with 7 DoF, equipped with a simple, two-fingered gripper. An
Intel RealSense SR300 camera was mounted to the gripper,
providing RGB-D images of the current scene. Objects were
placed on a white background without clutter. Although
outside of the scope of this paper, some experiments with a
non-uniform background were attempted, but the trained Cy-
cleGAN was unable to generalize well to such environments,
since no such backgrounds were included in the training set.
The real-world setup can be seen in Fig. 1b.

The method was evaluated on the task of grasping ten
objects from the YCB dataset [33], and six previously unseen
objects. The objects were chosen to be similar in shape
and size to relevant compliant food objects, and to fit in
the generic gripper on the Panda robot. At the beginning of
each episode, the object was moved to an arbitrary position
in the camera’s field of view, and the pose estimation was
run. Three grasping episodes were run for each object, each
baseline and our approach, resulting in a total of 144 tests.

B. Results

The results of the experiments with the known objects are
shown in Fig. 8, and the results of the experiments with the
previously unseen objects are shown in Fig. 9. The figures
show the number of successful pose estimations out of three
attempts when using only VS, only DRL with the CycleGAN
for domain adaption, and our approach using both VS and
DRL + CycleGAN. We chose 3D semi-compliant objects,
previously unseen for the grasping agent, to validate our
approach, in contrast to the majority of state-of-the art work
in robotic manipulation, primarily focusing on rigid objects.
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Fig. 8. Results of grasping previously seen objects. Three grasp attempts
for each object. The total success rate was 17% (VS), 10% (DRL), and
83% with our method.

C. Baseline 1: VS grasping task

The target y-position yg of the object in the image was
set for the case where VS was run after the DRL grasping
agent, where the robot had already moved 30 cm towards the
ground. This led to an error of about 4 cm in that direction
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Fig. 9. Results of grasping previously unseen objects. Three grasp attempts
for each object. The total success rate was 39% (VS), 11% (DRL), and
83% with our method.

for all nearly successful grasps in the VS-only trials. These
grasping attempts were counted as successes, given that fine-
tuning the target would easily account for this discrepancy.

As the result plots show, the VS grasping task in these
experiments did not succeed in grasping objects. In general,
VS worked well during the linear servoing step, but when
correcting for angular errors, it had a tendency to make
too large adjustments, often losing the object from the
camera field of view or registering parts of the surrounding
environment as the object.

In addition to the problems with the angular errors, it was
also shown that the VS system was much more dependent on
a very good segmentation mask, due to a worse starting pose.
VS managed the linear pose estimation well, confirmed by
the fact that the cases where it was successful were typically
grasping round objects where the orientation doesn’t matter,
but it failed when correcting for large angular errors.

D. Baseline 2: DRL and CycleGAN

It is immediately apparent from the results that using
the CycleGAN alone was not sufficient for transfer of the
pose estimation policy. However, while the pose estimation
was unsuccessful, we observed that the system was typically
successful or close to successful in positioning the gripper
correctly in the x and y directions, as well as orienting the
gripper correctly. However, large errors in the linear z axis
were observed, leading to the gripper stopping between 2
and 10 cm above the object in most of the grasping trials.

Looking at the adapted images in Fig. 10 ((b) and (e)),
we see that the color image is adapted with a relatively high
success, while the CycleGAN is less effective in adaptation
of the depth images. Specifically, the depth image is very
noisy and lacks the clear definition present in the simulated
images. There is also a large possibility that the distance the
image encodes is incorrect, as there is no explicit mechanism
to ensure this is kept the same during the adaptation. These
aspects give light as to why the system using only the
CycleGAN fails in the z direction. However, the fact that the
color image translation is of such a high quality geometry-
wise shows how this method is well-suited to finding planar
and angular poses. Furthermore, Fig. 10 (d) and (h) show
that this property holds true for previously unseen objects as
well.



(a) Original (b) Adapted (c) Simulated (d) Original

(e) Original (f) Adapted (g) Simulated (h) Adapted

Fig. 10. Example RGB (top) and depth (bottom) images from the real
robot ((a) and (e)), adapted from the real robot using the CycleGAN ((b)
and (f)) and from the simulator ((c) and (g)). (d) and (h) show an example
of adaption of a previously unseen salmon object. Note that while the colors
of the salmon change, the network manages to keep the geometry.

E. Our approach: DRL, CycleGAN and VS

When using both the CycleGAN and VS for transfer
learning, the system is successful in most of the grasping
trials, and for all but two trials, the gripper was close to a
good grasp, with a mean distance of approximately 3 cm
for the failed attempts. The final two grasps failed early
due to errors in the VS stage, and the distance was not
measured. We observed that our approach takes advantage
of the strong points of each of the parts. Specifically, the
DRL + CycleGAN works exceptionally well for finding an
approximate angular and planar pose. This pose becomes the
starting point for the VS, meaning there is seldom need for
large angular corrections, which is where the VS-only system
typically failed. With such a good initial pose, the VS task
is able to refine the pose leading to a successful grasp.

The fact that our approach works well is further illustrated
in Fig. 11. The figure shows the error plots for two runs
of the VS system, one where the DRL + CycleGAN was
unsuccessful in finding a good initial angular pose, and one
where it was successful. The plots clearly show how the run
with a good initial grasping pose converges quickly, while
the other uses a long time, needing to revert to the linear
servo several times before finally converging.

While the system tends to work very well, we observed
two cases where it either failed completely or took a long
time to converge. The first is when the DRL + CycleGAN
failed to provide a good inital pose for the VS, and the VS
taking more time to converge as a consequence. The second
is when the segmentation mask had a low quality. This could
lead to oscillations of the measured features. Both of these
errors were rare in our trials and can be seen as minor.

Finally, we observed that our approach performed as well
on previously unseen, semi-compliant objects as on objects
from the training set. This shows that our method is able to
learn general features from the images and can generalize to
a variety of new objects, implying a potential for the reuse
of the system for novel grasping tasks without retraining,
which is a desired property of such systems.
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Fig. 11. Two error plots from the VS stage. (a) The DRL stage failed
in estimating the correct orientation of the gripper, leading to very large
angular velocities. This led to the system reverting to the linear VS, to avoid
losing the object from the image frame, repeating this procedure before
convergence. (b) The DRL successfully found a good starting pose for VS,
leading to a very fast and well-behaved convergence.

IV. CONCLUSION

In this paper, we presented a novel approach for transfer-
ring a DRL agent for gripper pose estimation from simulation
to a real robot, in a reverse real-to-sim manner, involving a
combination of a CycleGAN and VS. We presented the VS
task for refining the final grasping pose prior to grasp to
address the challenges linked to final gripper pose, reported
in literature related to transfer learning from simulation to
the real world. Results demonstrate the efficiency of our
approach, and the ablation study shows how our approach
outperforms selected baselines, achieving a grasping accu-
racy of 83% on previously unseen semi-compliant objects.
This is on par with or better than recent state-of-the-art
methods [14], [20], [22], [31]. To the best of our knowledge,
this work is the first to use a GAN in combination with VS
for the transfer of a DRL grasping policy to a real robot.

For future work, we intend to investigate the adaptation of
depth images with the CycleGAN, to improve the grasping
accuracy of the agent and to explore the combination of our
approach with other techniques. Finally, we are interested in
investigating a variety of sparse and dense visual features
for VS, and to explore various VS strategies that have the
potential to mitigate some of the challenges caused by large
angular errors.
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