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Cooperative Localization of Drones
by using Interval Methods
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Abstract

In this article we address the problem of cooperative pose estimation in a
group of unmanned aerial vehicles (UAVs) in a bounded-error context. The
UAVs are equipped with cameras to track landmarks, and with a communica-
tion and ranging system to cooperate with their neighbors. Measurements are
represented by intervals, and constraints are expressed on the robots poses
(positions and orientations). Pose domains subpavings are obtained by using
set inversion via interval analysis. Each robot of the group first computes a
pose domain using only its sensors measurements. Then, through position
boxes exchanges, the positions are cooperatively refined by constraint prop-
agation in the group. Results with real robot data are presented, and show
that the position accuracy is improved thanks to cooperation.

Keywords: cooperative localization, intervals, vision, constraint propaga-
tion

1 Introduction
Unmanned aerial vehicles (UAVs) have significantly attracted the attention and
interest in several applications areas involving multi-robot tasks, such as search and
coverage missions [18, 4], exploration [10], cooperative manipulation [20, 11], control
[15, 25], etc. In each of these cases, one problem to be solved is the cooperative
localization (CL) in a group of robots [23]. CL consists in improving the positioning
capacity of each robot through information exchanges (e.g. sensors measurements)
with other robots in the group.

Several methods exist for solving CL, such as the Extended Kalman Filter
(EKF) for a centralized system [12, 22, 8] or, if the computation is decentralized and
the communication is unreliable, other techniques like Covariance Intersection [27]
or Interleaved Update [1]. Approaches that assume bounded errors using polytopes
and linear programming algorithms have also been proposed in [26, 5].

In a bounded-error measurements context, interval set-membership methods
[21] allow rigorous errors bounds propagation in non-linear estimation problems.
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Many applications of these methods are found in practical areas like mobile robots
localization [7] or positioning integrity for autonomous cars [9], and as part of the
cooperative localization of underwater robots with sonar [3] and vehicle networks
with GNSS [17]. Interval methods also enable to derive efficient particle filter im-
plementations for highly non-linear localization problems [19]. In [16], the authors
have shown that interval methods are an effective tool for vision-based bounded-
error positioning of a drone.

In this paper, we propose to use interval set-membership methods as a tool
to solve the problem of cooperative localization of a fleet of drones. Each drone
in the group is equipped with a camera able to track georeferenced landmarks,
and a communication and ranging system providing each robot a way to exchange
data and measure distances with its neighbors. Communication and ranging are
also available with a base station of known position. The aim is to calculate a
pose domain for each robot from constraint propagation and set inversion tech-
niques. The proposed method computes, for each drone, a set that contains all its
feasilble poses. The solution sets take into account image measurements, distance
measurements and the georeferenced landmarks positions; all being uncertain with
bounded errors. The computed pose domain of each robot is guaranteed to contain
the solution as long as the measurements error bounds are not violated. The paper
is structured as follows: Section 2 presents the problem statement, then the pro-
posed estimation method is presented in Section 3. Finally, experimental results
are reported in Section 4.

2 Problem statement

Let us consider the global reference frame Fw, in which evolves a fleet of n drones
Rk (k ∈ {1 . . . n}). A reference frame Frk (also known as body frame) is at-
tached to the center of gravity of each robot. The pose of a drone Rk is given
by rk = (xk, yk, zk, φk, θk, ψk) in the global reference frame.

In the sequel, we consider that the drones are identical in their architecture.
They are equipped with calibrated onboard cameras (the intrinsic parameters are
known), and the rigid transformation between the camera frame and the robot body
frame is known by calibration and represented by the homogeneous rotation and
translation matrix cTr. We also suppose, as in [25], that each robot flies in near-
hovering regime, thus allowing the precise measurement of roll and pitch angles.
The neighborhood of a robot Rk, i.e. the set of robots it can communicate with, is
denoted by N (Rk).

2.1 Scenario description

The navigation environment consists of a base station B (see Figure 1) able to com-
municate with the drones, and m georeferenced landmarks (for which the positions
are known). In order to accomplish its navigation task, each robot of the group
must be located relative to Fw. Each drone Rk is equipped with the following
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Figure 1: Cooperative localization with camera and range measurements

embedded sensors: camera, altimeter and inertial measurement unit (IMU) with a
compass. This enables the following measurements:

• the altitude zk;

• the roll φk and pitch θk angles, with good precision;

• the yaw angle ψk (with rough precision due to magnetic disturbances);

• and the 2-D points x̄k
1 , . . . , x̄

k
m in the image Ik, corresponding to the observ-

able 3-D landmarks wXk
1 , . . . ,

w Xk
m in the environment.

In addition to these on-board sensor measurements, each robot Rk is able to:

• measure its distance dk,j to a neighboring robot Rj (Rj ∈ N (Rk)),

• measure its distance dk to the base station B (b = (xB , yB , zB)> in Fw)

• communicate and exchange information with each robot in its neighborhood.

This can be done by using for instance an IEEE 802.15.4.a Ultrawide Band (UWB)
communication system [24] which allows time-of-flight ranging.

Under the assumption of bounded-error measurements, we want to compute the
domains of all the feasible 6-DOF poses for each drone in the global reference frame
Fw. The components of the pose are those of the position vector pk = (xk, yk, zk)
and the attitude (roll, pitch and yaw) qk = (φk, θk, ψk). Given that three of the six
degrees of freedoms are measured with low uncertainty (zk, φk, θk), our attention
will be focused on estimating the horizontal position (xk, yk) and the yaw angle
ψk of each robot. The knowledge on the altitude, the roll and the pitch measured
for each robot will be integrated into the problem in the form of constraints. The
set of observation equations allows us to define, for each robot, a set of constraints
described in the following section.

2.2 Set of constraints related to the measurements
To solve the problem described in the previous scenario, let us express it as a
constraint satisfaction problem (CSP). We will then be able to use the SIVIA [13]
branch-and-bound algorithm with contractors (see Section 2.3) to characterize the
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domain of feasible poses for each robot. For this, each measurement is related to
the state of the robot by a constraint in the CSP describing the problem.

2.2.1 2D image measurements constraints

The pinhole camera model describes the projection of a 3D point in the image
plane. In homogeneous coordinates, a world point wXi = (X,Y, Z, 1)> is projected
in the image at the pixel coordinates x̄k

i = (u, v, 1)> given by:

x̄k
i = K Π cTw(rk) wXi, (1)

where K is the camera intrinsic parameters matrix (principal point coordinates
u0, v0 and focal length to pixel size ratios px and py) and Π is the perspective
projection matrix:

K =

px 0 u0
0 py v0
0 0 1

 , Π =

1 0 0 0
0 1 0 0
0 0 1 0

 , (2)

and cTw(rk) is the world to camera rigid transformation matrix, which depends on
the robot pose rk and the known robot to camera transformation cTr.

Let us denote by (cXk, cY k, cZk, 1)> = cTw(rk) wXi the coordinates of a land-
mark in the coordinate frame attached to the camera of the robot Rk. We can now
define the set of constraints related to measurements in the image:

• The perspective projection constraint of a point in the image Ck
proj :

Ck
proj,i :

{
u = pxx

k
i + u0,

v = pyy
k
i + v0

}
, with xki =

cXk

cZk
and yki =

cY k

cZk
. (3)

• The front looking camera constraint Ck
front, ensuring that the landmark is in

the front half-space of the camera:

Ck
front,i :

{
cZk

i > 0
}
. (4)

The pose of each drone Rk will have to verify the constraints Ck
proj,i and Ck

front,i

for all i corresponding to the observed landmarks.

2.2.2 Base station distance constraint

Considering a measurement dk of the distance to the base station B, the constraint
Ck

base expresses the fact that the Euclidean distance between the robot Rk and B is
equal to the measured distance. Recalling that the position part of the robot pose
is pk = (xk, yk, zk)>, we have :

Ck
base : {dk = ‖pk − b‖2} . (5)

This constraint is used to reduce the robot’s position domain. Indeed, as the
position of the base station b is known, the knowledge of dk constrains the position
rk of the drone to be located on a sphere S2(b, dk) as shown in Figure 2.
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Figure 2: Distance constraint to the base station

2.2.3 Inter-distance measurements constraints

Assuming that the ranging system antenna coincides with the center of mass of
the drone, distance measurements are independent of the robot attitude. The con-
straint related to inter-distance measurements between a drone Rk and its neighbor
Rj with Rj ∈ N (Rk) is defined by:

dk,j = ‖pk − pj‖2 with (k, j) in {1 . . . n}2 and k 6= j, (6)

Crk,rj : {dk,j = ‖pk − pj‖2}. (7)

The additional knowledge of dk,j by the robot Rk restricts the possible configu-
rations. For a given candidate position of neighbor Rj , the eligible positions of Rk

are limited to a circle (intersection of the two spheres S2(b, dk) and S2(pk, dk,j)).
Measurements of distances dk and dk,j provide constraints on the robot po-

sitions, but there are still 3 degrees of freedom (on 6DoF) corresponding to all
rotations of the formation around the base station.

2.2.4 Altitude measurement constraint

Let us consider the altitude zmeas
k of each robot measured by the altimeter, we have

the constraint zk = zmeas
k which places Rk on a plane.

It allows to constrain the sphere S2(b, dk) formed by the distance to the base
station B and the robot Rk on a horizontal circle resulting from the intersection of
S2(b, dk) and the plane.

It also allows to constrain the sphere S2(pk, dk,j) solution of the measurement
of the inter-distances dk,j . For a known position of Rj , Rk has only two possible
positions corresponding to the intersection of the horizontal position circle of Rk

with the sphere S2(pk, dk,j).
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Using only distance and altitude measurements leads to an ambiguity on the
position of the robot, dependent on the orientation and corresponding to the rota-
tions around the vertical axis of the base station B. Adding the constraints from
the image measurements will enable to remove the ambiguity.

2.3 Set inversion via interval analysis with contractors
The set inversion via interval analysis (SIVIA) algorithm [13] is a branch-and-
bound method, which enables to compute an outer approximation of the solution
of a CSP. The algorithm starts from an arbitrarily big box [x0] that must contain
the solution set. The solution is then enclosed in an outer subpaving S, i.e. a set
of non-overlapping boxes, which covers the solution. A parameter ε controls the
precision of the obtained solution approximation. SIVIA can be implemented with
box reduction operators called contractors [6]. A contractor for a CSP takes an in-
put box, and returns a smaller included box without losing any solution. Assuming
a contractor C is available for the CSP, using for instance interval constraint prop-
agation techniques [2], a very straightforward implementation of SIVIA is given by
the following algorithm (see the book [14] for more detailed algorithms):

Algorithm 1 Outer SIVIA with contractor.
Input: [x0]: initial box, C: contractor, ε: subpaving box width
Result: S: outer solution subpaving
1: S← ∅
2: L ← [x0] Stack of working boxes initialized with [x0].
3: while L is not empty do
4: [x]← pop(L) Get the next working box from the stack.
5: [x]← C([x]) Contract the working box.
6: if width([x]) > ε then If the contracted box is is larger than ε,
7: ([x1], [x2])← bisect([x]) bisect it,
8: push [x1] into L; push [x2] into L and add the subboxes to the stack.
9: else

10: S← S ∪ [x] Otherwise, add the box to the solution set.
11: end if
12: end while

3 Cooperative localization via position domain ex-
change

From the set of constraints related to the measurements defined in Section 2.2, it
is possible to define a CSP which will allow the effective computation of the robot
poses domains by propagating the uncertainties on the measurements. We propose
a distributed approach that consists in performing a data fusion based on position
domains sharing.
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Each robot computes its own pose domain only. In this way, whatever the num-
ber n of robots, the number of bisections dimensions in SIVIA remains unchanged
(equal to 3).

Figure 3: Distributed set-membership pose estimation method.

Position estimation is done in two steps (Figure 3). Firstly, each drone Rk

(k in 1 . . . n) estimates its pose domain by using image measurements and distance
to the base station (measurements that depends on robot Rk only). Secondly,
each drone exchanges its resulting position domain with all its neighbors and, by
using inter-distance measurements, refines its position thanks to the constraints of
distances between each robot Rk and its neighbors Rj , j ∈ N (k).

To solve the two steps, we define two CSPs for which we characterize a solution
set using SIVIA with the HC4 contractor [2].

3.1 CSP related to vision and distance to the base station

At each time step, Rk first computes an outer approximation Skimg+base of the
solution set of the CSP Himg+base defined from the constraints of Section 2.2 and
given by:

Himg+base :


rk ∈ [rk],
x̄k
i ∈ [x̄k

i ],
wXk

i ∈ [wXk
i ],

dk ∈ [dk],
{Ck

proj,i, C
k
front,i, C

k
base}, i ∈ 1 . . .m

 . (8)

Adding the distance measurement to the base station makes it possible to refine
the position of the robot. We can observe this tightening of the bounds through the
result of Figure 4 where a drone observes five landmarks and has a measurement
of its distance to the base station. Figure 4a shows the subpaving result for the
image measurements only. Figure 4b shows the result with measurement in the
image and distance to the base station.
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(a) (x, y)-plane projection of one robot pose
domain with only camera measurements.

(b) (x, y)-plane projection of one robot pose do-
main with camera and distance measurement to
the base station B.

Figure 4: Single drone pose domain computation (horizontal projection).

3.2 CSP related to inter-distance measurements for cooper-
ation

After computing the set Skimg + base of poses that are compatible with the distance to
the base station and the image, Rk computes the bounding box [pk] of its position
domain:

[pk] = �projp(Skimg+base)

where � is the bounding box operator and projp the projection of the pose domain
on the position space:

projp : SE(3)→ R3

(x, y, z, φ, θ, ψ)> 7→ (x, y, z)>.

The domain [pk] is then shared to all the neighbors Rj , j ∈ N (k) of the robot Rk,
and the distances dk,j between Rk and Rj are simultaneously measured.

3.2.1 Pose domain contraction

After receiving information from its neighbors (position boxes [pj ] and distance
measurements [dk,j ]), each drone Rk tries to refine the current bounds (Skimg + base)
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of its pose domain. It propagates the information on new inter-distance measure-
ments by locally contracting the CSP Hinter defined as follows:

Hinter :


rk ∈ Skimg+base
pk = projp(rk),
pj ∈ [pj ], j ∈ N (k)
dk,j ∈ [dk,j ], j ∈ N (k)
dk,j = ‖pk − pj‖2 j ∈ N (k)

 (9)

where pk = (xk, yk, zk)> is the position of Rk. The pose domain Skimg + base is thus
reduced by using interval constraint propagation to contract Hinter and provide the
final solution set Sk.

3.2.2 Propagation of the position domain improvement

The constraint network formed by the group of robots can contain cycles covering
several robots. The contraction of the local CSPs Hinter must be propagated again
across the network to improve the reduction of the feasible pose domain of each
robot.

If, after solving Hinter the bounding box of the robot’s position domain [pk] is
reduced, Rk therefore re-transmits the update of [pk] to its neighborhood. This
process is iterated until a fixed point is reached, i.e. when there is no significant
improvement on the position domains.

The proposed method has been implemented and tested using real data and
results are presented in the following section.

4 Experimental results

The proposed method has been tested for a fleet of n = 4 drones, with data acquired
on a Parrot AR-Drone2 UAV. The environment contains m = 5 landmarks, which
are boxes on which are placed AprilTag markers [28]. A Vicon motion capture
system has been employed to determine the landmarks coordinates, and to provide
the ground truth position and orientation of the drone. Figure 5 illustrates the
views of the onboard cameras for each drone at time t = 8 s. Error bounds in the
image are equal to ±0.5 px and the distance measurement error is assumed to be
less than ±5 cm.

4.1 Influence of cooperation on the size of the pose domain

The acquired dataset enables to test our method for a different number of drones.
Figure 6 shows in green the position subpaving obtained for the drone R1 at time
t = 6.3 s in the different cases, from n = 1 (R1 alone, no cooperation) to n = 4 (the
full fleet cooperates).
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Figure 5: Onboard cameras views at t = 8 s. Landmarks are boxes with AprilTag
printed pattern.

At the measurement epoch of Figure 6, the tracking of the landmarks in the
image has completely failed for R1, which leads to the violation of the image mea-
surements error bounds. Therefore, in step 1 of the computation, the solution
S1img + base is the empty set.

An inconsistency management test has been integrated to the process so that,
if Skimg + base = ∅, a domain Skbase related to the base station distance only is

computed. Hence the domain of R1 in Figure 6a is S1base, a thick green arc centered
on the position of the base station.

Figure 6b shows the position subpaving of the drones R1 and R2, when n = 2.
We notice the significant reduction of the position domain of R1 following the
cooperation with R2, although R2 is not very well located (able to observe only
two landmarks). More domain reduction occurs in the cases where n = 3 and
n = 4. This can be observed in Figure 6c and Figure 6d.

These different figures show that cooperation allows a better localization of each
robot, even in the case of full landmark visibility loss (case of the robot R1). This
can be confirmed by the statistics of domain widths and horizontal position errors
of the 4 robots for groups of different sizes, computed over the whole dataset and
presented in Table 1. The average width of the position domain of the drone R1 is
1.29m when the latter is located without cooperation. Thanks to the cooperation,
the width of its domain can be reduced and reach a value of 33 cm (in the case
of a group of 4 drones), which is a 74% decrease. The average horizontal position
error for R1, using the center of the subpaving bounding box as a point estimate,
improves from 22.6 cm to less than 5 cm (first column of Table 1b ).
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(a) (x, y)-plane projection of the pose domain
for the drone R1 (in green) at time t = 6.3s

(b) (x, y)-plane of the pose domains for drones
R1 (in green) and R2 (in red) at time t = 6.3s

(c) (x, y)-plane of the pose domains for drones
R1, R2 and R3 (in blue) at time t = 6.3 s

(d) (x, y)-plane of the pose domains for drones
R1, R2, R3 and R4 (in pink) at time t = 6.3 s

Figure 6: Horizontal projection of the pose domains computed for an increasing
number of robots in the group, at time t = 6.3 s.

With 4 UAVs, the mean horizontal position error of the fleet is about 13 cm.

4.2 Influence of cooperation in case of reduced visibility

At certain timestamps of the experiment, the tracking of landmarks in the image
fails, thus leading to violations of the error bounds.

Figure 7 presents the subpaving results of our cooperative approach for each
of the four drones. The first sub-figure (top-left) presents the case of complete
visibility, where each of the drones is able to track the 5 landmarks. The other
three sub-figures correspond to cases of reduced visibility where some of the 4
robots were not able to track any point in the image. Black outlines represent
the subpavings obtained before cooperation. In case of inconsistency in the image
measurements, they are discarded and only the distance to the base station is used
to compute the black subpavings. The colored subpavings represent the results
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Table 1: Horizontal position results statistics, for groups of 1 to 4 drones. The
reported figures are mean values over the whole experiment.

(a) Mean width of the horizontal position do-
main bounding box (in meters)

R1 R2 R3 R4

1 UAV 1.29
2 UAVs 0.86 0.56
3 UAVs 0.80 0.52 2.98
4 UAVs 0.33 0.37 0.78 0.61

(b) Mean horizontal position error, consider-
ing the center of the bounding box (in meters)

R1 R2 R3 R4

1 UAV 0.23
2 UAVs 0.16 0.09
3 UAVs 0.14 0.07 1.22
4 UAVs 0.04 0.05 0.25 0.19

(a) (x, y)-projection of the subpavings of the 4
drones in the case of full visibility at t = 0 s.

(b) (x, y)-projection of the subpavings of the 4
drones in the case of reduced visibility (R3, in
blue, is blind) at t = 14.8 s.

(c) Subpavings of the 4 drones in the case of
reduced visibility, R1(in green) and R2(in red)
are blind at t = 6.4 s.

(d) Subpavings of the 4 drones in the case of
reduced visibility, R1(in green) ,R2(in red) and
R3(in blue) are blind at t = 12.2 s.

Figure 7: Position domains of the 4 drones. Black outlines: subpavings before robot
cooperation. Colored domains: subpavings obtained after cooperative localization.
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obtained for each robot after a fixed point has been reached at the cooperation
stage.

These results show that if one of the drones is well located, the cooperation step
allows to find an acceptable position domain for all its neighbors.

5 Conclusion

In this article, an interval analysis based approach to solve the problem of cooper-
ative localization for a group of unmanned aerial vehicles has been proposed. The
fleet of drones use cameras to track visual landmarks, and a communication and
ranging system for cooperation. The approach is distributed and based on posi-
tion domains exchanges between robots. We have shown that using cooperation
and domain exchanges makes the approach extensible with respect to the number
of robots in the group without a significant computational cost in the estimation
process.

Experimental results with real image data have been presented for a group of
4 robots, with an average computation time for each of the drones equal to 350ms
without having implemented code optimization. Additionally, the results show that
cooperation between robots is an asset for group operation when many robots have
reduced visibility or are completely blind.

The proposed method can deal with detectable erroneous measurements in the
images, i.e. outliers leading to an empty-set solution. It then only relies on dis-
tances measurements and data exchange with other robots for position determina-
tion. This basic fault detection scheme however does not prevent the propagation
of non-detectable image measurements faults to the whole fleet, nor the mitigation
of faulty distance measurements. Future work will aim towards the development of
adding more fault-tolerance and robustness to interval-based distributed coopera-
tive localization systems.
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