UNIVERSITE nC
UNIVERSITE DE%

RENNES 1

THESE DE DOCTORAT DE

Rapporteurs avant soutenance :
Nicolas Marchand Directeur de Recherche au GIPSA-lab, Université Grenoble-Alpes
Pascal Morin Professeur a I'ISIR, Université Pierre et Marie Curie

Composition du Jury :

Président : Isabelle Fantoni Directrice de Recherche CNRS, LS2N Nantes

Examinateurs : Isabelle Fantoni Directrice de Recherche CNRS, LS2N Nantes
Nicolas Marchand Directeur de Recherche au GIPSA-lab, Université Grenoble-Alpes
Fabio Morbidi Maitre de Conférences au MIS, Université de Picardie Jules Verne
Pascal Morin Professeur a I'ISIR, Université Pierre et Marie Curie

Dir. de thése : Paolo Robuffo Giordano Directeur de Recherche CNRS, IRISA/Inria Rennes

Co-dir. de thése : Antonio Franchi Chargé de Recherche CNRS, LAAS, Toulouse

Résumé de la these

Le domaine de la robotique aérienne est en plein essor grace aux avancées tech-
nologiques des dernieres décennies. Le probleme de la commande de ces systemes
volants, comme les quadrirotors par exemple, aura constitué un vrai dé du fait de
leur sous-actionnement en général, et des phénomenes aérodynamiques complexes
impliqués. Il faut noter que les techniques de commande développées sont principale-
ment axées sur la captation de données et la cartographie en environnement ouvert.
Au cours des dernieres années cependant, le champ de la robotique aérienne pour
I'interaction physique s'est beaucoup développé. Ce type de scénario fait intervenir un
robot aérien devant appliquer un effort maitrisé sur un objet ou sur I'environnement,
alors qu'il vole. Des avanceées signi catives ont été réalisées, au travers notamment de
projets européens centrés sur cette thématique, comme [2, 3, 8, 4].

Dans ces deux grandes familles d'approches, qui s'intéressent donc aux dépla-
cements libres sans contact vs. avec interaction physique, I'environnement est geé-
néralement traité comme une contrainte indésirée limitant les mouvements du robot.
En d'autres termes, les taches de déplacements libres/rapides et celles d'interactions
physiques sécuritaires sont percues comme antagonistes avec la présence d'éléments
indésirés dans I'environnement. Une conséquence immeédiate de ceci est que les mou-
vements réalisés avec contact sont peu dynamiques. En s'inspirant de I'utilisation des
contacts faite en robotique humanoide, nous proposons dans cette thése d'exploi-
ter le contact physique avec I'environnement dans le but de réaliser de la locomo-
tion aérienne. Autrement dit, nous proposons de considérer I'environnement comme
une source de contacts exploitables a des ns de locomotion, plutdt que comme une
contrainte a éviter. Avec cette approche, nous souhaitons exploiter pleinement la dy-
namique des robots aériens en interaction physique.

Dans la premiére partie de cette thése, nous détaillons les travaux réalisés relatifs a
ce concept de locomotion aérienne. Cette idée est étudiée et démontrée au travers de
simulations et expérimentations d'une nouvelle plate-forme robotique aérienne consis-
tant en un quadrirotor équipé d'un bras robotique a un degré de liberté. Le premier
chapitre détaille la dynamique particuliére de ce systeme, qui comporte trois modes
de fonctionnement différents. Les deux plus évidents correspondent aux dynamiques

3

en vol libre et en vol avec contact, tandis que le troisieme correspond au comportement
particulier lors d'une possible collision au moment d'établir le contact. Un modéle de
collision est proposé pour comprendre et intégrer au mieux ce phénomene dans les
développements consécutifs. Deux stratégies de commande sont également données
a n de permettre a ce robot de suivre une trajectoire en temps-réel.

Dans le deuxieme chapitre nous expliquons la démarche entreprise a n de mettre
en place un algorithme d'optimisation de trajectoires adapté a ce systeme. Un cas
élémentaire de locomotion est choisi, dans lequel le systéme doit exécuter une ma-
nceuvre partant d'une con guration initiale en contact avec I'environnement (le bras
"s'accroche” a un premier point de pivot), et terminant dans une con guration avec un
autre point d'attache plus loin, en passant par une phase intermédiaire de vol libre.
La structure du plani cateur de trajectoires développé lui permet d'intégrer le compor-
tement dynamique complet du robot, y compris une possible collision comme évoqué
précédemment, ce qui lui donne la possibilité de tirer au mieux parti de ses particula-
rités. Une fonction de colt spéci que est également développée a n de garantir une
précision maximale du robot dans la phase la plus critique. Des trajectoires sont en-
suite générées pour différentes conditions, a savoir pour différentes limites d'actionne-
ment et quelques variations de la fonction de colt minimisée. Les trajectoires obtenues
sont ensuite analysées au regard de la tache de locomotion considérée.

Pour terminer, le chapitre 3 expose les détails de conception et de réalisation d'un
prototype en vue de tester les simulations précédentes. Un systéme d'attache magneé-
tique est développé puis réalisé et testé, ce qui permet au robot de s'attacher au point
de pivot dans des conditions propices a la locomotion. La phase de conception de ce
sous-systeme est détaillée, notamment la modélisation de celui-ci qui a été réalisée en
vue de simuler son comportement magnéto-mécanique et d'optimiser sa performance
au vu des conditions. Le comportement thermique de ce sous-systeme est également
modélisé a n d'assurer un fonctionnement nominal non destructif. Des éléments de
conception mécanique sont également donnés.

Dans la seconde partie, nous nous intéressons au probléme de la précision réali-
sable par un robot en suivi de trajectoire lorsque le modéle est incertain, et plus préci-
sément lorsque les paramétres du modeéle sont entachés d'erreur. Une généralisation
de la fonction de codt spéci que introduite auparavant (au chapitre 2) est proposée,
ameliorant le concept tout en le rendant applicable a une large gamme de robots. En

4

effet, nous avons étudié le probleme de la génération de trajectoires dont la sensibilité
aux parametres du modele de robot considéré est minimale, dans le cas général. Ce
type de trajectoires est généralisé a n'importe quel robot présentant une dynamique
avec des incertitudes sur les parametres, et se révéle particulierement approprié dans
le cas du quadrirotor étudié dans cette thése, du fait de l'incertitude importante concer-
nant ses parametres inertiels et d'actionnement. Pour traiter ce probleme, nous propo-
sons donc la nouvelle notion de "sensibilité de I'état aux parametres en boucle fermée”
et nous montrons comment cette quantité peut étre utilisée dans un contexte d'optimi-
sation de trajectoires a n de générer des trajectoires dont la sensibilité aux parameétres
est minimale, garantissant ainsi une forte robustesse.

Le chapitre 4 propose une premiere approche de ce concept pour produire des
trajectoires dites a “sensibilité minimale”, avec des analyses statistiques a n de tester
I'ef cacité de la méthode. Plusieurs cas sont considérés, faisant intervenir un robot
mobile différentiel (unicycle) et un quadrirotor avec des lois de commande comprenant
ou non un intégrateur, et avec une minimisation soit de la sensibilité de I'état nal, soit
de la sensibilité de I'état sur I'ensemble de la trajectoire (avec un codt intégral). Il en
ressort que la méthode semble bien fonctionner en simulation pour les cas considérés,
a savoir que les trajectoires générées donnent lieu a une erreur de suivi moindre par
comparaison avec des trajectoires non optimisées ayant les mémes conditions limites
lorsque les parametres du modéle sont mal calibrés.

Finalement, le chapitre 5 propose une généralisation de la méthode a n de produire
une théorie plus générale, rigoureuse, et susceptible d'étre appliquée plus largement
a différents types de robots. Entre autres, la possibilité d'avoir une loi de commande
imparfaite, c'est-a-dire, ici, qui n‘est pas capable d'annuler I'erreur de suivi en dépit de
parameétres bien calibrés et d'absence de perturbations, est intégrée dans la méthode.
D'autres métriques issues de la sensibilité sont également calculées. En particulier,
une utilisation de la sensibilité des entrées par rapport aux parameétres est proposée
pour pallier leur manque de predictibilité observé dans certains cas. Plusieurs ana-
lyses statistiques sont ainsi réalisées sur des simulations, avec des résultats validant
la aussi les méthodes proposées en terme de réduction d'erreur. En n, une série d'ex-
périmentations est menée sur un robot réel de type robot mobile différentiel (modele
Pioneer 3DX), validant également la méthode en améliorant les performances de suivi
de trajectoire obtenues.

Contributions

Les élements développés dans cette these ont fait I'objet de trois publications scien-
ti ques listées ici :

(@) Q. Delamare, P. Robuffo Giordano, and A. Franchi, “Toward aerial physical lo-
comotion : The contact- y-contact problem,” in IEEE Robotics and Automation
Letters (RAL), vol. 3, no. 3, pp. 1514-1521, 2018, au sujet de la locomotion
aérienne. Un algorithme de génération de trajectoires adapté a cette tache par-
ticuliere y est présenté et testé en simulation.

(b) P. Robuffo Giordano, Q. Delamare, and A. Franchi, “Trajectory generation for mi-
nimum closed-loop state sensitivity,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA), 2018, concernant la génération de trajectoires
minimisant la sensibilité de I'état aux paramétres. Une analyse statistique y est
présentée qui valide I'utilité et I'ef cacité de l'algorithme présenté.

(c) N. Staub, M. Mohammadi, D. Bicego, Q. Delamare, H. Yang, D. Prattichizzo,
P. Robuffo Giordano, D. Lee, A. Franchi, “The Tele-MAGMas : an Aerial-Ground
Co-manipulator System,” in 2018 IEEE Robotics and Automation Magazine (RAM),
vol. 25, no. 4, pp 66—75, 2018, qui présente un systéme de co-manipulation fai-
sant intervenir un hexacoptere spécial et un manipulateur au sol en coopération
pour mouvoir un objet.

Plusieurs vidéos ont été réalisées a n d'illustrer les résultats principaux associés a
ces travaux, concernant la locomotion aérienne !, la génération de trajectoires a sensi-
bilité minimale 2, et le systéeme Tele-MAGMas présenté a la Hannover Fair a I'occasion
des KUKA Innovation Awards 3 4.

video at https ://proxy.ens-rennes.fr/owncloud/index.php/s/INrxX5SRmm9S93TsmF
video at https ://proxy.ens-rennes.fr/owncloud/index.php/s/inxFbMCRzD7wCzQp
video at https ://proxy.ens-rennes.fr/owncloud/index.php/s/IKZgB2TCAYfoJ6wW
video at https ://proxy.ens-rennes.fr/owncloud/index.php/s/6ZBXsf9peCaHX52

PODPE

6

REMERCIEMENTS

Je tiens a remercier pour commencer mes directeurs de these, Paolo et Antonio, qui
ont su faire preuve au cours de ces trois années d'un enthousiasme a toute épreuve et
d'une ingéniosité riche et insolite, ce qu'il me fallait. Je remercie également les mem-
bres de I'équipe Rainbow pour la bonne ambiance qui y réegne. Un grand merci aux in-
génieurs pour leur aide précieuse, Fabien, Pol, Thomas, ainsi qu'a Marie pour m'avoir
permis d'accéder aux ateliers de I'INSA. Merci également a Tristan et Pascal pour les
chouettes moments partagés durant leurs stages. Merci aussi aux collegues de I'ENS,
gui m'ont accompagnés et soutenu dans cette aventure tant sur le plan scienti que
gue sur le plan de I'enseignement. Merci a tous ceux avec qui j'ai partagé de super
sessions musicales.

Je remercie également mes proches pour leur soutien et leur patience (il en fallait).
Merci a ma famille et Evelyne d'avoir été la plus que je n'ai été la pour eux. Je vous dois
beaucoup. Merci aussi aux trois Fontaine de m'avoir abreuvé de moments de bonheur
partagés, de randos (promis on l'aura ce vieux caillou), et autres repas a gogo. Merci a
Simon pour ces 10 ans de bidouilles en tout genre (ce n'est que le début) et pour ces
moments passés tous les 4, et merci aux Mektro12 pour le chemin parcouru ensemble.

En n je remercie Anais qui, au-dela de son indéfectible soutien, est le beurre salé
de mes galettes, et avec qui je suis er de partager la valse de la vie.

TABLE OF

CONTENTS

Introduction

Context
Overview of the state of the art
Aerial robotics
Trajectory generation
Thesis contributions

Thesis structure

Part |

1 MonkeyRotor concept and analysis

2

11
1.2

1.3

1.4 Validation of the Control Strategy
1.5 Conclusion

Introduction
Dynamical modeling
Denitions.

1.2.1
1.2.2
1.2.3
124

Flight control

13.1
1.3.2

Hooked phase
Free- ying phase
Impact Model

Hooked phase
Free- ying phase

Trajectory planning for the MonkeyRotor

2.1
2.2

2.3

Introduction
Planning algorithm

221
2.2.2

Results

Optimization procedure
Cost function

TABLE OF CONTENTS

2.3.1 Trajectoryplanning 43
2.3.2 Trajectorytracking, 47
2.4 Conclusion e 48
Conception of the MonkeyRotor prototype 53
3.1 Introduction e 53
3.2 Designof the hookingsystem 53
3.2.1 Generalconcept 53
3.2.2 Choiceofthesolution 55
3.2.3 Magneticcoildesign 56
3.2.4 Rotatingjointdesign e 69
3.3 Implementation 70
3.3.1 Hardware manufacturing 70
3.3.2 Software structure 72
3.4 Conclusion e 73
Part 1| 77
Trajectory generation for minimum state sensitivity 79
4.1 Introduction e 79
4.2 Open-loop state sensitivity o 81
4.2.1 Simpleintegratorcase e 82
4.2.2 More complexdynamics oL 84
4.2.3 Computation of the sensitivity in the generalcase. 86
4.3 Closed-loop sensitivity 88
4.3.1 Motivation 88
4.3.2 Derivation e 89
4.4 Application to robotic trajectory generation 92
4.4.1 Unicycle dynamicsand control 92
4.4.2 Planar quadrotor dynamics and control 94
4.4.3 Trajectory generation 97
4.4.4 Gradientderivation o 100
445 Simulations L 103
4.5 Validation through extended statistical analysis 105

10

TABLE OF CONTENTS

4.6 Conclusion 111

5 Improvements and generalization of the sensitivity minimization frame-

work 113
5.1 Introduction e 113
5.2 Generalization to arbitraryoutputs oL 114
5.2.1 Solving procedure inthe generalcase 123

5.2.2 Final error compensationcasestudy 127

5.3 Other sensitivity metrics 128
5.4 Statisticalanalysis 131
5.5 Experimental validation 137
5.6 Conclusion and perspectives oL 143
Conclusion 145
Bibliography 147

11

INTRODUCTION

It is nowadays common to see quadrotor UAVs both in the domain of public enter-
tainment with a large range of commercial products, as well as in professional appli-
cations such as remote inspection, cartography, agricultural spraying, or even Iming.
As well known, this ourishing of the eld of aerial robotics has been made possi-
ble thanks to the common progress of on-board computational capabilities, together
with the miniaturization of the associated electronics and power cells. Indeed, the
mass/energy ratio of modern lithium-based batteries coupled with the high ef ciency
of synchronous motors allow the conversion of enough mechanical power to keep a
multirotor aircraft in hover ight, for a non negligible duration. Moreover, the associated
control algorithms have been heavily developed together with the computing capacity
of on-board electronics.

As a result, current multirotor robots are more than ever autonomous, and present
a huge potential for future robotic applications with complex tasks in complex environ-
ments. It is clear however that this kind of robotic platforms are challenging to control
by nature, because of the complex aerodynamics of the rotating propellers (especially
when close to a surface or in adverse wind conditions) and because of their freedom
in the 3D environment. The possibilities are thus vast, but still a lot of challenges need
be dealt with to make this kind of aerial robots able to handle complex real-world situ-
ations. To this extent, the eld of aerial robotics have been developed a lot during the
past decade, with substantial improvements in the control and localization of multirotor
robots.

Context

The development and control of multirotor UAVs can be considered a practically
solved problem for a wide range of navigation applications, mainly with surveillance or
sensing tasks. Indeed, small aircrafts such as quadrotors are well suited to navigation
tasks in tight or complex environments, because of their interesting agility and low
price. Their relatively low weight associated with their important actuation capabilities

13

Introduction

(in terms of force and torques) allows highly dynamical motions, thus such robots can
achieve maneuvers that are adapted to dif cult environments, for example in rescue or
exploration applications.

Simultaneously, a number of recent works have also studied the possibility of having
a contact between such a multirotor aircraft and its environment in the past years, which
extends the robot applications a lot. The three main motivations for such studies are
the ability of multirotors to

1. grasp some objects in the environment and displace them,

2. apply a force or, more generally, a wrench to some part of the environment such
as a switch on a wall, a door handle to turn or some mechanism to screw (as
can be found in the DARPA challenge for instance),

3. perform a proper (smooth) landing with special properties, e.g., land against a
wall or on a moving platform [25, 46].

However, in these applications of aerial physical interaction, the structure of the
environment is always a source of constraints that must be avoided in order to pre-
serve both the integrity of the robot and of the environment. This is even more true for
complex environments such as in indoor applications or in cluttered urban or industrial
places, where possible collisions are numerous. As a consequence, in this kind of ap-
plications, the behavior of aerial robots is mostly bounded by the need to avoid or to
master the contacts with the environment.

Overview of the state of the art

Aerial robotics

In this context, numerous works have been conducted to assess the problems of
estimation and robust command of quadrotors. The speci ¢ dynamics of this kind of
aerial robot have been studied and leveraged so that, with the proper framework, one
can locate and control them in order to track desired trajectories, see e.g. [22, 36, 44,
37]. The problem of the servoing of these robots has also been studied with a lot of
different approaches, e.g., [37, 14, 22, 15, 53], ranging from sliding mode to H-in nity
or LQR. These works propose control algorithms that either focus on the robustness,
or on the fastness of the control loop.

14

Introduction

Note that in the vast majority of these works, the sensing relies on an external
localization structure such as indoor motion capture in order to retrieve the location of
the aircraft. A number of studies propose methods to improve the sensing component
by means of on-board sensors (mainly vision) and relevant associated algorithms [27,
45, 56, 1]. More recently, we have also seen methods that are able to treat cases where
only low quality information is available for sensing [52].

As stated before, the main applications of these works deal with navigation and
data acquisition, which places the focus on the ight of the quadrotor itself. However,
recent research has begun to leverage their operational potential in order to make them
physically interact with their environment. With this kind of approach, the quadrotors
can be used as aerial manipulators able to interact. The corresponding research eld
is called Aerial PHysical Interaction (APhI). For instance, [70, 54, 55] have explored the
possibility for a multirotor equipped with an on-board "manipulator’ (active or passive)
to achieve manipulation tasks. Interestingly, we have also seen a few new concepts
in the past years that tend to push the boundaries of multirotor capabilities by means
of original features, e.g., [71] which studied an original stabilizing fast perching, or [7]
which proposed a multi-part aerial robot with variable con guration for grasping, but
also [61] which propose a framework for aerial interaction that is based on a special
hexarotor with tilted propellers, thus fully actuated.

In parallel, some works have been focused more on the high level interaction with
an operator, e.g., [26, 60], proposing algorithms for conveying information between
an operator and the actual contact at best. This area of research presents several
challenges since translating the control methods from grounded robots with physical
interaction to equivalent aerial situations is not straightforward. This eld have also
been supported through the past years by large international projects such as [2, 3, 8,
4], which have focused on complex scenarios that tend to be more realistic.

As a consequence, we see that the current state of the art allows one to achieve
some aerial robotic task with interaction with the environment. However, in all these
works the interaction remains either highly restrictive, or needs to be controlled to follow
a mastered mechanical wrench. Therefore, in this thesis we propose to change this
perspective by considering the environment as a source of possible contacts that can
be leveraged for the sake of locomotion. Indeed, the aerial robot may be able to bene t
from the way certain particular contacts affect its dynamics, and thus achieve complex
movements that improve its maneuverability.

15

Introduction

Figure 1 — Examples of modern applications of aerial robotics. On the left, a commercial
product that is designed for waterproof rescue missions. On the middle, a foldable
guadrotor able to adapt its shape from [23]. On the right, a cooperative framework
sharing the task of moving an object between a grounded manipulator and an aerial
robot, from [60].

Trajectory generation

The second topic we are interested in throughout this thesis is the generation of
robotic trajectories, in particular for mobile robots. Indeed, the foreseen concept of
aerial locomotion is closely related to the ability of our algorithms to plan trajectories
that achieve the desired maneuvers. This kind of behavior also rely a lot on the ability
of the robot to track precisely the planned trajectory via its controller.

Research has been conducted on these subjects over the years, that led to different
kind of strategies for trajectory generation. One of the most used techniques for gener-
ating feasible trajectories that minimize some cost consists in leveraging the atness of
the robot, whenever this property is available. This concept was introduced in [24] and
exploited for trajectory generation in [50]. Basically, featuring this property for a dynam-
ical system means that it is possible to express both its input and output as functions
of a certain " at output™ (and possibly some of its derivatives). In practice, this allows
to easily compute the state of the system given a certain trajectory of the at output,
by means of an algebraic relation and thus without needing to integrate the dynamics.
This makes the trajectory generation much more ef cient in theory. A known pitfall of
this method, however, is that the expression for the input (as function of the at out-
put) is often highly non-linear and computationally heavy, and thus tend to cancel the
bene t of the method in cases where the actuation is part of the optimized elements,
e.g., in presence of actuation bounds. Moreover, this relation as well as the one for the
state require an high accuracy in the model parameters and often include the position
of some center of mass and inertia which are dif cult parameters to measure.

16

Introduction

The most common other methods for generating trajectories are simple direct tran-
scription, i.e., forward integration of the dynamics, but also direct collocation [9]. The
method of the (orthogonal) collocation consists of using orthogonal polynomials to rep-
resent at the same time the input and output of the dynamics at knot points. Contrary
to the atness method or direct transcription where the dynamics is intrinsically re-
spected by construction, here the relation between the input and output of the robot
is enforced as a constraint at each considered knot point (but not between them in
general). The precision of this approximation remains however controlled and can be
arbitrarily reduced by increasing the number of considered knot points.

A number of works have applied these methods to multirotor UAVs in the past years,
e.g., [57, 58, 67, 28, 52], with great success in the obtained performances. In all these
studies, the achieved planned trajectories make it possible to optimize an objective
(performance of a parameter estimation, observability) and/or respect special con-
straints (collision avoidance, actuation limits). However, we note that in these works
the trajectory tracking remains decoupled from the planning stage. Hence, the achieved
performance when tracking the planned trajectory is bound to the strict respect of the
conditions that are envisioned for the planning. In particular, any discrepancy that was
not modeled at the planning stage, i.e., disturbances, unmodeled phenomena or poorly
calibrated model, needs to be compensated by the real-time control loop, which will
inevitably affect the tracking performance in an unmastered and potentially high pro-
portion in case of inaccurate modeling.

Another kind of approach is to handle this dif culty by means of strategies that rely
on a human-in-the-loop, see e.g. [42, 43, 41]. With such methods, some part of the task
realization is given to the responsibility of the operator, which allows good compromises
between the exibility of the human operator and the achievable precision and strength
of the robot.

Finally, a more recent class of strategies try to integrate the behavior of the control-
loop at the planning stage in order to build “control-aware™ schemes that leverage at
most the information of the models, like in [28, 6, 21]. In this last kind of works, the way
that the controller will behave during execution of the trajectory is taken into account
from the planning stage. This approach makes the complete stack planner—controller
more tightly coupled by making the planner "aware" of the real-time control loop.

In this thesis we will propose a control-aware trajectory planning framework that
is adapted to robots with uncertain parameters, such as aerial robots which feature

17

Introduction

complex aerodynamics that are dif cult to model and compensate precisely.

Thesis contributions

In this thesis we develop strategies for trajectory generation, with the purposes of
improving aerial locomotion capabilities, and improving the tracking of trajectories for
systems that feature poorly known parameters. In particular, we focus on the two main
issues that are raised when considering aerial locomotion, which are

1. the generation and tracking of trajectories for an aerial robot with switching dy-
namics,

2. the generation of trajectories that are robustly tracked in presence of model
parameter uncertainties.

The study of these thematics led to a new trajectory planning algorithm for aerial
locomotion, described in

1 Q. Delamare, P. Robuffo Giordano, and A. Franchi, “Toward aerial physical lo-
comotion: The contact- y-contact problem,” in IEEE Robotics and Automation
Letters (RAL), vol. 3, no. 3, pp. 1514-1521, 2018.

A video demonstrating simulations of the resulting trajectories for aerial locomotion
is available °. A prototype have also been realized in the course of the thesis, including
a magnetic hooking system and the robotic platform of the MonkeyRotor, which will
allow further explorations of the concept of aerial locomotion.

Then, we developed a novel trajectory optimization framework for mobile robots with
uncertain models, based on sensitivity metrics, which led to the following contribution:

2 P. Robuffo Giordano, Q. Delamare, and A. Franchi, “Trajectory generation for
minimum closed-loop state sensitivity,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA), 2018,

This work was synthesized in a video showing the improvement in the tracking per-
formance when using a trajectory that is optimized w.r.t. the closed-loop state sensitiv-
ity, for a unicycle and a quadrotor ©. It also led to further developments and validations
of this theory as described in the last chapter of thesis, including new metrics of interest
based on the sensitivity.

5. video at https://proxy.ens-rennes.fr/owncloud/index.php/s/INrx5SRmm9S93TsmF
6. video at https://proxy.ens-rennes.fr/owncloud/index.php/s/inxFbMCRzD7wCzQp

18

Introduction

Finally, in relation with these two elds, we also participated in the development
of the Tele-MAGMasS project presented at the Kuka Innovation Awards 2017 (nalist),
which led to the following paper:

3 N. Staub, M. Mohammadi, D. Bicego, Q. Delamare, H. Yang, D. Prattichizzo,
P. Robuffo Giordano, D. Lee, A. Franchi, “The Tele-MAGMaS: an Aerial-Ground
Co-manipulator System,” in 2018 IEEE Robotics and Automation Magazine (RAM),
vol. 25, no. 4, pp 66-75, 2018.

A video of the realized simulation framework is available’, as well as a video of the
Hannover Fair demonstration 8.

Thesis structure

This thesis is split in two main parts. The rstone, Part |, is dedicated to the study of
the MonkeyRotor, a robot concept whose goal is to evaluate the properties and bene ts
of aerial locomotion. The second part, Part Il, contains the theoretical development and
validations of a new trajectory generation framework that aims at improving the track-
ing performances of robots — especially when subject to uncertainties in their model
parameters.

Outline of Part |

In this part, we develop the contact- y-contact problem which is a case-study of
aerial locomotion. The MonkeyRotor is introduced as the aerial robot dedicated to the
study of this problem.

Chapter 1 provides an analysis of the particular dynamics and control of the Mon-
keyRotor. The speci cities of this robot and how they can be leveraged in the context
of aerial locomotion are discussed.

Chapter 2 details the trajectory generation algorithm that was designed for this sys-
tem. We show the important features of the realized aerial locomotion, with an analysis
of the resulting generated trajectories among different planning conditions.

Chapter 3 gives the details about the realization of a prototype of the MonkeyRotor.
A novel magnetic hooking system is designed and realized, that makes it possible for

7. video at https://proxy.ens-rennes.fr/owncloud/index.php/s/KZgB2TCAYfoJ6wW
8. video at https://proxy.ens-rennes.fr/owncloud/index.php/s/6ZBXsf9peCaHX52

19

Introduction

the system to alternate between states with and without contact as wished.
Outline of Part Il

This part is dedicated to the novel algorithm for the generation of “minimum sensi-
tive trajectories.

Chapter 4 proposes a method that allows to generate trajectories resulting in a
minimization of the tracking error that are due to erroneous calibration of the model
parameters. A statistical analysis is conducted which validates the soundness of the
concept, based on a Monte Carlo simulation campaign.

Chapter 5 provides a generalization of the theory to robots that have controllers with
arbitrary tracking performance (including lag or ltering behaviors). Other sensitivity
metrics of interest are also proposed which improve the robustness of the overall task
realization. The concept is validated through large scale statistical analysis and real
experiment on a unicycle.

20

PART |

Part |

21

CHAPTER 1

MONKEYROTOR CONCEPT AND
ANALYSIS

1.1 Introduction

In this chapter we will describe the theoretical study of a new robotic concept. As
stated in the main introduction, the starting point lies in the observation that in aerial
robotics the environment is usually considered as an obstacle to be avoided, or more
generally, as a constraint. Conversely, in this Thesis we focus on the possibility of ex-
ploiting a contact between the aerial robot and the environment for the sake of enhanc-
ing the navigation capabilities.

To do so, we isolate a particular case-study which consists in making a quadrotor
equipped with an arm able to locomote under two pivot points. More precisely, the
goal of such a robot is to navigate through its environment not only by means of its
own ability to y, but also with phases where a physical contact with the environment
happens and is leveraged to the benet of the overall maneuver. This aerial robot
thus has a particular dynamics because of its ability to be in physical contact with its
environment. Figure 1.1 illustrates a possible depiction of this system when realizing a
maneuver that utilizes a contact with a pivot point.

1.2 Dynamical modeling

The MonkeyRotor consists of a quadrotor UAV equipped with an actuated 1-DOF
arm meant to grasp a pivot point (e.g., a branch) in the environment with its end-
effector. In this section we illustrate the dynamical model of the MonkeyRotor during the
two phases, i.e., hooked and free- ight, by borrowing from the previous works [69, 65]
which have considered similar scenarios. In particular, [69] has considered a quadrotor

23

Part I, Chapter 1 — MonkeyRotor concept and analysis

Figure 1.1 — lllustration of the concept of the MonkeyRotor: a quadrotor equipped with
an arm which leverages a pivot point in the environment in order to achieve aerial
locomotion.

with actuated arm but only in free- ight, while [65] has considered the hooked case but
with a passive arm. As already done in many previous works on similar subjects, see,
e.g., [29, 64, 49, 69, 65], we restrict the analysis to the vertical plane.

1.2.1 De nitions

With reference to Fig. 1.2, let F\y be an inertial world frame with axes fxw; zwg
and origin Oy, and Fg a body frame attached to the quadrotor with axes f xg; zg g: the
axis zg represents the body-frame thrust direction, and the origin Og is placed at the
quadrotor center of mass (CoM). The con guration of the quadrotor can be speci ed
by the position of Og in Fy, denoted as pg =[Xxg zz]" 2 R?, and the orientation of Fg
w.r.t. F\ here parametrized by the angle g from zy, to zg.

The arm is assumed to have the length L; and to have its joint mounted at the

24

1.2. Dynamical modeling

Zy

L.

Ow Xw

Figure 1.2 — Geometry of the MonkeyRotor, a ying robot with an actuated arm.

guadrotor CoM pg, around which it can rotate by an angle ; de ned as the angle from
zg to the arm direction. The CoM of the arm, denoted as p1, is placed at a distance
d; from Og. The con guration of the whole MonkeyRotor (quadrotor + arm) is then
denotedasq=[pg ']"2 R*wherewelet =[g 4] .

The quadrotor is equipped with two propellers generating two thrust vectors f,zg
and f,zg: the forces produced by the propellers result in a total thrust vector u;zg =
(f, + f))zg and torque u, = LTB(fr f|), with Lg being the distance between the two
propellers. The arm is also assumed actuated by a torque acting at Og. These three
inputs for the whole MonkeyRotor are then denoted as u = [u; u,]" 2 R3. For conve-
nience, we also de ne the alternative input vector u; =[f, f;] = Ku where

2 3
1=2 1=lg O

K = E 1=2 1=Lg O z: (1.1)
0 0o 1

Indeed, while the MonkeyRotor dynamics are more naturally expressed in terms of
the input vector u, the physical actuation constraints, i.e., min and max joint torque
and propeller thrusts, affect the input u¢. This distinction will be important in the next
developments. We nally let mg, Jg, my, J; be the mass and inertia of the quadrotor
and arm, respectively.

25

Part I, Chapter 1 — MonkeyRotor concept and analysis

We now describe the dynamical model of the MonkeyRotor in the two considered
phases of hooked and free- ight.

1.2.2 Hooked phase

Let 2 3
sin(1+) 5

cos(1+) 12

pe = ps + L14
represent the position of the arm end-effector in F\y and pg 2 R? the (xed) position
of the hook in Fy, . Following [65], the hook constraint pg(q) = pg restricts the Mon-
keyRotor motion to a circle centered at p¢. In this constrained case the MonkeyRotor
con guration is fully determined by the con guration variables : by applying standard
techniques (Euler-Lagrange procedure), one can then obtain the following (reduced)
dynamical model governing the behavior of the states (; 2

Mnp()®+9n()= Gn()u (1.3)
where 2 3
_ 4B 0 .
M) = o malze muly do? (1.4)
2 3
Gh()=14 0 ! 15; (1.5)

L]_Sin(1) 0 1

andgn()=[0(mgL;+my(L; dp))gsin(g+ 1)]”. Since the matrix Gy () is always full
rank, the hooked MonkeyRotor is overactuated, with two controlled variables for the
three control inputs of u. We note that in [65] the joint arm was considered passive, i.e.,

= 0 thus resulting in a fully-actuated system with a singularity for ; = 0 as opposed
to the case under consideration which is singularity-free. Sect. 1.3.1 will elaborate more
about the possible use of the MonkeyRotor overactuation.

The behavior of the remaining MonkeyRotor states (pg; pg) can then be alge-
braically expressed as a function of and —by exploiting the hook constraint pg(q) =
Pe as 2 3
sin(1+) 5

cos(1+) (1.9)

pg = pg Li14

26

1.2. Dynamical modeling

and 2 3
cos(1+ &) ..

sin(1+) &)

Pg = Li(=++)4

1.2.3 Free-ying phase

The free- ying dynamical model of the MonkeyRotor is a particular case of the
system presented in [69]. In particular one has

M¢(a)g + ci(q;)+ gr(d) = Gru; (1.8)

where the expression of the various terms are given in [69].

We note that, as opposed to the hooked scenario, the MonkeyRotor is underactu-
ated during free- ight (three inputs u for four con guration variables q). However, as
discussed in [69], it is possible to nd a at output or linearizing output [24] which al-
lows for full dynamic linearization of the system dynamics. More details about this point
are given in Sect. 1.3.2.

1.2.4 Impact Model

One particularity of the concept of aerial locomotion is that the contact between the
end-effector of the robot and the pivot point is possibly accompanied by a voluntary
shock, which means that the hooking event itself may not be smooth for the sake of the
global maneuver. Indeed, let t;, be the time at which the MonkeyRotor switches from
a free- ight phase to a hooked phase because the end-effector has reached the pivot
location pg and performed a successful hook. If pe(t,) 6 O, i.e., the end-effector ve-
locity is non-zero just before hooking, a sudden impact will occur affecting the evolution
of the MonkeyRotor state (q; Q).

Therefore, the goal of this section is to propose a simple impact model based on
impulse theory, see, e.g., [47] able to capture the instantaneous change from q(t,)
to q(t,) because of a possible collision between the end-effector and the hook. As
customary, we assume continuity of g, i.e., q(t,) = q(ty), in presence of an instan-
taneous impact [47]. The availability of this impact model will then allow us to have a
complete model of the MonkeyRotor full dynamics that integrates the effects of a pos-
sible collision. In a trajectory planning context, as it will be done later in this Thesis,

27

Part I, Chapter 1 — MonkeyRotor concept and analysis

this allows the planner to be "aware' of the possible collision, and thus generate more
realistic motion plans that can also take advantage of this . For example, as far as the
feasible trajectory space is large enough, the collision between end-effector and pivot
can be controlled by the trajectory planner for quickly reducing the system kinetic en-
ergy. Conversely, the magnitude of the impact can also be reduced in the same way if
necessary.

Pe (ty)

Figure 1.3 — Notations for the collision model. The large and “instantaneous' reaction
force at E is synthesized in the impulse vector jn.

Recalling that g = [pg _T]T, we rst consider the effects on the two angular veloc-
ities — = [=]". First of all, we remark that the choice of placing the joint base at
the quadrotor CoM — a property also known as protocentricity [66] — implies that the
rotational dynamics of the quadrotor base is completely decoupled from the dynamics
of the collision. Indeed, the efforts that are transmitted through the arm joint are only
linear forces (no torque), which do not generate any torque on the quadrotor base as
they are directly applied to its CoM without offset. Therefore one has () = =(t;,),
i.e., the rotational velocity of the quadrotor base is not affected by the impact. Concern-
ing the angular velocity of the arm after the impact, we compute it by assimilating the
MonkeyRotor to an equivalent body with the following properties for the sake of impact
modeling:

— Mass Meg = Mg + My

28

1.2. Dynamical modeling

Mg pPg + M1P1
meq

— inertia Jeg = J1+ Mikp: Pegk® + Mekps Pegk®,
and with an equivalent linear velocity veq = peq and the total absolute angular velocity
leg= 8 + =
During the short time interval t = t;, t,, a force F. is applied by the pivot to the
end-effector of the arm because of the collision. One can de ne the impulse vector |,
which is the total momentum exchanged by the end-effector and the pivot during this
impact: 7
j= t Fcdt=jn
[De(ty) pe (t,) (1.9)
kpe (t,)k
with n the unit vector de ning the direction of the impulse |, see Fig. 1.3. The duration
of the collision is small enough for us to consider that this direction is given by the
velocity before the impact pg(t,). Therefore, the direction n is determined by the
MonkeyRotor state at t,, .
This quantity can be used for determining the precise effect of the impact. Indeed,
the change in the linear and angular velocities veq and ! o4 before and after the collision

can be modeled with

Jea(! eqtn) eq(th)) =(Pe Peg) (M) (1.10)

8

% meq(Veq(th Veq(th) =]

3 . .
= Jkpg PegKsin

where p¢ is the location of the pivot point where the collision occurs and is the angle
between vectors pg Peg(t;,) and n. Thus we get that
: J
3 Veoth) = Veolt) +
eq :
J. : (1.11)
.§ leq(th) = !eq(th) + Tka Pegk sin
eq

Moreover, one has the kinematics relationships

8
2 Veq(th) = pa(ty) + S((t7)) (P1 Peg)

> (1.12)
©ope(ty) = pa(ty) + S (7)) (P Pe)

29

Part I, Chapter 1 — MonkeyRotor concept and analysis

2 3
0
where S(a) = 4 %o R2 2
a o0
Then, by combining eq. (1.11) with the kinematics of eq. (1.12), and by using the
fact that the end-effector velocity is zero after the impact, i.e., pe(t;) = 0, one can

solve for the impulse normj = kjk as

j — mequE(th)k . (1.13)
1+ MeqKPeo(th) Pek sin
Jeg

Note that j can be expressed in terms of only known quantities, in particular the
MonkeyRotor state (q(ty,); a(t;,)) just before the collision. Therefore, plugging (1.13)
in (1.11) yields the value of ! 4(t}) = =(t;)+ =(t}), which in turn determines (t;)
since, as explained before, s (t;) is known. Having obtained () and (t;), the
relationship (1.7) nally allows us to determine the remaining ps(t;) and, thus, the
whole vector q(t;) as sought.

We observe that the obtained expression for the impulse norm j is such that 1) if
the velocity of the end-effector before the impact is null, i.e., the hooking is done in
a perfectly smooth way, then the impact has no effect, and, 2) the impulse is greater
when the angle is closer to zero, i.e., when the arm arrives frontally towards the pivot.

Note that no parameter — like elasticity or any other mechanical property related
to the materials — was required in this modeling of the collision, which makes it inde-
pendent from the mechanical implementation of the end-effector, and from the detailed
characteristics of the pivot. Indeed, the possible loss of kinetic energy that occurs with
this impact event is purely linked to the direction of the velocity w.r.t. the target pivot.

1.3 Flight control

In this section we propose two control laws that allow the system to track some
desired outputs both in the hooked and free- ying phases. The desired output to be
tracked and their derivatives may be computed as trajectories in a prior planning stage,
as it will be discussed in the next chapter. Then, the tracking policies that are described
here compute a real-time input u for the system dynamics with the goal of bringing its
output as close as possible to the desired one, even in the presence of perturbation.

30

1.3. Flight control

1.3.1 Hooked phase

The goal of the control in the hooked phase is to let the MonkeyRotor con guration

track the reference optimal trajectory (t) generated by the planning algorithm. This

can be accomplished by implementing a static feedback linearization of the Monkey-
Rotor constrained dynamics (1.3)

u=GhH(JMn() +0n()+ (1.14)

where the ¥ operator indicates the usual Moore-Penrose pseudoinverse, 2 R is a

scalar gain and
1

2
Nnh = E Llsin(1)2 (115)
Ll Sin(1)
Is a vector spanning the one-dimensional null-space of matrix Gy (due to the Monkey-
Rotor overactuation during the hooked phase).

By plugging (1.14) into (1.3), one then obtains the linearized dynamics * = which
can be stabilized along the reference trajectory (t) by choosing

=t k(= D+ k() (1.16)

where kq > 0 and k, > 0 are suitable gains.

As well-known, setting = 0 in (1.14) yields the minimum-norm solution for vector u.
However, the null-space term ny can be exploited for accomplishing a secondary
objective besides the tracking of (t). In our case, we chose to exploit this term for
coping, as much as possible, with the actuation constraints:

Ui Uf Us: (1.17)

This is obtained as follows: by rewriting (1.14)—(1.16) asu = u + ny, we seek the
optimal value solving this linear minimization problem

=argminj j
(1.18)
st: us Ku + Knp Uus:

If a solution exists, then setting = in (1.14) will guarantee ful Iment of the tracking

31

Part I, Chapter 1 — MonkeyRotor concept and analysis

task and, at the same time, of the actuation constraints with the smallest possible norm
for the control input u. In case (1.18) does not admit a solution, no control action can
meet the constraints while realizing the tracking task. In this case the input vector us is
simply saturated. We note that this case is quite unlikely to occur in practice since the
trajectory to be tracked (t) is already compliant “by construction” with the actuation
constraint. Any additional control authority needed to recover possible perturbations
and disturbances during the ight can then be typically accommodated by exploiting
the null-space term ny,.

Note that in the case where we only seek a value for that makes the input respect
the bounds without considering the cost minimization, one can solve analytically the
corresponding problem. Indeed, the following equivalence holds:

8

3w Nh1+ Ut Uz

§Q N2+ Uz Uz min max

© Uz Nhs+ Uz Uz

where 8 U U T U

3 = max(min(== =581 2 [1,3]

I |
: U U Ui Ug, ..

2 e = mln(max(*'nh_ = 'nh_ ?);8i 2 [1;3]

[|

Hence, by calculating the values of ., and ax, a range is determined for that
guarantees that the inputs lie in their bounds. Among this range, we can then choose,
e.g., the smaller in absolute value, which corresponds to minimizing the growth of the
input norm implied by this null-space exploitation. In the case where i, > nax, there
Is no solution and the input must be truncated.

1.3.2 Free-ying phase

As explained in Sect. 1.2.3, during free- ight the MonkeyRotor is underactuated but
one can still achieve full dynamical linearization of its dynamics by acting on a suitable
at/linearizing output. In short, this is obtained as follows: let 5 = 1+ g, dene
y(q) =[pt 18]" 2 R®as the at/linearizing output and let y (t) be the corresponding
reference optimal trajectory generated by a trajectory planner such as the one which
will be presented in Sect. 2.2. Let also u = [u; u, *]" be the new (extended) input
vector, where two integrators have been placed on both the u; and original inputs.

32

1.4. Validation of the Control Strategy

The new extended state which includes the dynamic extensions of the original inputs
is then denoted as x = [pg pgs ' oy U, |7 2 R2. With these settings, one can
show (see [69]) that differentiating the at output y four times yields

Vo=f(x)+ A(X)u (1.19)

where A (x) is a square nonsingular matrix as long as u; 6 0. System (1.19) can then
be inverted by choosing u = A(x) (f(x)). Tracking of the optimal trajectory y (t)
is then obtained by choosing, as usual,

=V k(Y V)tk(y y)tk(y V+kay y) (1.20)

where Kki; ka; ks; kq > 0 are suitable gains.

1.4 Validation of the Control Strategy

In order to test the validity of the proposed dynamics and control laws derived in the
previous sections, we conducted simple simulations of the system in the two situations:
hooked and free- ying. For the two cases, we design a simple polynomial trajectory for
the desired output which allows us to derive the analytical expressions for the time
derivatives. In this Thesis we mostly use polynomials for the trajectory representation.

Let be arepresentation function for the trajectory, which transforms a nite vector
of coef cients a and a current time t into an evaluation of the corresponding trajec-
tory at t. For a unidimensional trajectory y (t) 2 R, this means that the polynomial
representation translates into the following expression

Y
y®= (at)= Qa1 — (1.21)
i=0

where the order of the polynomial is n, 1, and where t; is the duration of the tra-
jectory (5 s here). Extending to multiple dimensions, i.e., y (t) 2 R™, is as simple as

33

Part I, Chapter 1 — MonkeyRotor concept and analysis

duplicating the expression for each coordinate, which can be written
2 3
A+l
U(! i+1+ t
y®= @y= § N7 2 (1.22)

i-0 ts

Qi+1+ N(ny 1)

where N 1is the order of the polynomials, such that n, = Nny.

This de nition of the trajectory also allows us to easily construct a vector of polyno-
mial coef cients a which respects initial and nal constraints synthesized in a vector d,
by means of the linear relation

a=M;d (1.23)

where M is a simple matrix that only depends on the duration t; .

%1013

tr. err. [rd]

t [s] t[s]

Figure 1.4 — Simulation of the hooked dynamics of the MonkeyRotor. On the left, the
realized angles g; 1. On the right, the corresponding tracking errors: the controller
perfectly tracks the trajectory in these ideal conditions.

For the hooked phase, we test the control law on a simple trajectory that begins
with angles [0;0] and ends at[=6; =2]rad. The nal angular velocities arbitrary are
set to [=4; =4] rad/s, while the initial ones and other derivatives are set to zero.
We observe on Fig. 1.4 that the tracking task is realized as expected, with decoupled
dynamics for the two angles as wished. The tracking error is of the order of numerical
precision of the solver, which means that the controller was able to perfectly track the
desired trajectory. This is of course possible because the parameters of the system are
perfectly known, and there is no unmodeled perturbation. However, this would not be
the case in real conditions, because of these two sources of error.

34

1.5. Conclusion

Then, concerning the free- ying phase, note that for the sake of the implementa-
tion we also use the atness to derive expressions for the initial condition (angle ; in
particular). For this test we set the initial position to [0; 0] and the nal position to [3;2]
(m). The derivatives and angles are set to zero at the beginning, while a nal velocity of
[1;1] m/s is imposed in order to get a trajectory that excites the dynamics. Figure 1.5
illustrates the results of this simulation. We can see that the tracking is perfectly done:
once again the controller was able to cancel the tracking error down to the numerical
precision of the solver, which validates the choice of the control law.

St ' T T 7 x1013
4 —_
) 8
7—13_ -6
E ¢
N 2 s
x t 2
1 o
o 0
-
0 2
0 1 2 3 4 5

t [s] t[s]

Figure 1.5 — Simulation of the free- ying dynamics of the MonkeyRotor. On the left, the
realized position x; z. On the right, the tracking error (in position and angle): the error
is of the order of numerical precision, which shows that the controller perfectly tracks
the trajectory in these ideal conditions once again.

1.5 Conclusion

In this chapter we have introduced the concept of aerial physical locomotion by
considering the MonkeyRotor system — a quadrotor UAV equipped with a 1-DOF arm
able to hook at some pivot points and to exploit these contacts for enhancing its ma-
neuvering possibilities. To this end, a suitable dynamical model for both the hooked and
free- ying phases has been presented. The speci cities of the two corresponding dy-
namics are mainly related to their degree of actuation: the system is overactuated when
in contact, while underactuated when not. As a consequence, the maneuverability of
the system varies along with its state, i.e., it is more maneuverable when in contact.

35

Part I, Chapter 1 — MonkeyRotor concept and analysis

Thus, one can expect that a proper exploitation of the whole dynamics should leverage
this particularity: the hooked phase should be subject to “informative” maneuvers.

We also introduced a collision model for the re-hooking event, which we think is
of paramount importance for further exploration of the aerial locomotion concept. This
model is based on global energy dissipation, which implies that it does not require
any physical parameter. Two control laws for the two hooked and free- ying phases
have also been proposed and tested in simulation. In ideal conditions, i.e., parameters
perfectly known and no perturbations/unmodeled phenomenon (also no input satura-
tion), the two controllers are able to track a desired trajectory that is submitted to them
without any error.

36

CHAPTER 2

TRAJECTORY PLANNING FOR THE
MONKEYROTOR

2.1 Introduction

This chapter is dedicated to the presentation of the trajectory planning algorithm
that has been developed and tested in simulation specially for the MonkeyRotor. Still
considering the case-study of the contact- y-contact problem, the sought planner aims
at building a trajectory that brings the robot from an initial hooked con guration under
a rst branch, to a second hooked con guration under another branch. Therefore, this
planner is constructed in a way that includes the models of the two dynamics of the
system (hooked and free- ying) that were described before, but also the impact that
occurs at the rehooking.

2.2 Planning algorithm

As explained above, we focus in this chapter on the objective of bringing the Mon-
keyRotor from the initial rest con guration under the rst branch, to the nal rest con-
guration under the second branch, while minimizing some cost. We formally describe
this problem in this section.

To do so, we discuss here a trajectory planning strategy meant to generate feasible
trajectories for letting the MonkeyRotor passing from a hooked con guration to another
hooked con guration. Figure 2.1 depicts the considered scenario: let x =[q" q']" 2
R"™, ny = 8, represent the MonkeyRotor state, and assume two initial and nal states
Xo, Xt are given corresponding to the MonkeyRotor hovering stationary while hooked to
the initial and nal pivot point. represent the actuation constraints on the MonkeyRotor
input usy = Ku (see (1.1)). The goal is to nd an optimal (w.r.t. a cost of interest) and

37

Part |, Chapter 2 — Trajectory planning for the MonkeyRotor

Xh(Xr)

Xo Xt

Figure 2.1 — Optimization scheme, where Xg is the initial state, x, the transition state
where the system passes from its hooked dynamics to its free ying one, X the recip-
rocal one and xs the nal state.

feasible trajectory for the pair (x(t); u(t)) over a time interval t 2 [to; t;] able to bring
the MonkeyRotor from x(tg) = Xo to X(t;) = X; while coping with the actuation con-
straints 1.17. Depending on the conditions (initial/ nal states, actuation constraints),

one can expect the optimal trajectory to involve an initial “swinging' (attached to the
rst pivot point) until the hook is released (state x, in Fig. 2.1), followed by a free-
ying phase, and subsequently a possible nal "swinging' when re-hooking with the

next pivot point (state x; in Fig. 2.1). Indeed these swinging maneuvers can be ex-
ploited for ef ciently building up/losing energy, thus fully exploiting the possibility to
actively exchange forces with the environment (as in a locomotion task) in addition to
the available thrust/torque inputs.

The complexity of this optimization problem, also due to the change in the Mon-
keyRotor dynamics when switching from a hooked phase to a free- ying phase, does
not allow for an analytical solution (i.e., nding the complete optimal trajectory over t 2
[to; tf]). Therefore, a numerical optimization method needs to be employed: among the
many possible strategies, we now discuss the adopted one which we found amenable
to a numerical resolution despite the fact it is possibly slightly suboptimal as we will
see.

2.2.1 Optimization procedure

In order to handle the optimization problem, we split it in two loops: the inner loop
looks for an optimal trajectory given a candidate release state x,. The outer loop then

38

2.2. Planning algorithm

tries to optimize the candidate x,. This method is inspired from the concept of dynami-
cal programming where the global optimum is built from solutions of smaller problems,
see [13]. However here, the cost function may differ between the considered subprob-
lems as we will see next, and thus the procedure may not be globally "optimal” w.r.t. a
single objective.

Inner loop

Given a candidate release state x, and a cost function J;(x) (to be speci ed later
on), this rst optimization problem

JiXe) = My 100
subjectto x= f,(x)+ G, (X)u
X(to) = Xo
X(tr) = X,

u; Ku Us

returns the optimal trajectory w.r.t. the cost J;(x) for joining x(tg) = Xo with x(t;) = X,
at some release time t; > to to be determined by the optimization algorithm. Here,
x= fh(x) + Gr(x)u is a shorthand for the MonkeyRotor constrained dynamics (1.3)—
(1.6-1.7). Note also that the optimal cost J, (x,) is a function of the release state x,.
Subsequently, this second optimization problem
LX) = w92
subjectto x= f;(x)+ G (x)u

X(tr) = X,

Pe(th) = Pe

Kpe (th)K Vmax

u; Ku Us

nds an optimal trajectory for bringing the (now free- ying) MonkeyRotor from x(t;) = X,
to a hooked state with the second pivot point represented by the hook constraint
pe(th) = pg, where t, > t, (the hooking time) is to be determined by the optimiza-
tion. Here, similarly to before, the notation x = f;(x) + G¢(x)u is a shorthand for the

39

Part |, Chapter 2 — Trajectory planning for the MonkeyRotor

free- ying MonkeyRotor dynamics (1.8).

Note that the expected constraint pe (tn) = 0 (null end-effector velocity when hook-
ing) is here replaced by the milder kpg (th)K Vimax , With vinax > 0 being a small positive
threshold. Indeed, we empirically found that accepting a nonzero but small kpg (tp)k fa-
cilitates the optimization procedure since the optimal trajectory is allowed to “exploit' a
hard but controlled impact with the pivot for quickly reducing the system energy with-
out spending control effort, in a way, again, reminiscent of how humans/animals exploit
contact when moving. We note that the effects of a possible nonzero kpe (th)k are taken
into account by the impact modeling discussed in Sect. 1.2.4). Finally, note that the op-
timal cost J,(X,) and the whole optimal state evolution x (t), t 2 [t,; t,], are again a
function of the release state x,. We will then denote with x,(tn; X;) the nal hook state
reached at t;, as a function of the release state Xx;.

Finally, this third optimization problem

Ja(X) = oy I

subjectto x= f,(X)+ GL(X)u

X(th) = (Xn(th; X¢))
X(ts) = X

u; Ku Us

nds an optimal trajectory for bringing the MonkeyRotor which is now hooked from
X(tp) to the nal state x(t;) = X7, where t; >t} is to be determined by the optimization
algorithm. Here (xn(t,; X)) is a shorthand for the reset action performed by the
collision model of Sect. 1.2.4 because of the possibly nonzero hooking velocity pg (ty).
Finally, the optimal cost J;(X,) is, again, a function of the release state X .

These three optimization problems are solved by exploiting the direct transcription
method, in particular the Matlab implementation of the Drake libraries [63], on second
order spline trajectories for x and u. Other possible approaches could include the use
of the atness property for the MonkeyRotor, in order to avoid numerical integration of
the system dynamics [50, 40], or a direct collocation method [9]. We found out that the
atness approach is not very well suited to this case because the expressions of the
input constraints are too complex, especially for the free- ying dynamics. Likewise, the
direct collocation method, though it seems computationally interesting by construction,
did not give a signi cant upturn in the solving speed, hence the choice of the direct

40

2.2. Planning algorithm

transcription method.

Outer loop

The outer loop, as opposed to the inner one, attempts to determine the optimal
release state x, by solving the following minimization problem

X, =argmin(Jy (Xr) + Jo(xr) + J5(Xr)):

In this case, we opted for a simple grid search (i.e., brute-force) algorithm for nding
the optimal x, . Indeed x, can be parameterized by the pair (; - (four variables) since
it must be compatible with the hook constraints (1.6—1.7), thus considerably reducing
the search space.

2.2.2 Cost function

Reasonable choices for the cost functions J;1(x), J2(x) and Js(x) could be the
execution time or control effort or energy for generating minimum-time or minimum-
effort/energy trajectories from xq to x; . Based on the observation that the precision of
the trajectory tracking is highly dependent on the quality of the parameter estimation,
here we however choose to also consider optimality of the state sensitivity w.r.t. vari-
ations in the system parameters, e.g., mass, inertia, CoM location, propeller charac-
teristics, and so on. Indeed, one can expect some unavoidable level of uncertainty in
the various parameters of the MonkeyRotor dynamical and actuation model. Starting
from the idea of [5], we thus aim at generating an optimal trajectory that ensures min-
imal effect of the parametric uncertainty onto the tracking performance, i.e., generate
an optimal state trajectory x (t) which ends up to be most insensitive to parametric
variations by construction. Therefore, as a rst step to this approach, we implement
a minimization of some norm of the open-loop state sensitivity. The tracking of such
optimized trajectory will be facilitated when a parameter is poorly known as explained
in [5].

Note that this open-loop state sensitivity does not capture the effect of the controller
on the dynamics when tracking a trajectory with parameters that are not perfectly cali-
brated. A detailed study of this problem and a more complete framework is developed
in Part Il, which is able to take into account the control laws at the planning stage.

41

Part |, Chapter 2 — Trajectory planning for the MonkeyRotor

We here recap, for the reader convenience, the essential machinery for computing
the sought open-loop state sensitivity. Let then p 2 RP be a vector of parameters of
interest which, in our case, is taken as p = [Jg J mg m; Lg di] 2 R™, n, = 6, and
de ne

@(t)
@
as the state sensitivity matrix w.r.t. the parameters p. Although does not admit, in

general, a closed-form expression, one can nd an expression for its dynamics as

()= g)+

(t) = 2 R™ M (2.1)

o (=0 2.2)
where f in our context stands for the hooked or free- ying dynamics depending on
the particular phase. It is then possible to numerically integrate (2.2) over the interval
[to; t¢] for obtaining the behavior of (t).

By exploiting the availability of , we then choose, among other possibilities, to
minimize a weighted sum of the total execution time ty tp, and of a norm of the
state sensitivity at the hook time (t,), with the aim of generating near minimum-
time trajectories that are also most insensitive to uncertainties in the MonkeyRotor
parameters when approaching the second hook. This is formally obtained by letting

Ji=t tg Jo=t, t+ Kk (th)kw; Jiz = t¢ th: (23)
The gain > 0 is meant to tune the relative weight between the two optimization
objectives which we combine here, and the matrix norm is de ned as
X
k k&v = Wij 2 (24)
i

for a set of non-negative weights w = [:::w; :::] whose purpose is to select (and give
relative importance to) the desired entries in matrix

2.3 Results

In this section we present a number of simulation results meant to validate the
proposed modeling, planning and control strategies for the MonkeyRotor. The rst sub-
section is dedicated to the results of the trajectory planning algorithm, and the second

42

2.3. Results

5 ti=3.33
> @ M ©
ET
N /v g ' \\\
09 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0.4 (b) =443 3 @ TR {
£« 7
N \
09 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

0 1 2 3 0 1 2 3

X (m) X (m)

Figure 2.2 — Time-optimal trajectories of the MonkeyRotor CoM pg (t) for the cases of a
total thrust/weight ratio of (a) 60% (b) 70% (c) 90%and (d) 150% Note how, depending
on the case, a swinging maneuver is produced for either building up energy before ight
and/or for quickly losing energy after ight.

one to the control tracking performance when also considering parameter uncertainty.
A video was made that illustrates some of the tested cases?®.

2.3.1 Trajectory planning

We implemented the trajectory planning framework described in Sect. 2.2 with the
values reported in Table 2.1. We rst report the results of only minimizing w.r.t. the
execution time by setting =0 in (2.3)). We then consider the concurrent minimization
of the state sensitivity norm by setting =1.

Minimization w.r.t. execution time

In order to better appreciate the effects of the actuation constraints on the trajec-
tory generation, we considered a total thrust limited to 60%, 70%, 90% and 150% of
the total weight while keeping the same constraints on the other inputs for testing the

1. video at https://proxy.ens-rennes.fr/owncloud/index.php/s/INrx5Rmm9S93TsmF

43

Part |, Chapter 2 — Trajectory planning for the MonkeyRotor

Hook-hook | d; L; | Lg | mg | My JB J1
distance (m) | (m) | (m) | (m) | (kg) | (kg) | (kg m?) | (kg m?)
2.5 03/0.75/05| 13| 0.2 0.33 0.027

Table 2.1 — Values of the parameters used for the MonkeyRotor model.

States and (X; z) vs. (Mmg; My) VS VS vs. d
parameters ’ . B 1 pE - p q " p q - 1
Only
: . 0.1902 0.1615 | 0.0376 | 0.2128
time-optimal
Time- and 0.0827 0.1083 | 0.0163 | 0.1157
sensitivity-optimal

Table 2.2 — Comparison of the norm of the state difference at t;, between a time-optimal
trajectory, and a time- and sensitivity-optimal trajectory. As expected, when perturbing
the parameters, the perturbed state deviates less from the nominal state when execut-
ing a time- and sensitivity-optimal trajectory.

MonkeyRotor behavior in different regimes from low to high control effort modes, and
ultimately assessing how the environment interaction can be exploited for performing
the desired maneuver. The resulting trajectories are reported in Fig. 2.2. In all cases,
the MonkeyRotor starts at rest while hooked at the left pivot, and ends at rest hooked
at the right pivot. One can note how, in the “low' control effort modes (cases (a)—(c) with
thrust less than weight), an initial swing allows for building up the energy needed for
reaching the second hook. In particular, in cases (a) and (b) the low thrust/weight ratio
causes the trajectory to look approximately ballistic during the free- ying part. On the
other hand, when more thrust is available (cases (c) and even more (d)), the free- ying
phase is much more “direct”: however, the breaking phase at the second hook is nev-
ertheless performed by exploiting hook constraint, either thanks to the allowed collision
with the second hook in case (c), or by performing a nal swing in case (d) where the
thrust exceeds the total weight.

We believe that the representative cases reported in Fig. 2.2 constitute a good
validation of the MonkeyRotor concept, in particular of its switching dynamics which is
cleverly leveraged by the trajectory optimization algorithm.

44

2.3. Results

04 (a) ()

£\ 1

N L .

0.9 ‘ ‘

0.4 (b) (d)

B

N e

09 ‘ ‘ | ‘ ‘ ‘ ‘ ‘
0 1 2 3 0 1 2 3

x (m) X (m)

Figure 2.3 — MonkeyRotor trajectories when minimizing for time and state sensitivity
at t,. The considered sensitivities are (a) x and z w.r.t. mg and mq, (b) pe w.r.t. p,
(c) gw.r.t. p, (d) gw.r.t. d;. These sensitivity minimized trajectories are less direct and
therefore slower as compared to the time-optimal cases of Fig. 2.2, but they are also
less sensitive to variations in the considered parameters.

Minimization w.r.t. execution time and state sensitivity

Focusing on the state sensitivity minimization, several trajectories have been gen-
erated while considering the sensitivity of different sets of states and parameters by
suitably activating/deactivating the coef cients j via the weighting matrix w in (2.4).
The thrust limit was always xed at 70%of the total weight, as in the case of Fig. 2.2(b).
The resulting trajectories (and combinations of states/parameters) are reported in the
four case studies of Fig. 2.3. We can notice that the trajectories, although close in
shape, present some variations in their characteristics. In particular, the shape of the
ying phase is closer to a ballistic parabola in the cases (a) and (b) while a bit attened
in the other cases. Furthermore, the re-hooking state x;, systematically comes later
(i.e., 1g is closer to 0) than in the corresponding time-optimal trajectory of Fig. 2.2.

In order to verify the effectiveness of having also optimized w.r.t. the state sensitivity,
we performed the following test: we simulated the evolution of the MonkeyRotor states
when applying the optimal (open-loop) input u (t) in the nominal non-perturbed case

45

Part |, Chapter 2 — Trajectory planning for the MonkeyRotor

and in the perturbed case (by increasing each considered parameter by 10%. We then
evaluated the difference in the selected states at t;, when executing a trajectory only
optimized w.r.t. time and when executing a trajectory also optimized w.r.t. the state sen-
sitivity at t,,. Table 2.2 reports the results: one can note how the norm of the difference
between nominal and perturbed states at t;, is always lower in the case of a trajectory
also optimized w.r.t. the state sensitivity, thus indicating that open-loop execution of this
trajectory results intrinsically more robust w.r.t. parametric variations, as expected.

Behavior of the optimization

Fig. 2.4 highlights the role of the outer loop of the optimization. It shows how the
duration of a trajectory varies when changing the release state x, characterized by the
four coordinates g, 18, 8 and 4g.

7
6.5
6
5.5
5
4.5
\ — .
{55
5
L 4.5
06 -04 02 0 023 4 4.5
A

35
oy

0.2
0.1
£ 0
-0.1
-0.2

0.7
0.65
0.6

< 0.55
0.5
0.45

B

Figure 2.4 — Colormaps of the minimum trajectory duration in seconds, reachable with
two xed states at the release instant.

Interestingly, we observe that the resulting costs seem to feature some smoothness
in the explored space. In particular, we see that the release velocity g features a
maximum zone around a certain value (4:2 m=s here). Likewise, we see from the plots
that the release angle needs to remain small while not cancelled. This is explained by
the fact that the free- ying phase bene ts from a nonzero initial vertical velocity which
ballistically pre-compensates the effect of gravity.

46

2.3. Results

Figure 2.5 — V-REP visualization of the MonkeyRotor.

2.3.2 Trajectory tracking

We now illustrate the performance of the control laws described in Sect. 1.3 in
tracking the reference near-optimal trajectories generated by the planning algorithm. To
this end, we implemented the MonkeyRotor switching dynamics and the control laws
in Simulink, and employed, for the sake of visualization, the V-REP ? simulation envi-
ronment as shown in Fig. 2.5. This software, V-REP, provides a speci c client-server
interface allowing to control it by means of the provided “Remote API“ library. We in-
tegrated the corresponding Remote API functions within C S-Functions in Simulink,
which makes possible to set the pose of any virtual object or joint in the virtual environ-
ment. The resulting 3-D visualization is illustrated on Fig. 2.5.

As a representative case study, Fig. 2.6 reports the tracking performance for a time-
optimal trajectory obtained for a thrust limit of 70% of the weight, and with random
perturbations to the parameters of 5% of their nominal values. It is worth noting how,
despite the parametric variations, the control inputs always remain within their bounds
(represented by dashed horizontal lines), and how the norm of the end-effector velocity
kpe k falls below the threshold v« at t,, as planned. The performance in tracking the
reference optimal state (dashed lines) is also quite satisfactory.

As an additional validation, we also ran a statistical analysis of the overall tracking

2. http://lwww.coppeliarobotics.com/

a7

Part |, Chapter 2 — Trajectory planning for the MonkeyRotor

error (averaged over the whole trajectory) and end-effector re-hooking error at t;, on
the trajectory of Fig. 2.3-(b) (whose state sensitivity is optimized against all the con-
sidered parameters p) when varying some parameters of interest from 90% to 110% of
their nominal value. Figure 2.7 reports the results of this analysis: in Figs. 2.7(a—c) we
consider the variation of mg, L; and my, while Fig. 2.7(d) considers the presence of an
external disturbance, a wind gust of varying amplitude with duration 0:2 s and applied
during the free- ying case along the negative X,y axis.

One can note how the performance remains quite satisfactory despite the param-
eter variations and/or external disturbance especially in terms of the re-hooking error,
thus showing that the proposed combination of the state sensitivity minimization (plan-
ning stage) and the closed-loop tracking controller control is able to yield a successful
MonkeyRotor maneuver also in more realistic conditions. We note that the re-hooking
error remains almost constant except when changing the length of the arm, which is
expected since the parameter L, does not affect the free- ying dynamics and thus is
not taken into account in the sensitivity minimization.

2.4 Conclusion

In this chapter we have proposed and tested an optimization framework for gen-
erating optimal motion plans for the MonkeyRotor under constrained actuation. The
proposed algorithm breaks the problem into three subproblems and assesses then in
two stages: an inner loop and an outer loop. The whole concept has been successfully
validated in a number of simulations, including the behavior of the trajectory tracking
by means of the two control laws derived in the previous chapter.

Several conditions have been considered for the trajectory generation, including a
range of thrust limitations and multiple cost functions to be minimized, which allows
us to widely study the behavior of the planner and the resulting trajectories for aerial
locomotion.

Possible improvements of the proposed framework could include the possibility of
executing more complex maneuvers, e.g., jumping to multiple branches in sequence,
as well as the use of online replanning strategies for continuously re ning the initial
optimal trajectory during motion. An application of the trajectory generation framework
presented in Part Il is also foreseen, which should improve even more the tracking
performance by leveraging the knowledge of the control law (as opposed to the open-

48

2.4. Conclusion

loop state sensitivity approach used in this chapter).

49

Figure 2.6 — Behavior of the MonkeyRotor states, inputs and end-effector norm velocity
while tracking an optimal trajectory.

(@) (€)

(b) (d)

Figure 2.7 — Performance of the proposed planning/control framework under paramet-
ric variations (Figs. (a—c)) and external disturbances (Fig. (d)): in each gure the top
plot reports the mean (solid line) and max (dashed line) values of the tracking error
norm during the trajectory execution, and the bottom plot reports the value of the re-
hooking error kpe (tn) pgk. The parameters mg, m; and L, are varied from 90% to
110% of their nominal value, while the external perturbation (wind gust) has amplitude
ranging from O N to 20 N.

CHAPTER 3

CONCEPTION OF THE MONKEYROTOR
PROTOTYPE

3.1 Introduction

This chapter is dedicated to the description of the MonkeyRotor prototype that has
been designed and realized in order to test the previously derived theoretical elements
in real conditions. The content is divided in two main parts that each covers one of the
main design themes that have been involved in the process, namely the design of the
hooking system, and the implementation of a real robot with details on its mechanical
structure and the software architecture.

3.2 Design of the hooking system

3.2.1 General concept

In the following, we call the part of the environment to which the MonkeyRotor hooks
itself a branch.

The rst thing to notice about the joint between the MonkeyRotor and the branch is
that it is a multifunctional subsystem. In fact, it should implement the following require-
ments:

1. the rotating joint with the environment when the system is hooked,;

2. the controllable hooking, i.e., arm of the MonkeyRotor attached to the branch or
not.

Note that the aim for the scope of this chapter is to build a prototype in order to
test and showcase the MonnkeyRotor special dynamics, which implies that we allow

53

Part |, Chapter 3 — Conception of the MonkeyRotor prototype

ourselves to design a special branch system that includes parts of the actuation mech-
anism. However, of course, it is clear that in a real application the branch would be
supposed to be some passive part of the environment, which is not necessarily under
control and thus may not provide such ideal rotating joint and hooking system as here.
This is considered to be out of the testing scope we have here and thus, we limit our-
selves to the simpler case where the branch is completely under control at the design
stage.

Several classes of solutions have been imagined to implement these two function-
alities. One rst intuitive idea consists of a mechanical gripper with two or more ngers
able to grasp the branch. Starting from there, two possibilities arise: either the rotating
joint is part of the arm — below the gripper —, or it is part of the branch. In the case it
Is part of the arm, it means that during the ying phase it has to be somehow oriented
towards the branch for the hooking event to happen properly. This could be achieved
either with a passive spring system, or with the assistance of a dedicated actuator. In
both cases the dynamics is affected, and the onboard weight is increased.

Another solution consists of a pneumatic system. This system would rely on a suc-
tion cup able to grip a planar surface by means of a commanded depression of the
air contained in the cup. Several electrical pumping systems exist that are able to t
this need. The main interest of this class of solutions lies in the small complexity of
the mechanical parts. The same two options as for the mechanical gripper remain
concerning the placement of the rotating joint, i.e., either we place it above of below
the end-effector. As discussed before, the case where the joint is under the attachment
system requires the use of a heading actuation — passive or active. On the other hand,
a pneumatic gripper would require some at surface in order to work properly, which
means that an actuated heading of the target at surface must be set up.

A third idea is to leverage magnetism to tackle this attachment problem. As illustra-
tion, the use of magnetism in such a system would be the same as in an electrically
commanded door: a coil is powered with a controlled electrical current which results in
a magnetic eld both in the coil and in the separated part to be locked, i.e., the door,
and for us the end-effector at the extremity of the arm. The resulting magnetic eld
lines circulate in a magnetic circuit especially designed for this purpose, which leads
to an adhesion force that keeps the end-effector stuck to the coil. Such a solution may
seem unreasonable at rst glance because of the required metallic parts for the mag-
netic circuit and the coil, as well as the electrical power to be fed into the coil which

54

3.2. Design of the hooking system

(a) (b)

Figure 3.1 — Two of the four proposed solutions for the hooking system. On (a), an
onboard mechanical gripping system that surrounds the branch, and on (b), an active
suction cup that grips a pivoting planar surface available on the branch.

intuitively seems high. Nevertheless, putting the coil system on the environment side
considerably simpli es the design.

Finally, the possibility of a passive hook can be considered. Indeed, choosing some
particular rounded shape for the end-effector could allow the system to implement the
sought behavior. However, this would require a special control policy in order to achieve
a release maneuver, which may be quite restrictive for the dynamics, because of the
very speci ¢ movements it would require in order to ensure the complete release. This
solution features the advantage of simplicity, at the expense of restrictions in the ex-
ploitation of the system particular dynamics.

3.2.2 Choice of the solution

These four design ideas are illustrated in gures 3.1 and 3.2, which render some
possible implementations. Table 3.1 synthesizes the pros and cons that were previously
evoked for each solution.

Though it may sound heavy and inappropriate at rst glance, we found out that the
magnetic solution actually features signi cant advantages:

1. it keeps the mechanics simple;

95

Part |, Chapter 3 — Conception of the MonkeyRotor prototype

(©) (d)

Figure 3.2 — Two of the four proposed solutions for the hooking system. On (c), an elec-
tromagnetic system keeping the end-effector stuck to a coil that is part of the branch,
and on (d), a passive hooking system that features the pivoting ability by a direct me-
chanical contact between the end-effector and the branch.

2. the end-effector only consist of a small passive ferromagnetic piece which is
light;

3. itis simple to control,
4. some margin is allowed for the re-hooking phase in case of positioning error.

For these reasons, we nally chose to implement the hooking system with a mag-
netic solution. Moreover, the rotating joint functionality is undertaken by the branch
instead of the end-effector, which allows a clean, ef cient and robust joint design with-
out onboard-related limitations.

The speci ¢ design of such a magnetic hooking system will now be described in
detail.

3.2.3 Magnetic coil design
Geometry

First of all, we chose to implement the rotating joint on the branch side in accor-
dance with the advantages discussed before.

The concept of the magnetic hooking system basically relies on the ability of mag-
netism to imply a force on a part of a magnetic circuit towards another, which we seek

56

3.2. Design of the hooking system

Mechanical | Onboard Control Hooking
complexity load complexity | margin
Gripper medium high medium medium
Pneumatic high high medium low
Magnetic simple medium simple medium
Passive simple low high low

Table 3.1 — Comparison of the pros and cons of each solution. The mechanical gripper
and the pneumatic system both feature a non-neglectible onboard load and a certain
control complexity. The magnetic and passive solutions on the other hand are simple
and light.

to be strong enough to maintain the MonkeyRotor hooked to the branch by design. To
achieve such a magnetic force, the geometry of the magnetic circuit has to meet simple
criteria:

1. when entering in hooked state, i.e., when the end-effector is close to the right
position and the coil is powered, the eld lines should travel the shortest possible
distance in the air;

2. when in hooked state, the eld lines should not go through air but only stay
inside the magnetic circuit.

We found out that a good geometry to answer these requirements is the one de-
picted on Fig. 3.3. It consists of the coil being oriented coaxially to the rotating joint, with
the magnetic circuit being closed by the end-effector disposed in parallel. This choice
for the geometry makes the hooking isotropic, i.e., the end-effector can arrive from
any direction in the plane without the need for steering the magnetic hooking system
towards it, thanks to its cylindrical shape.

Note that this geometry of the coil armature features an axial symmetry, which is
adapted to the design of the rotating joint. One drawback of this solution, though, is
that the coil rotates w.r.t. to the branch and at the same time needs to be powered
through electrical wires. The resulting rotating limitation is overcome by letting a suf-
cient amount of wire between the moving coil and its grounded power supply. As a
consequence, we assume that the total rotation of the branch joint is still limited to
a certain range of minimum and maximum angles — which can be purposely set far
enough for the prototype operating mode. In case the system would need to achieve
multiple turns, a contact system similar to the collector in continuous current electrical

57

Part |, Chapter 3 — Conception of the MonkeyRotor prototype

Figure 3.3 — Concept of the magnetic hooking system. The hooking system 1 is linked
to the ground via a rotating joint, while the passive ferromagnetic piece 2 is the end-
effector at the extremity of the arm of the MonkeyRotor. When subject to an electrical
current, the coil induces a magnetic eld H in the magnetic circuit — blue lines are the
corresponding eld lines — that produces an attractive force F onto part 2.

motors is possible.

Magnetic force model when hooked

When feeding the coil with electrical current, a magnetic eld occurs in the magnetic
circuit which induces an adhesion force onto the end-effector, and thus makes it stuck
to the armature of the coil. Note that this is done with a 0% ef ciency, because the elec-
trical power injected in the coil is completely dissipated into heat without mechanical
output power. Indeed, when the end-effector is hooked there is no relative movement
between the arm of the MonkeyRotor and the hooking system, forbidding any mechan-
ical power to be produced. In other words, the system only converts electrical current
into the adhesion force, and does not produce output power. As a consequence, the
coil will warm up because the electrical power it consumes is converted into Joule
losses.

The detailed design of the magnetic circuit geometry needs to take this behavior into
account to ensure that 1) the force is maximized given certain geometrical limits, and 2)
the coil remains cold enough in continuous operation. Hence, the problem of designing
this magnetic hooking system can be expressed as an optimization problem under
constraints. Let g be a vector of the geometrical parameters, F,q, be the magnitude of
the adhesion force that the hooking system is able to provide, T.y; the temperature of
the coil, and T the maximum allowed temperature for the coil. With these notations,

58

3.2. Design of the hooking system

the problem can be stated as

max Fadh
g (3.1)
S.t. Tcoil < Tmax

Of course, we need to build a model for the adhesion force in order to assess this
design optimization problem. To do so, the classical magnetic models and associated
methods can be employed, such as the ones described in [32]. Let r; be the inner
radius and r the outer radius of the coil, | the length of the coil, a the border cylinders
width, e the thickness of the end effector, and the angle it makes with the rotating
joint axis. These geometric parameters are depicted on Fig.3.4, which shows how they
are arranged together with the global geometry.

r

Figure 3.4 — Geometry of the coil with its armature. There are n turns of wire in the coill,
each one passed through by a current | .

Let also n be the number of turns of the coil wire, | the electrical current feeding it,

S the section of the magnetic circuit at the contact, and H the magnetic eld inside the

magnetic circuit. This magnetic eld inside the magnetic circuit is derived by applying

the Ampere law to some closed eld line that loops in the whole circuit, as depicted by
the blue line in Fig. 3.4, |

Hdl = nl (3.2)

where the eld is considered aligned with the normal of the crossed section. Let L. be
the total length of the magnetic circuit, i.e., of an average eld line. Let also , be the

59

Part |, Chapter 3 — Conception of the MonkeyRotor prototype

relative permeability of the magnetic circuit material and , the one of the vacuum, such
that the absolute permeability of the magnetic materialis = ¢ .. In the case where
the section of the magnetic circuit is constant, the above relation can be integrated as
a whole in order to derive the corresponding induction. In fact, the application of the
law results in the magnetic induction approximation

o Nl

B=H = : 3.3
5 (3.3)

Indeed, this expression does not hold for the detailed geometry that we consider,
because the magnetic eld may not be the same in the different parts of the magnetic
circuit. However, this relation allows to compute a rst approximation of the adhesion
force that keeps the end-effector stuck against the armature of the hooking system. In
fact, by linking the work of this magnetic force along a small virtual displacement with
the corresponding magnetic energy density, we can derive an expression for the force.
Let S be the area of the contact surface between the end-effector and the armature of
the hooking system, on the two cylindrical plates.

BZ
2mug

(3.4)

Injecting the known expression of the magnetic induction B derived in eq. (3.3), this
rewrites

E = B’S S .nl ?

20 2, Lo

This expression for the magnetic adhesion phenomenon allows to propose two gen-
eral design rules, i.e.,

(3.5)

1. the length L. of the magnetic circuit must be the shortest possible in order to
maximize the adhesion force;

2. the contact area S between the end-effector and the hooking system must be
the largest possible.

Nevertheless, the steel-based ferromagnetic materials available to produce the hook-
ing system actually saturate. A consequence of such a saturation is that the magnetic
induction B is limited at some point by the material itself instead of the | electrical cur-
rent sent into the coil. In order to chose the geometry correctly, we need to model this
saturation at the different stages of the magnetic circuit. In practice the magnetic circuit

60

3.2. Design of the hooking system

has a complex form and its section changes along with the eld lines, which involves a
notable re nement of the magnetic model.

Given the parametric geometry, we can model in a better way this phenomenon in
order to quantify the magnetic induction that is responsible for the adhesion force. Such
a model will also provide a control of the induction in the different parts of the circuit in
order to avoid the saturation. Let us cut the magnetic circuit into six parts:

1. the middle axis of the colil, of section S;, of magnetic eld H;, and of length
|1 =+ a

2. the two plates of the armature, of section S;(), and of magnetic eld H,() for
a certain radius 0 r;

3. the end-effector, of section S¢, of magnetic eld He, and of length I = | + &;

4. the two portions that link the center of the end-effector with the contact surface,
of section S=2, of magnetic eld H,, and of length e=2.

The contact between the end-effector and the armature of the hooking system is
split into two areas, each characterized by a magnetic eld H, and a section S=2.
For the section S;() inside the plates, we consider a linear interpolation between the
2 limit areas S; and S=2. This is justi ed by the fact that the eld lines always take
the shortest path, which is linear here to Il the extremum sections. Note that some
detailed phenomenon like local saturation or eld leakage may make this assumption
false, which would de nitely not change the result a lot.

In this more detailed magnetic circuit, the application of the Ampere law becomes

I
nl = Hdl
z, (3.6)
0

Letnow be the magnetic ux in the magnetic circuit, which is suchthat = H ;S
at any place of section S; and of magnetic eld H; in the magnetic circuit. One property
of this magnetic ux is that it remains constant along the whole circuit. This allows us
to rewrite eq. (3.6) by factorizing the constant magnetic ux

|+ a Zr d 2 I+a

+2 + — +
S]_ 0 SE + S]_(l F) S Se

nl = — (3.7)

61

Part |, Chapter 3 — Conception of the MonkeyRotor prototype

where the integral term can be computed explicitly

Z, 4r In(5S-
2 d = (z5,) ; (3.8)
0 SE + Sl(l F) S 281
Let be the characteristic length of the magnetic circuit, which is such that
_l+a, 4r|n(2%1)+ 2 |+a
S; S 25 S Se
3.9
|+ a z”n(rTaiZ e |+ a (39)
:r-2+ra r? ra+(r+§)e
i I 2
Consequently, the magnetic ux can be computed with
= nl (3.10)

From this expression of the magnetic ux, one can go back to each part of the
magnetic circuit in order to compute the corresponding magnetic inductions and check
that they do not reach the saturation. Indeed, we have

i

e

S
2

: 3.11
S ()

Finally, the force of adhesion can be computed based on the same idea than pre-
viously. To be more precise here, the curvature of the surface have to be taken into
account. This is done by applying the same process than before on an in nitesimal
portion of the surface. It leads to the following expression for the adhesion force,

Z_ Rp2
F= B2dS()

N

2
2

B2

= —22racos()d : (3.12)
z 2 9

—Bizssinc _

2. 2

62

3.2. Design of the hooking system

Based on the trajectories that where generated in the previous chapter, we esti-
mated that the maximum centrifugal force that the MonkeyRotor should endure should
be about 60 N, and thus we aim at an adhesion force of 120 N with a security coef cient
of 2.

Note that the magnetic circuit physically saturates at an induction of 1 T, which
means that the force is limited by this maximal induction.

Thermal model

As discussed before, there is no mechanical power generated by the system while
it is hooked, and thus all the electrical power is converted into heat via Joule effect.
This heat makes the temperature of the colil increase until an equilibrium is reached
between the source of heat and its dissipation to the environment. Such a temperature
increase typically has a slow exponential transient, which we are not really interested
in here.

Taking apart this transient, the maximal temperature increase T = T Tenv
w.r.t. the environment reached at the equilibrium can be modeled with the basic law

T =PRy

where P is the heat, and Ry, is the total thermal resistance of the coil w.r.t. the environ-
ment. Furthermore, we know that the heat is the electrical power, such that P = RI 2.

In our case the thermal resistance is the consequence of three phenomena, which
are the conduction through the whole magnetic system, and the convection and radia-
tion at the exchange surfaces.

These phenomena can be modeled with 3 corresponding thermal resistances R¢,
RY and R' for each subpart of the system, as depicted on Fig. 3.5. Let RY, RY and R},
be the conductive, convective and radiative thermal resistances of the coil. Let also
RY, RY and R}, be the conductive, convective and radiative thermal resistances of the
cylindrical surface of one side plate. Likewise, let RY, RY and RL be the conductive,
convective and radiative thermal resistances of the lateral surface of one side plate.

63

Part |, Chapter 3 — Conception of the MonkeyRotor prototype

Tcoil

P Te nv

Figure 3.5 — Heat transfers and analog electrical schematic. The orange arrows rep-
resent conductive transfers, the blue ones correspond to convection and the red ones
represent radiation. The source of heat is considered to be the inner cylinder of the
coil highlighted in red. The exchange surfaces that are considered for the model are
highlighted in magenta.

We thus get the following expressions:

8 RO = In(r=r;)
% ¢ 2
In(r=r
d — ! 3.13
% Re 2 aa ()
a
Ri=——F——
Co a (r? r|2)

for the conductive terms, where .and , are the thermal conductivities of the coil and
hooking system armature (Wm K 1). Similarly, we get

1
V_
% Re 2hrlk
1
% Re 2h rak (3.14)
VvV —
TR = h (r2 h (r2 r?)

for the convective terms, where k =0:7(1 5-) is a coef cient that models the surface
reduction that is due to the presence of the end-effector onto the magnetic hooking
system, and where h is the convective coef cient of the material (Wm 2K 1). Finally,

64

3.2. Design of the hooking system

the radiative terms write

8 o .
% © 2crk (Tenw+ T)* TE,
T
R! = .
© 2arak (Tew+ T)* T&, (3:15)
R = T
(12) ((Tew+ T)* Ty
where = 5:67 Wm 2K 4 is the Stefan—-Boltzmann constant and , and . are the

emissivities of the hooking system armature and coil (considered constant with the
temperature here).

De ning the synthetic exchange resistances

I

(3.16)

&Jr
&=

VAN NI ©O
A
)
X
1
e
+| = +| - t+ |-

m’é"_‘
2

allows to rewrite the total thermal resistances of the three subparts, and nally the total
resistance of the hooking system:

8
R. = R{+ RY
Re = R+ R
% RS — Rg + Rgx . (317)
1

Rth:1+2+i

Rc = Re Rs

Note that this nal expression for the total thermal resistance depends on the tem-
perature of the coil, but at the same time is required to estimate this T, . Instead of
trying to solve analytically the expression of the resistance, which would be complicated
perhaps impossible, we chose to implement an iterative method in order to compute its
value. The idea of this iterative process is to consider an initial guess for the temper-
ature, use it to estimate the thermal resistance, then re ne the temperature estimate
and so on. We found out that this method converges with few steps: in practice just

65

Part |, Chapter 3 — Conception of the MonkeyRotor prototype

Figure 3.6 — Optimized magnetic system geometry. On the left, a front view where the
center dash line is the revolution axis of the hooking system, and on the right, a side
view orthogonally to this axis.

three steps led to a precision inferior to 0.1% for the temperature estimate, which we
consider suf cient.

Design optimization

Having derived the magnetic and thermal models, one can now implement a solver
for the optimization problem (3.1). Using the solver fmincon in Matlab along with an
implementation of equations (3.11-3.12,3.13-3.17), we could achieve this optimization
and nd an optimal geometry.

| a e r ri nl wire resistance
[mm] | [mm] | [mm] | [Mm] | [mm] | [rad] | [A] | length [m] []
10 18 15 35 30 | 0.32 |63.6 33.1 3.04

Table 3.2 — Optimized parameters for the magnetic hooking system.

Table 3.2 synthesizes the obtained optimized geometry parameters. As one can
notice, the result may not seem very intuitive at rst glance. Indeed, one could have

66

3.2. Design of the hooking system

expected a large space for the coil as well as a long coil so that the magnetic "strength
would be maximized. However, we see from the equations that the combination of the
magnetic saturation with the behavior of the magnetic eld lines makes this optimized

geometry legitimate. Indeed, the thin coil is suf cient to create a large magnetic in-

duction, which is ampli ed by the reduction of the section from the coil to the contact

area.

Attraction before hooking

When the MonkeyRotor approaches the branch, a magnetic force applies which
attracts the end-effector to the coil. Note that the analytical force computation is impos-
sible because the exact path where the magnetic eld will pass is not known. However
some approximations can be done to build an estimation of this force pro le shape.

In this situation, let x be the distance from the end-effector to the coil. When the x
is low enough w.r.t. the magnetic circuit length L, thus guaranteeing that the induction
B is uniform enough, the magnetic force has the expression F %S(Lc:”: +2X)2 , Which
is of the form ; whenever x >> 2= This condition realized for low distances because
the relative permeability | is very high (around 1000 in practice).

Then when x gets higher, the magnetic eld leaks around the coil without passing
through the end-effector anymore, making the force almost null. This happens when
X =2

In conclusion the force pro le is near to an inverse square function smoothly sat-
urated at the beginning, and with a highly decreasing slope from |=2. This con rms
that the magnetic hooking system is able to provide some margin at the re-hooking,
however we note that the inverse square form of the force together with its zeroing at
|=2 are quite restrictive, and thus the margin remains low in practice.

Active release

Given the hysteresis behavior of the magnetization in the magnetic circuit, releasing
the electrical power in the coil will not completely cancel the force of adhesion.

For this reason a soft ferromagnetic material is required, i.e., which has a thin hys-
teresis cycle width. We thus chose a standard steel for its mechanical and magnetic
properties. Note that this material choice, though it helps, is not suf cient to allow a

67

Part |, Chapter 3 — Conception of the MonkeyRotor prototype

Figure 3.7 — Simulation of the hysteresis behavior of a ferromagnetic material, with a
negative impulse at the release to compensate the residual induction.

complete release when stopping to feed the coil with electrical current. In other words,
there will always be a remaining force of adhesion because of the magnetic hysteresis.

As a demonstration of this phenomenon and of a possible workaround, we con-
ducted a numerical simulation of this hysteresis behavior by integrating the Jiles—
Atherton equations that are able to model it, see [31]. For this simulation we consid-
ered a variable magnetic eld H that grows from 0 to some high value that saturates
the material, and then decreases back to 0. Doing so would let the nal induction B
to a non-zero value (even if it started at 0) because of the hysteresis. From there two
workarounds exist that make it possible to cancel this residual induction:

1. impose a sinusoidal magnetic eld H of decreasing amplitude, which results in
successive cycles of decreasing area around O,

2. or nd the proper negative value for the magnetic eld H that is such that when
going from the prior high H value to this negative value and then back to 0O, the
induction is perfectly cancelled.

Of course this second strategy is faster, but on the other hand requires a perfect
knowledge of the right negative value for H. Figure 3.7 shows the result of this simula-
tion with such a strategy, in a nearly perfect case: after a complete cycle the induction is
(almost) cancelled. In practice we measured a remaining adhesion force up to a third of

68

3.2. Design of the hooking system

the maximum adhesion force when simply releasing the electrical current without this
kind of compensation.

Hence, the chosen solution consists in smaller negative current in the coil in order
to cancel out the eld. Obviously, this method would require a perfect knowledge of the
hysteresis cycle parameters to be able to exactly bring the eld to zero, which would
be dif cult in practice due to the rounded shape of the hooking system and dif culty to
measure the necessary parameters. Instead, we chose to implement a tunable nega-
tive current impulse electronics, that is intended to be adjusted experimentally by trial
and error on the real hooking system. We thus designed an electrical power command,
based on a simple L293D H-bridge, that is able to revert the current in the coil, see
Fig. 3.8.

Once tuned, we con rm that the real system is able to release the end-effector as
wished.

Figure 3.8 — Electrical schematic for the commanded power supply of the magnetic
hooking system.

3.2.4 Rotating joint design

There are a few mechanical rules for bearing arrangement which one needs to
apply in such a situation:

69

Part |, Chapter 3 — Conception of the MonkeyRotor prototype

1. a ring which conveys a charge always in the same (local) direction has to be
arranged with clearance,

2. conversely, a ring which sees a rotating charge has to be arranged tight,
3. the bearings can be axially pre-charged or not, towards or against each other,

4. the effective position where the efforts apply is virtually displaced by this pre-
charge.

In our case the direction of the effort changes little w.r.t. the direction of the arm of
the MonkeyRotor, because it is mainly due to the centrifugal force. As a consequence,
the bearing ring attached to the coil must be arranged with clearance. The other ring
must be arranged tight.

Concerning the axial pre-charge, it is generally used to compensate for axial forces
that may occur on the joint, and/or to act on the rigidity of the joint by extending/reducing
the length between the points of application of the efforts. In our case, the axial force
should remain low as the system evolves in the vertical plane. However, the rigidity is
highly desirable because the distance from the joint to the center of mass will imply
high radial torques which we don't want to destabilize nor deteriorate the system.

Therefore, the bearings must be arranged in the 'O’ con guration, which means that
the bearings are stopped

1. outside for the rings that are attached to the coil, i.e., axially the farthest, and
2. inside for the xed rings, i.e., axially the nearest.

Two possible designs ensue, depending on whether the external rings of the bear-
ings are attached to the coil or to the xed structure. For practical and productibility
reasons, we choose the second option, i.e., the external rings of the bearings are at-
tached to the xed structure of the branch. As a consequence, the external rings must
be stopped from inside while the internal rings must be stopped from outside. Fig.3.9
illustrates these arrangement choices.

3.3 Implementation

3.3.1 Hardware manufacturing

After xing small productibility details, the armature of the coil was manufactured
by steel turning. Note that two small holes were additionally made in one of the border

70

3.3. Implementation

Tight

Clearance

Figure 3.9 — Bearing arrangement for one side of the hooking system. We see from
this schematic that the bearing must be assembled to the ground support rst, and the
hooking system must be mounted with (low) clearance afterwards.

plates in order to pass the electrical wire for the coil. The resulting magnetic hooking
system and its electronic command can be seen in Fig. 3.10.

The hooking command is handled by the electrical power circuit described previ-
ously, connected to a simple Arduino Uno in order to interface it to the rest of the
software via USB, see Fig. 3.10.

A validation of the magnetic hooking system ability to hold the MonkeyRotor was
done by means of a dynamometer, see Fig. 3.11. We measured that the coil is able to
hold at least 12 kg as wished, without coming loose. The stall occurs at around 14 kg.

Concerning the shape of the MonkeyRotor itself, we need to design and realize
a special mechanical structure that is able to host the actuated arm as well as the
common electronics for the command of the 4 motors. Given the particularity that the
CoM of the quadrotor base and the arm actuator are coaxial, we chose to design
a speci ¢ body and 3D-print it. The shape of this body has to meet some practical
requirements:

1. provide space and attachment facilities for the actuator,
2. feature a maximal strength while being light,
3. provide space for the onboard electronics and battery.

In order to ensure these requirements, we conducted a numerical shape optimiza-
tion in FreeCAD, see Fig. 3.12. This tool allows to determine a global shape that maxi-

71

Part |, Chapter 3 — Conception of the MonkeyRotor prototype

Figure 3.10 — Implementation of the real hooking system.

mizes the strength of the object while minimizing its weight given limit efforts, by means
of nite-element analysis and optimization. The resulting shape was then reworked in
order to be mechanically sound and to provide the required interfaces with the other
components.

3.3.2 Software structure

The middleware genom is then used to interconnect the software components that
provide the necessary fonctionnalities. This software allows us to have a modular ar-
chitecture, based on the interaction of multiple processes associated to the different
functions required for the system to be operational. Fig. 3.15 illustrates the global soft-
ware architecture, which rely on the interaction of multiple components (individual pro-
cesses) through the genom structure. The communication is undertaken by ROS?, and
the whole machinery is supervised in MATLAB Simulink via the genomix client—server
feature.

1. https://www.ros.org/

72

3.4. Conclusion

Figure 3.11 — Measure of the magnetic adhesion force with a dynamometer. The de-
sired maximal load of 12 kg can be held as wished.

3.4 Conclusion

In this chapter we have presented the design process and the resulting prototype
that we have made. The design of the subparts of the whole system (hooking system
and MonkeyRotor body) have been explained in detail.

Although we could not yet achieve the whole trajectory tracking that has been val-
idated in simulation in the previous chapter, several steps have been realized towards
this nal goal. In particular, we have designed and realized a magnetic hooking sys-
tem that leverages magnetism to create a suf cient force of adhesion. The hooking
system associated with its special electronics is able to ful | the aim of hooking or re-
leasing the end-effector with enough strength and despite magnetic hysteresis that we

73

Part |, Chapter 3 — Conception of the MonkeyRotor prototype

Figure 3.12 — Optimization of the shape of the quadrotor body.

compensated.

The ongoing and future work on this topic consists in exploiting the realized pro-
totype to achieve the tracking of the trajectories that were planned in the previous
chapter.

74

3.4. Conclusion

Figure 3.13 — Design of the MonkeyRotor body. On the left, numerical 3D model before
printing. On the right, printed parts of the body.

Figure 3.14 — Complete MonkeyRotor prototype with the structure for the branch.

75

Part |, Chapter 3 — Conception of the MonkeyRotor prototype

Figure 3.15 — Software architecture based on genom. The orange blocks are genom
components which are independent processes communicating through ROS thanks to
the genom structure and libraries.

76

PART I

Part Il

I

CHAPTER 4

TRAJECTORY GENERATION FOR
MINIMUM STATE SENSITIVITY

4.1 Introduction

This chapter will introduce the concept of state sensitivity for a dynamical system,
and its possible uses in the context of trajectory generation for robotics applications.

At rst an intuitive approach will be proposed to give some insights to the reader. A
generalization of the method will then derived in a rigorous formalization in the follow-
ing sections.

The concept arose during the development of our previous study on the Monkey-
Rotor, which requires — as most of the modern robotic applications — high precision
in the realized task despite the many uncertainties in the system model and actua-
tion. As a starting point, we considered a global control scheme where a trajectory is
rst planed for the future, and then tracked by the robot by means of a controller. This
method has been used for many years, either with of ine planning or online replan-
ning as in Model Predictive Control (MPC) [20, 11]. It was proved to be a good way
to combine both local robustness thanks to the real-time stabilization provided by the
controller, and the ability to include complex features such as collision avoidance and
cost minimization in the global robot behavior.

Unfortunately, in some demanding circumstances where high precision is required
and/or complex dynamics are excited, an online replanning scheme could be insuf -
cient. This kind of situation is typically encountered with aerial robotics and especially
when dealing with physical interaction. First, the performance is highly dependent on
the precision of the parameters used in the planning phase and in the controller. In-
deed, in many cases the main dif culty lies in the model parameter estimation, or other
uncertainties in the actuation, which may represent a complex step of the task im-

79

Part I, Chapter 4 — Trajectory generation for minimum state sensitivity

plementation, often handled with many ne-tunings. Second, there is no control over
the effect of running the closed-loop system with erroneous parameters on a certain
planned trajectory, because of the decoupling between the planning (which is done
before) and the tracking.

Indeed, trajectory planning gives the opportunity to determine a priori a feedfor-
ward term that the controller will be able to exploit at the execution stage, which is a
very important step in robotics for maximizing performance or guaranteeing other re-
guirements (e.g., minimum energy, time, actuation bound or collision avoidance, etc.).
Besides, the robustness is in general a goal that is undertaken by the controller at the
execution time, through the derivation of a proper feedback term. For instance, the con-
trol community have worked over the years on adaptive and robust strategies, such as
H-in nity or passivity-based, that allow a good level of robustness against uncertain-
ties and disturbances, see, e.g., [14, 12]. However, these approaches are mostly “local”
and, besides robustness, can hardly tackle other requirements such as feasibility, (e.g.,
limited actuation, obstacle avoidance), performance and global optimality.

In our case the goal is to study how to generate a feedforward term that directly in-
tegrates information about parametric uncertainty, and thus improves the effectiveness
of the feedback policy. Said otherwise, we seek a strategy for generating a feedfor-
ward that is not decoupled anymore (compared to state of the art strategies) from the
feedback, by integrating as much information as possible concerning the closed-loop
behavior of the robot at the early planning stage. A few works have been conducted
that try to tackle this issue with related approaches [30, 39], however they suffer from
a lack of generality because of special dynamics considered and limited robustness
because of their “open-loop” nature (coming from the decoupling of the planning and
control layers).

A possible approach to try to improve the robustness at the planning stage is, hence,
to leverage the knowledge of how the model depends on any uncertain parameter, and
try to minimize this dependence in the rst place. A few work have treated this problem
in the past, e.g., [17, 16, 34] and more recently [5] which proposes a method that
we aim at extending in this thesis. In fact, as we will see, it is possible to quantify
this dependence through a suitable state sensitivity matrix, whose norm can then be
exploited as metric in a trajectory generation step. We will now describe more in detail
the idea of the state sensitivity and how it can be leveraged in the context of trajectory

80

4.2. Open-loop state sensitivity

generation.

The rst section reproduces the idea of the open-loop state sensitivity of [5], which
was applied to the MonkeyRotor in Part I. Then the closed-loop state sensitivity is
derived, which improves the concept, and tested in simulations.

4.2 Open-loop state sensitivity

As explained just before, we aim in this development at reducing the errors achieved
by a robotic system when it tracks a planed trajectory. Two main sources for the tracking
errors can be identi ed, namely 1) the unmodeled perturbations arising at the execution
stage, e.g., unforeseen obstacles, complex aerodynamics turbulences, defaults in the
mass repartition etc., and 2) the phenomena that are modeled but badly identi ed
because of approximations in the values of the model parameters. For example, the
inertia or the aerodynamics coef cients are often dif cult to estimate precisely, which
affects the closed-loop dynamics of aerial robots in a non-negligible fashion.

The rst kind of causes is not treatable at the planning stage by de nition. The re-
lated induced errors are meant to be handled by the real-time controller (or reactive
planning strategy) whose role is to keep the system stable by compensating for them
as much as possible. The second kind of causes — discrepancies between the real
parameters and the estimated ones used in the controller — are usually considered
as unknown perturbations of the dynamics as well. However they are intrinsically dif-
ferent because the model of the system used in the controller gives structure to the
way the parameters intervene in the dynamics. This makes it possible to leverage the
knowledge of the model to reduce the second kind of induced tracking errors.

Indeed, the analytical model of the dynamics is meant to be only evaluated on the
estimated parameters, as the real parameters are unknown. Nevertheless, it can also
be exploited to measure the effect of an evaluation on a different set of parameters than
the estimated ones. In particular, an in nitesimal variation of the parameters around the
estimated ones should have an in nitesimal effect on the state dynamics which can be
computed through the corresponding jacobian. We propose then to try to compute this
quantity.

We begin by de ning a generic non-linear dynamic system described by the differ-

81

Part I, Chapter 4 — Trajectory generation for minimum state sensitivity

ential relation 8
< q(0) = qo

©a(t) = f(a(w);u(®);p)
where g 2 R" is the state of the system, u 2 R" the input fed into it, and p 2 R" a
vector of model parameters, including e.g., masses, lengths, and actuation properties.

Note that many real-world systems can be described with this kind of model, including
non-robotic ones.

(4.1)

Then, recall from Chapter 2 that the state sensitivity is de ned as the quantity
(t) 2 R" " such that

Q@
()= =(1): (4.2)

@
This matrix represents how much sensitive the state is to the parameters, with each
element ;; being the sensitivity of one state g w.r.t. one of the parameters p;. As it

is solely related to the dynamical model of the system, the analytic knowledge of this
model should be suf cient to compute this quantity at rst glance. Assuming that one
can compute this quantity, it then becomes possible to search a trajectory that, in the
null-space of the task constraints, ensures the sensitivity to be as small as possible.

As a consequence, the errors caused by the discrepancy between the (known)
estimated parameters and the (unknown) real parameters should be reduced. Though
it may not always be possible to completely annihilate these errors, one can reduce
them to the minimum possible by means of trajectory optimization with a cost obtained
from the state sensitivity matrix.

4.2.1 Simple integrator case

Consider the most elementary possible dynamic system which consists in a simple
integrator. Let g be its scalar state and u its scalar input. The dynamics of such a system
IS given by

8

2 qit)= o t=0
4.3

> T =uop ¢ o (@3

where p is a linear parameter. This model could represent for example the linear dy-
namics of a one-dimensional object of speed g and mass p !, subject to a force wu.

82

4.2. Open-loop state sensitivity

Hence the state at each time can be expressed analytically with

Zt
qt) = p . u()d + o (4.4)

In that case the sensitivity of the state w.r.t. the parameter is the scalar quantity
@
ob"
t
u()d (4.5)
qt) .

P

(1)

The direct interpretation of this result is that the state of the system after some time t
IS more sensitive to the parameter when the state itself is greater. Coming back to the
one-dimensional object subject to a force u, the result is quite intuitive : the speed q of
the object depends more on its mass if it has changed after being pushed more in one
direction than in the other.

As a consequence, pushing the object in a way that makes its speed close to the
initial one after a duration t; would ensure that the nal speed ((t;) is less dependent
on the mass. Moreover, leading the nal speed exactly to the same value as the initial
speed is the best and unique way of completely breaking the dependence, even if the
speed has changed arbitrary meanwhile.

Fig. 4.1 illustrates this interpretation with a simulation of this integrator in the rele-
vant conditions. As predicted, we can see that the nal state varies with the parameter
when the input is asymmetric, whereas it does not in the symmetric case. For such a
toy system, one could then envisage to plan “robust” trajectories such that the input
Is as symmetric as possible for reducing the effects of model inaccuracies in the rst
place.

83

Part I, Chapter 4 — Trajectory generation for minimum state sensitivity

2 2 |

L % 1 % ‘/\
Y/ //’ ‘/ ///

0 0 |

R I]

0 1 2 3 4 0 1 2 3 4

Figure 4.1 — Simulation of a simple integrator with three different parameters for the
same input. The input is symmetric on the left, leading to a common nal state of
zero, and asymmetric on the right, leading to different nal states depending on the
parameter value.

4.2.2 More complex dynamics

The concept remains the same when the dynamics becomes more complex. Let us
add some damping p, to the model, such that

8
2 ot)=0; t=0

(4.6)
> S=uop aps t 0

where the mass inverse parameter p was renamed to p;, and the initial state is set to
zero for convenience.

This differential equation can be classically solved in the Laplace domain. Indeed,
taking the Laplace transform of eq. (4.6), we get

P1

Q9) = U(8) 5" (4.7)
p2

where Q(s) and U(s) are the Laplace transform of g(t) and u(t), functions of the Laplace
variable s. De ning the operator LPF | ,ff (t)gwhich gives a rst order unitary low-pass

84

4.2. Open-loop state sensitivity

Iter of bandwidth ! o of a function f (t), eq. (4.7) rewrites in the time domain

q(t) = ;’1 LPF ,,fu(t)g: 4.8)
2

From there the sensitivity of the state w.r.t. the parameter p; is given by the relation

@
@pcit)
p, ' LPF o, fu(t)g (4.9)

o)
P1

1(t)

which is similar to the previous case where no damping was modeled. Thus, the same
interpretation than before still holds.

In contrast, the expression of the sensitivity related to the damping parameter p;,
is a bit more complex. To derive it, one can leverage the Laplace domain once more.
As the derivative is a linear operation, we can compute the sensitivity directly in the
Laplace domain,

pL
%Q;) = U(s)(pifl)2 (4.10)
and take the inverse Laplace transform to get back to the time domain. We obtain that
()= ot
S% LPF £, fu(t)g (4.11)
_ LPFfq(t)g.
P2

As a consequence, the state sensitivity w.r.t. the damping parameter p, grows with
the low-pass ltered state. This means that similarly to the behavior of 1, the sensitiv-
ity of the state w.r.t. p, can be reduced at some nal time t; by ensuring that the state
g(ts) gets close to the initial state @, but only on a large enough time base, i.e., with
a characteristic time > p ,*. As shown by Fig. 4.2, the state may thus be affected by
p. depending on the rate it varies at. Moreover, it may happen that the state is very
shaky — with a characteristic frequency > p , — near t;, without the sensitivity being
increased a lot, because of the low-pass ltering effect.

85

Part I, Chapter 4 — Trajectory generation for minimum state sensitivity

2 -1 2 -
1 i B! B
- Y/ -
q
/
| i i
'l L 1 L 1 L i '1 L L I L 1 1
0 1 2 3 4 5 0 1 2 3 4 5

Figure 4.2 — Simulation of a damped integrator with three different values of p; on the
left and three different values of p, on the right, for the same input. On the left, the
nal state is the same for any parameter value, because the input is symmetric. On the
right, the gaps between the three states converge in a low-pass ltered way at the end,
as set out in the formal derivation. It can also be noted that the negative sign of the
sensitivity is re ected in the order of the curves which is reversed in that case.

4.2.3 Computation of the sensitivity in the general case

As we have seen when the complexity of the dynamics increases — even when
remaining linear — it becomes more and more dif cult to compute and interpret the
sensitivity of the state w.r.t. the parameters. In fact, it is in most cases even impossible
to get a closed form expression for (t) for a non-linear system. For this reason, it is
desirable to seek some general method to compute the value of for a generic robot
dynamics.

This can be obtained as follows: considering the input as an unknown independent
variable a priori, we can take the derivative of eq. (4.1) w.r.t. the parameters p which

leads to 8
3 (0)=0
(4.12)
2 = Qaoiuein 0+ Lamiu;p)

Q@ @
where the initial condition for the sensitivity is zero because the initial state is assumed
not to depend on the parameters®.

1. In certain particular cases the initial state may actually depend on the parameters, e.g., the height
of the center of mass of a humanoid robot depends on numerous parameters including the leg lengths.

86

4.2. Open-loop state sensitivity

Though we still do not have a closed form for (t), eq. (4.12) provides us with a
way to compute it. Indeed, integrating this equation over time gives the sought quantity.
Besides, this can be done numerically whenever the dynamics are too complex to solve
the differential equation analytically.

Indeed, at this point we have a differential equation for (t) that only implies the
jacobians % and %, which are matrices that only depend on the state q, the input u
and the parameters p. Thus, for a certain run of the system with known state and input,
one can evaluate these jacobians at any time t for some parameters. In practice, we do
not know the set of real parameters, and thus we evaluate these matrices at the best

guess we have for the parameters.

This best guess of the parameters vector is also the one used by the controller,
hence we call it the control parameters vector p.. Note that the exact de nition of the
‘real' parameters p is subject to discussion, as the set of parameters might seem more
related to the chosen model than to the real system itself. In the following we con-
sider an ideal paradigm where the real system does have a unique set of parameters
associated to, that represents it at best for a given model that we decide to employ.
This notion of best representation obviously raises a question of best- tting criterion
choice, we simply consider here that the real parameters are the ones minimizing the
difference between the observed real behavior and the modeled one for the sake of
simplicity 2.

Based on the resolution of the previous equation (analytically or numerically), one
can estimate the value of the state sensitivity matrix. Note that the values of the input
over time are required as well as the state and parameters, in order to do so. As said,
although the parameters p appearing in this equation are ones of the real system, they
are unknown. However, the known control parameters, which are the estimation of the
real parameters, denoted by p. in the following developments, can be used to evaluate
it in practice. The discrepancy between those is supposed to be small for two reasons,
1) because p. is a good approximation of p by de nition, and 2) because the trajectory
over which eq. (4.12) will be integrated will be constructed with the goal of minimizing
the sensitivity, meaning that by construction the effect of the difference between p. and
p will be reduced to the minimum possible.

2. This is part of the future work that we plan to achieve concerning the sensitivity notion and appli-
cability.

87

Part I, Chapter 4 — Trajectory generation for minimum state sensitivity

Given that one can compute a good estimate of the state sensitivity matrix, gener-
ating a ‘minimum-sensitive’' trajectory translates into minimizing a particular cost. For
example, a trajectory that is computed such that some norm of the nal state sensi-
tivity jj (t¢)jj is minimized should ensure that the effect of the discrepancy between
estimated parameters p. and real parameters p on the precision of the reached state
g(ts) is reduced at best.

This idea has been proposed rst in [5] where it has been used to generate feed-
forward trajectories for a simple vehicule which are, as sought, minimally insensitive to
parametric model uncertainty. Moreover, as discussed before, we have also used it in
Chap. 2, Sec. 2.2.2 for planning the aerial locomotion trajectories of the MonkeyRotor.

4.3 Closed-loop sensitivity

As we have seen, it is possible to compute the value of the matrix (t) in the general
case given the trajectories of the state and input vectors over time (q(T); u(T)), where
T R" is the considered time interval. We will now put this result in perspective and
propose an extension to it.

4.3.1 Motivation

As the careful reader may have noticed, considering the input u(t) as an indepen-
dent variable from the state q(t) is actually a strong hypothesis, since it is equivalent
to neglecting the controller of the robot. Indeed, the input is usually a function of the
state g(t) and a target state to be reached q (t), which enables the system to correct
perturbations and stabilize itself. In other words, the quantity computed in eq. (4.12)
evaluates how sensitive to the parameters the state is, given a predetermined input
trajectory u(T) that would not be adapted if the state deviates from the target. For this
reason, we chose to call it the open-loop state sensitivity.

Note that in a replanning context such as MPC, the input is actually adapted over
time since the initial state at each planning iteration re ects the real behavior of the
system. Still, this manner of closing the loop is outside the trajectory generation scope
and it lies in the external algorithm exploiting the successive planed trajectories at each
timestep. Therefore, we keep this denomination of open-loop state sensitivity even for

88

4.3. Closed-loop sensitivity

replanning, as this quantity is used with the goal of generating one single trajectory at
a time.

Based on this consideration, the direct extension we seek is to try to integrate the
controller behavior in the computation of the state sensitivity in order to derive a closed-
loop sensitivity. By doing this, we aim at making the generation of trajectories based
on closed-loop sensitivity minimization aware of the particular adopted control strategy,
such that the way it affects the dynamics is taken into account at the planning stage.
We call this method control-aware trajectory generation. Note that this is different from
what was done in [5], as the effect of the control policy is taken into account in the
trajectory generation, prior to execution.

4.3.2 Derivation

To begin with, we de ne the desired output trajectory y (t) to be tracked by the
system. As our goal is to compute a trajectory of this quantity over the time interval T,
leta 2 R" be a nite vector of coef cients parametrizing the trajectory such that, as in
Chapter 1,

y ()= (a5t) (4.13)

with the chosen representation function, which can be polynomials for example, as
used before in Part |. Note that the vector of coef cients a being of nite dimension im-
plies that the possible represented trajectories are only a subset of all possible trajec-
tories (R™)T, e.g., the continuously derivable ones. However, in our case the trajectory
of the state is already enforced to be regular because of the differential equation (4.1)
it follows. Moreover, polynomials are known to be able to t with arbitrary precision
any continuous function of the time. This allows us to use polynomials or an equivalent
representation function without loss of generality.

Now let the input u(t) be any differentiable function of the state and of the desired
target output y (t). The goal of such control function is, obviously, to achieve y(t) !
y (1), i.e., to make the output of the system converge towards the desired one. In order
to remain general, let it also be a function of an internal state (t) of the controller. This
internal state vector may represent, e.g., an integral action, estimation of parameters

89

Part I, Chapter 4 — Trajectory generation for minimum state sensitivity

for adaptive control, and so on. We de ne the control laws as

8

E 0)= ,

3 —t) = g(q(t); (1);a;t;pc) (4.14)
—u(t) = h(q(t); (1);a;tpc)

where the whole desired trajectory y (T) is given to the controller through the vec-
tor a. Indeed, in some cases the sole current target state y (t) may be suf cient to
the controller, e.qg., if it implements a simple proportional feedback law, or if the target
is constant (in a regulation setup). But generally several derivatives are also required
depending on the complexity of the dynamics and of the chosen control law. With this
formulation the possibly necessary derivatives of order o can computed inside the con-
troller functions g and h by means of the representation function

d%

_ o (art)
dro V7 '

(t) 4t

(4.15)

Now if we consider (4.1) and take the derivative of it w.r.t. the parameters, we obtain
a new equation which is different from eq. (4.12) because it integrates the full closed-
loop dynamics including the controller. To do so we de ne the quantity

@(t)
@

which we will be calling the input sensitivity from now on.

(t) = 2 R™ M (4.16)

The sensitivity differential equation becomes

8
3 (0)=0
2 ()= g)+ g)+ g, (@47

where the evaluation arguments (q(t); u(t); p) of the jacobian matrices have been omit-
ted for the sake of clarity.

This equation has only one more term than before, however integrating it is not
obvious because (t) is not known a priori. It is in fact possible to compute it through

90

4.3. Closed-loop sensitivity

eq. (4.14) which we can rewrite

- @ @ e
=g 9% &

after derivation w.r.t. p, where the evaluation arguments (q(t); (t);a;t; p.) of the two
jacobian matrices have been omitted here again.

(t) (4.18)

Unfortunately there is still one unknown term here, the internal state sensitivity
which we denote as

@(t)
@
This issue is resolved by applying the same procedure as before to the rst con-
troller equation (4.14), namely taking the derivative w.r.t. the parameters directly of
the differential equation. This leads to a new differential relation on the internal state

(t) = : (4.19)

sensitivity 8
3 (0)=0
2 ()= g O+2 (420

which can be forward integrated to compute the effective value of this matrix. Here
again the initial value of is considered to be null.

To synthesize, it is possible to compute the closed-loop state sensitivity by inte-
grating a set of differential equations. For the sake of readability, we introduce the
notation x., in order to refer to the jacobian of a vector function x w.r.t. one of its vector
arguments y. With this shorthand, the set of differential equations becomes

8
0)=0
% =0
—(t)=fqy @+f, (@®)+f, (4.21)
§ - ()= O (t)+ 0. (t)
(=hg (O+h (t)

Note that, of course, the true parameters of the system p are not known. Hence, this

set of differential equations cannot be integrated for evaluating the sensitivity of the true

system w.r.t. its parameters. However, as evoked before, one can evaluate the values
of the necessary jacobians at the control parameters p. instead. The consequence is

91

Part I, Chapter 4 — Trajectory generation for minimum state sensitivity

that the resulting computed sensitivity corresponds to the one of a virtual system that
would have the parameters p.. Although this may not seem to be the sought value, the
difference is actually supposed to have negligible impact on the results, because by
nature the control parameters are a good approximation of the true parameters even if
tainted with small errors, i.e., p. p. Hence, the difference between (p) and (p¢)
is of second order and can be neglected 3.

4.4 Application to robotic trajectory generation

In this section we will describe how one can exploit the previous closed-loop state
sensitivity computations for generating "minimum-sensitive' trajectories for two repre-
sentative robots. The method will be applied to a unicycle robot, which is considered to
be a good case study in order to test the applicability of the theory. Indeed, it is simple
and still presents interesting properties such as the differential atness, and a (planar)
guadrotor which is also a at system while having a more complex and challenging
dynamics and control. We rst derive the dynamics and controller of the two robots.

4.4.1 Unicycle dynamics and control

Letq =[xy] 2 R be the unicycle state in a world frame Fy, = fOw; Xw; Yw0,
with (X; y) being the planar position in F\y, and the unicycle heading, see Fig. 4.3. Let
also (v; !) be the unicycle linear and angular velocities and (! g; !) the right and left
wheel spinning velocities. As it is well-known, these velocities are related by

2 3 2r r 33 3 2 3
| |
4|V5:§~r2 2r 24-'R5=s4"R5 (4.22)
! _ _ - L L
2b 2b

where r is the wheel radius and b the distance between the wheels, and where the
introduced matrix S is constant for the robot. The differential drive con guration is re-
tained in our case, which means that the actual inputs of the unicycle are the wheel
velocities (! g; !). We thus setu =[! g ! .]" as the unicycle control inputs. Because
of this choice, any uncertainty in the calibration parameters r and b directly affects the

3. Further justi cations will be given in the next chapter.

92

4.4. Application to robotic trajectory generation

VXp
YB

XB

Yw

Ow Xw

Figure 4.3 — lllustration of the main quantities characterizing the unicycle model

system dynamics. Therefore, we take p = [r b]" as the vector of system parameters
w.r.t. which the closed-loop state sensitivity will be evaluated.

With these settings, the unicycle dynamics has the expression

2 3
cos O
q= g sin 0 zS(p)u = f(a; u; p): (4.23)
0 1

The chosen control task is that of letting the output r =[x y]" 2 R?, which is the uni-
cycle planar position, tracking a reference trajectory r4(t) 2 R2. We solve this tracking
control task by implementing a dynamic feedback linearization (DFL) controller with an
integral action, with the aim of guaranteeing the best possible tracking performance in
the nominal case where p. = p, see, e.g., [51].

This control strategy can be summarized as follows: let =], « ,]7 2 R® be
the controller states, where represents the dynamic extension of the unicycle linear
velocity v, and (; y) are the two states of the integral action. Let also the matrix
A(g;)2 R? 2pedenedas

3
cos() usin() g,

sin() ycos() (4.24)

A(g;)=+4

93

Part I, Chapter 4 — Trajectory generation for minimum state sensitivity

Differentiating twice the unicycle position r(q) w.r.t. time yields
2 32 3 2 3

= 4 €080 vSin()54\L5:A(q;)4 L5 (4.25)
sin() ycos() ! !
Now de ne the following vectors
8
3 r=[cos()y sin()]
X :[« y]T (426)

=fa+t ke(rg 1)+ kp(ra 1)+ ki,

where ky, > 0, k, > 0 and k; > 0 are suitable control gains. As detailed in [51], the
dynamics of the control states can then be written as

2 h i 3
10 A1*

—=4 5=g(;q;rqt) (4.27)
rq r

and the unicycle control inputs as
2

U:Sc14 ho 1YA 1 5

h(;a; ra(t); po): (4.28)

Note that in eq. (4.28) the calibration matrix S; is supposed to be correctly evaluated
on the nominal control parameters p.

4.4.2 Planar quadrotor dynamics and control

LetFw = fOw; Xw; zwgbe aworld frame and Fg = fOg; Xg; zggthe body frame
attached to the quadrotor center of mass, with zg aligned with the thrust direction,
see Fig. 4.4. In the planar quadrotor case, the state consists of the quadrotor position
r = (x; z) and linear velocity v = (vy; V;) in Fy, and of the quadrotor body orientation

and angular velocity ! with, thus, g = [r" vT ! |7 2 R®. Similarly to the previous
unicycle case, we can distinguish the “effective’ inputs (f;) which are the total thrust
and torque, and the actual system inputs (wg; W,) which are the right and left propeller

94

4.4. Application to robotic trajectory generation

Zy

Ow Xw
Figure 4.4 — lllustration of the main quantities characterizing the quadrotor model.

speeds. These four values are related by
2 3 2 32 3 2 3

afsoak kg Weg_1yWrs. (4.29)
k k W WL

where ki and k are, in rst approximation, calibration parameters depending on the
propeller characteristics, see, e.g., [38]. Throughout the following developments, we
will then take u = [wg w_]" as the quadrotor control inputs.
The quadrotor dynamical model considered here is
8

% t=¥%¥ 3 2 3
v = a4 05,0 SnOg g0y
g m cos() (4.30)

with m and | being the quadrotor mass and inertia, and g the gravity acceleration
magnitude. Note that the control inputs u = [wg w_]" enter in (4.30) via (4.29). This
then induces a dependency on the propeller characteristics (ks ; k). Furthermore, the
term B ()v is meant to model a body-frame air drag with possible different magnitudes

95

Part I, Chapter 4 — Trajectory generation for minimum state sensitivity

along the horizontal and vertical quadrotor axes xg and zg. Letting R() 2 SO(2) be
the 2D rotation matrix from Fyy to Fg, matrix B() is de ned as
2 3

b, O
B()=R()4 5RT 4.31
()=R() 0 b, () (4.31)
whereb, Oandb, O0arethe body-frame drag coef cients along xg and zg, respec-

tively. Finally, the system parameter vector considered for the closed-loop sensitivity

optimization is taken as

"k k Fr
7f PR 4'
p= i b, b, 2R*

Indeed, as clear from (4.29-4.30), the quadrotor dynamics is only affected by the ratios
ki =m and k =I and not by the individual values of these parameters.

The control task is, as before, the one of tracking of a reference trajectory rq4(t)
for the quadrotor position r. Analogously to the unicycle case, we implement a DFL
controller with an integral term for obtaining the best possible tracking performance
of ryq(t) in the nominal case where p. = p, see, e.g., [48]. In the quadrotor case, the
controller statesare =[; 4 x -] 2 R* where ; and 4 represent the two dynamic
extensions of the thrust input f, and («;) are again the internal states of the integral
action.

We construct the controller by differentiating four times the quadrotor position r
w.r.t. time, 2 3

= A p)4d | 5+ b(a; ;po) (4.32)

where the detailed expressions of A(q; ; p.) 2 R? 2 and b(g; ; pc) 2 R? can be
found in [48]. Let now

8 2 3 2 3
e =4 05y g SN0 gy,
O mc cos()
2 3 2 3
¢ = dgq SN g 140805, g, g
me cos() me sin() (4.33)
xz = [X Z]T
= g+ k,(rd T)+ ka(fd 4)+ kv(r_d V)+

+kp(rd I’)+ ki Xz

96

4.4. Application to robotic trajectory generation

where k; > 0, k, > 0, k, > 0, kg > 0, k, > Oand k; > O are suitable control gains. The
dynamics of the control states can then be written as

2 2
h
g o % g 1 0 A l(b) §= a(; q; ra(t); pe) (4.34)

and the quadrotor control inputs are given by

2 3

— 1 i f — B . .
u=Tran) 2 ;R (4.35)

4.4.3 Trajectory generation

Now that the system dynamics and control strategies have been de ned, we have
closed form expressions for the required vector functions f, g and h. This allows us to
compute the necessary terms in eg. (4.21), namely the three jacobians of the dynamics
f.q, f.u, f.p, the two jacobians of the control dynamics g.4, 9. , and the two jacobians of
the control law h.4, and h. . The differential system (4.21) can then be solved along
a particular trajectory a that is submitted to the system, yielding the sought sensitivity
matrix

This allows us to set up a trajectory optimization problem that aims at reducing
this sensitivity, as announced at the beginning of this chapter. Given the system dy-
namics (4.23), a reference trajectory rq(t) = (a; t) de ned over a given time interval
t 2 T =[to; t], and the tracking controller (4.27-4.28) or (4.34-4.35), we consider two
possible optimization problems of interest, both seeking the optimal trajectory vector
Aopt, NAMely:

aop = argmink (1 K2 or (4.36)
z t

Bopt = arg min tf k ()k (4.37)
0

where k k is a suitable norm for the state sensitivity matrix , and A is the set of
possible values for the optimization variables a. The rst problem (4.36) focuses on
optimizing the perturbed tracking performance of r4(t) at the nal time t;. This is the

97

Part I, Chapter 4 — Trajectory generation for minimum state sensitivity

most common robotic task, which is relevant when needing to reach a speci c location
— or, more generally, desired output — or for instance grasp an object at the nal time
t; with high accuracy. On the other hand, the second problem aims at optimizing the
average perturbed tracking performance of rq(t) during the whole trajectory duration.
This is more relevant when one wants to minimize deviations from the desired trajectory
in the whole time interval t 2 T. It may be required for instance when needing to avoid
collisions throughout the trajectory.

Problems (4.36—4.37) are constrained minimization problems that can be addressed
with any suitable off-the-shelf solver. Note that among all the possible solving methods,
the fastest ones require an analytical expression for the gradient of the cost w.r.t. the
optimization variable a. Heretofore, this gradient expression have not yet been derived.
Though it would be possible to implement a solving method that does not use the gra-
dient such as, e.g., simulated annealing [33], we remark that it is in fact possible to
compute this gradient for the sensitivity cost, as we will detail in the next section.

In our case, a simple gradient descent algorithm with linear constraints will be used.
To this end, we consider a scenario in which initial and nal values are given for rg4(t)
and a number of its time derivatives, e.g., given initial and nal positions, velocities, ac-
celerations, and so on. These constraints, de ning the admissible set A, can be written
in a linear form as Ma = d, where the vector d is the given set of initial and nal val-
ues for rqy(t), and the matrix M depends on the choice of the trajectory representation
function

The polynomial trajectories that we use in this Thesis are as described in Chap. 1,
eg. (1.22).

Vector a can then be optimized with a null-space approach by starting from an initial
guess satisfying the constraint, e.g.,

ap = MYd; (4.38)
and implementing the update law
an+1 = an + kiMY(d Map)+ k(I MYM) ; 8n>0 (4.39)

with the vector 2 R"2 being the negative gradient of the cost functions in (4.36—4.37),
and k; > 0, k, > 0 suitable gains. The update mechanism can be stopped whenever

98

4.4. Application to robotic trajectory generation

the gradient norm becomes small enough. Note that since problems (4.36) and (4.37)
are in general non-convex in a, the update law (4.39) can only guarantee convergence
towards a local minimum.

As for the choice of an appropriate matrix norm k k, many possibilities exist, e.g.,
determinant, trace, condition number and so on. In this chapter we chose to use the
Frobenius matrix norm, i.e., fora matrix M 2 R" ™,

X
kMk?>= " mf: (4.40)
]

For a matrix M (x) function of a vector x 2 R"x, this norm de nition leads to the follow-
ing derivative

@M (x)k? _ @M (x)k @ (x)
o C2KMk Sgrot So
_ M(x) @1(x) .
=2kM Ok e e (4.41)
- 2M (%) @ (x)
@1 (x)

Note that in this expression, =z~ = T is a tensor of dimensions (n;m;n) and
thus, the product M (x) @) 2 Rt ™ is a matrix-tensor product which obeys the rule

X
M Tk = mi; tiix ;8K Ny (4.42)

i=1j=1

De ning the tensor ., = % 2 R" M Na this results in the gradient expression

2
= @‘éf)k: 2 () a(ty) (4.43)

for Problem (4.36), and

_ @uk Okd | fuo@ (R _

- @ I @ B
th

2 " () a()d

to

for Problem (4.37).

99

Part I, Chapter 4 — Trajectory generation for minimum state sensitivity

4.4.4 Gradient derivation

In the previous algorithm the required gradient ., may be estimated by numeri-
cal methods such as nite difference or complex step differentiation, see [59], however
the dimension of the considered gradient is quite high, which makes such numeri-
cal computations too slow in practice. For example, in the case of the unicycle with
trajectory polynomials of dimension 10, we have a gradient of dimension 3 2 10,
which means that a numerical approximation via nite differences may need approxi-
matively 61 evaluations of the sensitivity at each step of the update law (4.39), which
can be computationally heavy (and, of course, the situation can only get worse with
more complex dynamics, parameters or ner trajectory parametrizations). Instead, we
propose to derive a formal expression for the gradient of the sensitivity cost based on
the analytical expressions of eq. (4.17).

As discussed before, @ =@ is a tensor quantity in R"@ "» "a_For simplifying the
derivations we then work out the expression for the gradient @ =@jaw.r.t. each individ-
ual i-th component of the trajectory vector a.

Let then

@ (1)
@a

be the sought matrix gradient of the system state sensitivity w.r.t. the optimization vari-

able &, and let also

2 R" " (4.44)
P=Pc

14 (t) =

@ (1)
@a
be the matrix gradient of the controller state sensitivity w.r.t. a. The matrix .. repre-
sents the gradient of the control state sensitivity w.r.t. the optimization variable a;, and

will be needed for evaluating .5,

MO 2R" (4.45)

P=pPc

100

4.4. Application to robotic trajectory generation

Taking the raw time derivative of eq. (4.21), we obtain that
8

" #
— @ @ + @ @ + f. o+
YL@ @a @ @ 4.
@, @ + e, @ + f. o+
.@ @a @ @ .
@ @,8 @
. @ @ @ @a)
@ @ @ @ @
. - = ¥ .= =AL S :) 4.46
““ @ ea @ es @a, O = (4.46)
@ @, @ @, @ ,
. @ @a @ @a @a 4.
= @ Q + @ @ + @ + h. +
" .@ @ @ @a @, S
% @ + @ @ + @ + h. o
@ @r @ @a @n 4
with the hypothesis that some partial derivatives are null, namely
g = 0, the trajectory vector does not depend on the real system parameters,
@

@ " 0, the trajectory vector does not depend on the control system parameters
(the measured or estimated ones),

%t = 0, the trajectory vector is constant over time (as opposed to the desired

position to be tracked rq(t) = (a;t) for example),

%t = 0, the real system parameters do not vary over time, and
%f = 0, the control parameters are constant w.r.t. variations in the true param-
eters.

Note that concerning the last one, it may not be true in practice if a parameter esti-
mation is implemented on the system, in which case the internal states would include
some parameters. In that case the gradient of the control parameters w.r.t. the real
parameters should be a decreasing quantity over time, depending on the estimator

performance. We do not consider such possible estimation scheme in this Thesis and

thus keep the relation %; = 0.

In these equations, several tensors intervene such as @.q=@ 2 R" " M. As a
consequence the product % %, as well as other similar ones, are tensor-vector
products. Let T 2 R"™ "2 "™ pe a tensor and x 2 R" be a vector, we de ne this

101

Part I, Chapter 4 — Trajectory generation for minimum state sensitivity

tensor-vector product rule as
X3

(T X)i;j = ti;j;k Xk 8i nl;j no: (447)
k=1

Moreover, we de ne the following quantities

= @) g

M= "5, . 2 R (4.48)
_ @(t) n

0= g4 . 2 R (4.49)

as the gradients of the system and control states w.r.t. changes in the optimization
variable a. These quantities are also needed for evaluating the tensor ... As it was
the case for and the other quantities introduced so far, both ; and , do not admit,
in general, an explicit expression. By adopting the same reasoning than the one leading
to (4.21), one can show that the dynamics of ; and along the system trajectories
take the expressions

8 !
%—i:@i"'@@i"'@i"'@; i(to) =0

: % @‘@@‘ @@ @n ; (4.50)
: —i=@i+@ i+@a; i(t0)=0

which allows evaluating ;(t) and (t) by forward integration analogously to (t) and
(t) in (4.21).

We also iterate again the notation f.,., to refer to the derivative @.,=@ in the follow-
ing, and we introduce the notation f.., to refer to the derivative @.q=@. With all these
settings, we can reformulate eq. (4.46) in a more compact way that only involves known

102

4.4. Application to robotic trajectory generation

or computable quantities, i.e.,

: —a =[fig it fgu Ual tfg at
[fug i+fu Ual +fu at
Lf;p;q it fou Ugl i
—u T8 tGa it to ¢ (4.51)
hg;q; i T O;q i+ g;q;aii *0q &
a = h. +h g i+ h + h. At
hh;q; thy it h;q;aiI the

with the initial conditions ., (to) = 0 and ;ai(tO) = 0.

Summarizing, in order to optimize some function of the state sensitivity matrix
it is possible to bene t from an expression of its gradient ., w.r.t. the optimization
variables a;. This gradient can be obtained by forward integrating (4.51) together with
system (4.50) for obtaining ; and , and system (4.21) for obtaining and . Note
that, as explained before, one also needs to propagate the gradient of the controller
state sensitivity ~_ in order to evaluate the terms ., and thus the complete gradient

ar
This allows us to implement a complete trajectory optimization algorithm that ad-
dresses problems (4.36) and (4.37) for any robot. In the following we will do it for the

unicycle and the planar quadrotor, and discuss the obtained results.

4.4.5 Simulations

The described optimization scheme was implemented in MATLAB Simulink, where
a Simulink model serves the purpose of integrating the model dynamics and sensitiv-
ity dynamics, and an “outer loop” is implemented in Matlab that realizes the gradient
descent algorithm. A set of simulations of the unicycle and quadrotor dynamics (and
control) over the optimized trajectories was done. We used the robot simulator V-REP
to visualize the resulting tracking of optimized and non-optimized trajectories.

The numerical errors that may occur due to numerical integration of the dynamics
are measured by comparing the obtained values of the sensitivity matrix and its gradi-
ent with the corresponding nite differences computed from the variations of the state
between two simulations run with in nitesimally close parameters. As a result our setup

103

Part I, Chapter 4 — Trajectory generation for minimum state sensitivity

Figure 4.5 — Screenshots of the realized simulations for the unicycle robot and the
guadrotor. The top line shows the trajectories that were submitted (red) and realized
(blue) by the unicycle and the quadrotor with perturbed parameters. On the bottom
line, one can see the detail of the end of the trajectories: the target positions (red) are
reached with a better precision in the optimized cases (2nd and 4th columns) than in
the initial guesses (1st and 3rd columns).

led to numerical errors smaller than 10 6 on each component of the sensitivity and its
gradient.

A video was made which illustrates two simulations made for the unicycle and for the
quadrotor . The corresponding cases are the ones of Fig. 4.5, were one can see how
the tracking of optimized trajectories (second and fourth columns) resulted in better
precision at the nal time than when tracking non-optimized trajectories (rst and third
columns).

Moreover, we show in Fig. 4.6 the tracking performance (dash lines) of the simu-
lated unicycle when tracking trajectories that are optimized w.r.t. the state sensitivity or
not. To illustrate well the behavior of the system, we considered a control law without
integral action (two cases on the left), and with integral action (two cases on the right).
After generating two optimal trajectories for these conditions (black lines on second and
fourth plots), we made a simulated unicycle track them with a set of seven perturbed
parameter vectors submitted to the controller, ranging from 80% to 120% of their nom-
inal values. As a comparison, the same set of unicycle simulated dynamics was run
on non-optimized trajectory with the same initial and nal conditions (the initial guess),
which resulted in the rst and third plots. The error ellipsoids were computed from the

4. video at https://proxy.ens-rennes.fr/owncloud/index.php/s/nxFbMCRzD7wCzQp

104

4.5. Validation through extended statistical analysis

Figure 4.6 — Tracking of optimized vs. non-optimized trajectories by a unicycle with
perturbed parameters. On the right, the control law includes an integral action whereas
it does not on the left.

standard deviations of the obtained set of nal tracking errors, and are displayed at the
target nal position (blue): we clearly see that the tracking of the optimized trajectories
ended up in smaller errors in average than the initial guess, as wished. Note that the
case with integral action in the control law seems to feature less improvement, which
makes sense as the integral action already recovers part of the tracking error induced
by the parametric uncertainty.

4.5 Validation through extended statistical analysis

In order to test the effectiveness of the previously described method, we conducted
a statistical analysis whose goal is to check whether the application of our optimiza-
tion scheme actually improves the performance of a tracking task or not, when the
parameters are imprecisely known. To do so, the two system dynamics — unicycle
and quadrotor — were simulated a large number of times with randomly perturbed pa-
rameters, each time following or not an optimized trajectory that had been previously
generated with our method, as explained before. During this process, the evaluation
of a sensitivity matrix of dimension 70 and the associated gradient of dimension 350
evaluated over 150time samples could be computed in about 30 ms on an Intel Core
i7-6600U at 2.60 GHz with 16 GB memory.

We now discuss this analysis, in which we considered four possible state sensitivi-
ties:

1. Unicycle — sensitivity of the state q w.r.t. the two wheel parameters (r; b);

105

Part I, Chapter 4 — Trajectory generation for minimum state sensitivity

2. Quadrotor — sensitivity of the state q w.r.t. the two drag parameters (b,; b);
3. Quadrotor — sensitivity of the state g w.r.t. the ‘'mass' parameter k; =m;
4. Quadrotor — sensitivity of the state q w.r.t. the “inertia' parameterk =I.

Other combinations are clearly possible, e.g., state sensitivity w.r.t. all the parameters
p at the same time. For each of these cases we further considered four subcases,
l.e., DFL controller with or without integral action, which we denote as | and NI, and
optimization of the " nal' problem (4.36) or of the “integral' problem (4.37), which we
denote as TF and TI. As a consequence there is a total of 16 test cases. For the ease
of exposition we will then refer to an individual subcase with the code i-A-B, where
I =1 :::4refers to the four considered state sensitivities, A2{l, NI} to the presence or
absence of the integral term in the DFL controller, and B2{TF, TI} to the optimization
problem (4.36) or (4.37). Therefore, as illustration, 3-1-TF will denote the quadrotor state
sensitivity w.r.t. ks =m evaluated for the DFL controller with integral action and optmized
at t; as described in (4.36).

Each of the sixteen combinations i-A-B was tested by running N = 1000 simu-
lations in which the system under consideration, i.e., unicycle or quadrotor, was ei-
ther tracking a non-optimal reference trajectory rq(t) = (an opt; t), Or the optimal one
rq(t) = (aopt; t). The non-optimized trajectory a, ox Was simply taken as the initial
guess of the optimization algorithm (4.39), i.e., a, ox = M?Yd, which only satis es the
linear constraints for the initial and nal con guration. On the other hand, the optimized
trajectory is obtained by solving the problem (4.36) or (4.37), depending on the con-
sidered subcase. In all cases, the trajectory representation function ry4(t) = (a; t) was
chosen as a polynomial of order 15in the variable t for each of the two components
Xq(t) and yq4(t) of the desired position to be tracked r4(t).

In each run, the model parameter(s) under consideration were generated by ran-
domly perturbing the true system values. In particular, all nominal parameters, except
the drag coef cients, were drawn from a uniform distribution with range 80%to 120%
of the true system values. The drag parameters were instead drawn from a uniform
distribution with range [0 G:2].

The non-optimal reference trajectory rq(t) = (an_opt; t) was always the same across
all subcases i-A-B. It was chosen as a rest-to-rest motion with the initial and nal veloc-
ities, accelerations, jerks and snaps being null — the latter two only making sense for
the quadrotor case —, and lasting 5 [s]. The optimized trajectory rqy(t) = (aop; t) was,
instead, different for each subcase i-A-B because of the different conditions tested,

106

4.5. Validation through extended statistical analysis

but it was obviously the same across the 1000runs of each subcase. Finally, the DFL
control gains were the same across all subcases, i.e., one set for the | condition with
ki > 0, and another set for the NI condition with k; = 0, and chosen so as to obtain real
and negative closed-loop poles.

Consider now a particular subcase i-A-B tested over the N runs and let:

n_oPt(t) represents the closed-loop state evolution in the nominal case where

nom

pc = p when tracking the non-optimal reference trajectory rq(t) = (an_opt; 1),
with qn-°P'(t) being the same for all the N runs;

— qggﬁﬂi (t) represents the closed-loop state evolution in the k-th perturbed run

where p. 6 p, 8k N, when again tracking the non-optimal reference trajectory
ra(t) = (@n_opt; 1);

— g%kt (t) represents the closed-loop state evolution in the nominal case where
pc = p, when tracking the optimal reference trajectory rq(t) = (agp; t), with
qPt (t) being the same for all the N runs;

— qggﬁt;k(t) represents the closed-loop state evolution in the k-th perturbed run
where p. 6 p, 8k N, when again tracking the optimal reference trajectory
ra(t) = (aopt:).

Finally, we de ne the state evolution errors ef-""'(t) = qhsP(t) gpary (t) in the non-
optimal case and ef”'(t) = g%t (1) doby. (1) in the optimal case, and consider the
guantities
ERY = kel (tok
ENS = kel)kd
EP%. = kef(t)k
EX, = ked™()kd

to

(4.52)

TV AR ©0

Let us focus on problem (4.36), the other one being equivalent. If tracking the op-
timized trajectory rq(t) = (aop; t) obtained from (4.36) results in a smaller value for
k (t;)k? at the naltime t; as claimed, and thus in a smaller sensitivity norm k = (t)k,

then one should expect the non-optimal state error norm E?E‘?Et to be “statistically larger

than the optimal E‘T)"Ft;k over the N runs. In other words, the perturbed state evolution

should consistently deviate less at t; from the nominal one when following the opti-
mal reference trajectory rq(t) = (aopt; t). Analogous considerations clearly hold for

problem (4.37) and the quantities ET 7, E2h, as well,

Figs. 4.7-4.10 illustrate the results of this statistical analysis for all the considered

107

Part I, Chapter 4 — Trajectory generation for minimum state sensitivity

Figure 4.7 — Case 1: unicycle — sensitivity of q w.r.t. (r; b). Top row: E‘T"’Ft;k (blue his-
n_opt

togram) vs. E1g (orange histogram) for the cases 1-NI-TF (left) and 1-I-TF (right).

Bottom row: E7;, (blue histogram) vs. Ef; ™ (orange histogram) for the cases 1-NI-Tl

(left) and 1-I-TI (right).

subcases across the N runs. In particular, Fig. 4.7 reports the normalized histograms
of EJ%., in blue vs. E7&R in orange, for the cases 1-NI-TF (top left) and 1-I-TF (top
right), and of Eg}, in blue vs. E{;% in orange, for the cases 1-NI-TI (bottom left) and
1-I-T1 (bottom right). The following Figs. 4.8—4.10 follow exactly the same pattern for the
remaining cases 2, 3, 4. These histograms are normalized so that the height of each
bin represents the probability of having a tracking error norm that falls within the bin
bounds. As a consequence, these histograms can be seen as an approximation of the
probability distribution of the tracking error norms resulting from the parameters being
drawn from a uniform distribution as described before. Furthermore, Table 4.1 reports
for all tested conditions the mean and standard deviation (°*; ©°PY) and ("-°Pt; n-opt)
of the various histograms shown in Figs. 4.7-4.10, together with the relative improve-
ments in the optimal vs. non-optimal cases.

We can then note the following facts: the tracking state error norms in the optimal
cases always resulted in smaller values w.r.t. the non-optimal cases, both in terms of
mean and of variance, in all the tested conditions. Therefore, the proposed optimization

108

4.5. Validation through extended statistical analysis

Figure 4.8 — Case 2: quadrotor — sensitivity of q w.r.t. (b; by). Top row: E‘T"’Ft;k (blue

n_opt

histogram) vs. Etg} (orange histogram) for the cases 2-NI-TF (left) and 2-I-TF (right).

Bottom row: Ei %}, (blue histogram) vs. Ef;% (orange histogram) for the cases 2-NI-TI

(left) and 2-1-TI (right).

of the reference trajectory rq(t) = (a;t) was able to reduce the average tracking
error at t; and over the whole trajectory — depending on the considered cases. It also
made the tracking error more predictable by reducing its variance over the parameters
control discrepancies. Note that this is true not only for all conditions NI, i.e., without
integral term in the controller, as one could have expected, but also for all conditions I,
l.e., with the integral term. Hence, despite the bene cial action of an integral term
in compensating for parametric uncertainties, the proposed optimization is still able
to further improve the overall tracking performance. Furthermore, one can also note
how the improvements in the tracking error performance, both mean and variance, are
always larger in the TF conditions than in the Tl conditions. This can be explained as
follows: in the TF conditions, the optimization has the possibility to generate a suitable
‘maneuver’ for eventually recovering the tracking error norm at the nal time t;, while
possibly accepting an increased tracking error before t;. On the other hand, the TI
conditions weight the tracking error norm over the whole trajectory, thus leaving less
room for the optimization to improve the tracking performance, e.g., contrarily to the TF

109

Part I, Chapter 4 — Trajectory generation for minimum state sensitivity

Figure 4.9 — Case 3. quadrotor — sensitivity of q w.r.t. ky=m. Top row: E$F§;k (blue
n_opt

histogram) vs. Etg} (orange histogram) for the cases 3-NI-TF (left) and 3-I-TF (right).

Bottom row: Ef;, (blue histogram) vs. Ef; 7 (orange histogram) for the cases 3-NI-Tl

(left) and 3-I-TI (right).

cases, a maneuver that temporarily increases the tracking error would result in a poor
nal performance.

Coming to the individual cases, we can note that in cases 1, 2 and 4 the sensitiv-
ity optimization is quite consistently able to produce a signi cant improvement in the
tracking error norm performance in all conditions with higher or lower improvements de-
pending on the speci ¢ cases as discussed. The same is not true, however, for case 3:
here, only the I-TF condition resulted in a signi cant improvement of the tracking error
norm, i.e., 119%in mean and 87%in variance, while the other conditions had negligible
improvements. This result can be explained by considering that case 3 involved the
guadrotor state sensitivity w.r.t. the ‘'mass' parameter k; =m, and variations in this pa-
rameter directly affect the possibility for compensating for the gravitational acceleration
[0 g]" in (4.30) which is a constant drift term. In the NI conditions the DFL controller
cannot compensate for [0 g]' whatever the shape of the reference trajectory. On the
other hand, in the I-TF condition the optimization has the possibility to produce a "ma-
neuver' that suitably slows down the quadrotor before reaching the nal pose at t;.

110

4.6. Conclusion

Figure 4.10 — Case 4. quadrotor — sensitivity of q w.r.t. k =I. Top row: E‘T”;t;k (blue
n_opt

histogram) vs. Etg} (orange histogram) for the cases 4-NI-TF (left) and 4-I-TF (right).

Bottom row: Ef;, (blue histogram) vs. EF; %" (orange histogram) for the cases 4-NI-TI

(left) and 4-1-TI (right).

Such a maneuver grants enough time to the integral term for compensating from the
wrong k¢ =m and, thus, allows to subsequently reach the correct pose at t;. Indeed,
note that in case 4, i.e., sensitivity w.r.t. the “inertia’ parameter k =I, the optimization
could signi cantly improve the performance in all conditions since, in this case, no drift
term is present in the states that is directly affected by k =I.

4.6 Conclusion

We believe that the reported results provide a solid and successful validation of the
proposed closed-loop sensitivity minimization for the sake of making a given system
with its controller as insensitive as possible to parametric uncertainties. The most obvi-
ous improvement that can be foreseen from there is to consider optimization problems
more complex than (4.36-4.37) by, e.qg., taking also into account limited actuation or
other concurrent objectives, e.g., minimize energy or time.

111

(Casel || °" | "] % || | "™ % |
1-NI-TF || 0:011 | 0:162 | 13738% ||| 0:008 | 0:1065| 12373%
1-I-TF ||| 0:0077| 0:097 | 11502% || 0:0053| 0:053 | 910%
1-NI-TI 0:119 | 0:138 16% 0:064 | 0:078 | 21.5%
1-I-Tl 0:049 | 0:075| 541% 0:026 | 0:044 | 66:1%
(Case2 || | ™[% || | "] % |
2-NI-TF ||| 0:035| 0:138 | 2906% || 0:016 | 0:048 | 1924%
2-1-TF 0:022| 0:086 | 292% 0:011 | 0:034 | 2094%
2-NI-TI 0:40 | 0:462 | 152% 0:155 | 0:176 | 136%
2-1-Tl 0:192| 0:264 | 37:2% ||| 0:0759| 0:102 | 34%
Case 3 opt n_opt % opt n_opt %
3-NI-TF ||| 1:.286 | 1:332 | 3:4% 0:752| 0:781 | 3:7%
3I-TF 0:046| 0:103| 1195% || 0:032| 0:06 | 87:9%
3-NI-TI 4:96 5 0:91% 2:97 3 0:98%
3-1I-Tl 1:572| 1.575| 0:18% || 0:941| 0:942 | 0:17%
(Cased || * ["] % | °F | "] % |
4-NI-TF ||| 0:001 | 0:007 | 5238% ||| 0:0007| 0:0045| 5158%
4-1-TF 0:0013| 0:007 | 4493% || 0:0008| 0:004 | 396%
4-NI-TI || 0:0193| 0:029 | 498% || 0:0113| 0:017 | 49.6%
4-1-Tl 0:012 | 0:017| 41% 0:0065| 0:001 53%

Table 4.1 — Mean/standard deviations (°°;

tograms shown in Figs. 4.7—-4.10 together with the relative improvements in the optimal
vS. non-optimal cases.

opt) and (n_opt;

n_opt) of the various his-

CHAPTER 5

IMPROVEMENTS AND GENERALIZATION
OF THE SENSITIVITY MINIMIZATION
FRAMEWORK

5.1 Introduction

In this chapter, we propose a more general formalization of the sensitivity frame-
work introduced before. Indeed, we have successfully applied the theory to a statistical
analysis campaign with satisfying results, showing that the use of the closed-loop state
sensitivity as metric to minimize the tracking error due to imperfections in the measured
or estimated control parameters is a good choice. Despite the success of this rst anal-
ysis, we propose to extend the theory with a rigorous approach which better justi es
the choice of the sensitivity matrix. We will see that this approach allows us to extend
the covered robotic applications to a new kind of situations that have not yet been taken
into account, namely the cases where the controller of the system is not able to track
the desired trajectory perfectly, even in the ideal case where the parameters are per-
fectly known, i.e., p. = p. For instance, a system with stacked servoing loops, or with
any actuation limitation (thus almost all controlled systems) cannot reach the desired
trajectory without a lag in general.

Hence, the minimization of the sensitivity may not be suf cient in general to over-
come the tracking error, because the parametric uncertainty is not the sole responsible
for it. In this respect, in this chapter we propose an extension of the algorithm which
takes into account as much as possible the performance of the controller instead of
considering it perfect.

As stated in Chapter 4, this approach also falls within the spirit of robust control
with an improved planning strategy. However, note that robust control tends to push

113

Part Il, Chapter 5 — Improvements and generalization of the sensitivity minimization framework

the trade-off between stability and performance or precision towards stability, while
the method we develop in this Thesis elaborates a layer of robustness in planning.
Therefore, this allows to head the choice of a controller towards high performance,
while bene ting from intrinsic robustness thanks to the properties of the feedforward
term generated before.

As explained, though, the choice of the controller in our framework remains free and
thus it is possible to implement robust control strategy inside the minimum-sensitivity
trajectory generation.

5.2 Generalization to arbitrary outputs

As we have seen throughout this Thesis, in a realistic scenario we are not inter-
ested in controlling the state of the robot directly, but some output function of it. In
the developments of Chapter 4, the output was always a subset of the state. Hence,
the computation of the state sensitivity matrix was intrinsically suf cient for the aim of
minimizing the tracking error. However, the relation between the output and the state
may not be as simple in general. For instance an output of interest for a unicycle robot
could the con guration of an on-board component, like a sensor or an actuator, which
Is attached to the robot with an offset in the body-frame. Such an output would typically
consist in the world position and orientation of that component, as one can see from
the illustration of Fig. 5.1. De ning the body-frame positioning offset vector q and the

YB q

Yw

Ow Xw

Figure 5.1 — Unicycle with a special output vector adjusted on an on-board component.

114

5.2. Generalization to arbitrary outputs

body-frame angle , the output would have the form
22 3

46&5+R(q) q
y(t)=§ o ? (5.1)

q +

This is of course one possibility among a lot of others. Interestingly, we see here that
trigonometric functions of the state angle appear in the output expression (rotation
matrix R), which impacts the derivation of the sensitivity minimization technique as we
will see next.

The second element we will focus on in this development is the possible poor track-
ing of the desired trajectory plugged in the controller, i.e.,y (t) = (a; t), in particular
the mismatch at the nal time. Indeed, let y; be the target nal output, and let y(t;) be
the real output reached by the system at the nal time t;. In general, it may happen
that y; 6 y(t;) since the controller may not be able to track the desired trajectory y (t)
because of either an inherent structural lag in some cases or because of an internal
loop in other cases (or even a combination of both), but also possibly because of ac-
tuation limits. It is important to note that this new distinction was not relevant for the
previous study because for the two considered systems, i.e., unicycle and quadrotor,
the employed DFL controllers with “in nite' control authority were actually able to com-
pensate perfectly the dynamics in order to track any possible desired trajectory (in the
case where the parameters were correctly known, p. = p). In other words, the DFL
controllers do not present any tracking lag when well calibrated, i.e., when p. = p,
and when not subject to input constraints, a fact that guarantees that the only source
of tracking error can only come from the discrepancy in the parameters. However, in
the general case the controller may not be able to track perfectly the desired trajectory
because of, e.g, the use of a linear feedback on a non-linear system or, because of the
presence of a low-level internal loop that servoes an underlying quantity, or any control
saturation. For example, in the unicycle case that we are interested in, the robot input
is usually considered to be the two spinning wheel velocities — as we have been doing
throughout this Thesis — but in practice this is achieved through a low-level servoing
loop that controls the electrical currents in the motors such that the desired speeds are
reached as fast and precisely as possible. As a consequence, it may also happen that
the nal output submitted to the controller y (t;) differs from the target output y; which

115

Part Il, Chapter 5 — Improvements and generalization of the sensitivity minimization framework

we actually want the robot to reach. Indeed, since it is known that the controller cannot
bring the real closed-loop output to this submitted nal output in general, there is no
reason to try to guarantee that the nal submitted output reaches the target y; at the
planning stage. Instead, the planner can do whatever is considered relevant with the
nal submitted output in order to maximize the precision, as we will see.

Coming back to the general problem, the obvious goal we seek here as a standard
robotic application is to make the real output reach the desired one, i.e., to guarantee
that y(t;) = y;. As discussed in Chapter 4, Sec. 4.2, two kind of perturbations may
in general lead to discrepancies between the desired output and real one apart from
the controller limitations discussed before (due to lag or actuation limits). The rst kind
consists in all the unmodeled phenomena — it cannot be dealt with at the planning
stage by de nition. The second kind consists in the small but unavoidable errors in the
measured parameters of the model. In fact, the model parameters are generally mea-
sured and/or estimated in a preliminary stage of the robotic application, see, e.g., [35,
68, 18].

From here, our problem of interest can be formalized as the following general opti-

mization problem
min J(a)
a (5.2)
st. c(ad=0
where the function c(a) is a vector of constraints to be respected along the trajectory,
such as actuation limits or/and initial and nal values of the output/states. Following the
sought goal of reaching a target output at the end of the trajectory, we de ne the scalar
cost J as the function

J(@) = jiya(t;p) yyii® (5.3)

where the subscript cl denotes the fact that we consider, as usual, the output for the
closed-loop system (robot+controller). Finding a trajectory a that minimizes this cost
would then mean that the robot behaves in a way that guarantees the error to be as
small as possible at the nal time t; also in presence of parametric uncertainties. Said
differently, this optimization problem is the one of maximizing the precision of the robot
for the task of reaching the target output y; , as wished.

Note that as in Chapter 4, one may be interested in an alternative task that consists
in optimizing the performance of the robot along the whole trajectory. This could be
translated into the objective of minimizing the integral of the error between the realized

116

5.2. Generalization to arbitrary outputs

output and the target one along the trajectory. However, for simplicity, we only consider
the minimization problem at t;, since the integral case can be treated in an analogous
way.

Looking back at the minimization problem set in eg. (5.2), some elements can be
commented. First, the real parameters p of the robot are obviously not known, which
makes it impossible to directly solve this problem by trajectory planning. Second, how-
ever, the closed-loop output of the real system y(p) is supposed to be close to the one
of the modeled system y(p.). More precisely, as soon as the output is a regular enough
function of the parameters, which we assume to be the case, the small error between
the real and estimated parameters p = p p.induces a variation of the closed-loop
output which is quanti able through the following Taylor development:

Q@(pc)
@

y(Pet+ P)=y(pd)+ p+o(j pj): (5.4)

We recognize the term @<l which is the sensitivity of the closed-loop output
w.r.t. the parameters, evaluated at the control parameters p.. This closed-loop output

sensitivity will be denoted , (pc) = 2E&< in the following developments.

This expression allows us to inject the closed-loop output evaluated at the known
parameters p. in the initial optimization problem. The cost function to be minimized can
then be rewritten as

J(@) = jiya(ti;pe) yi+ y(pd) P+ ol pi)ii* (5.5)

In this expression, the term o(jj pjj) is assumed to be small enough to be neglected
in the following because of the assumed small parameter estimation error p. In fact,
for illustration, this can be checked on a simple unicycle case: let e; = yq(ti;pe) Ys
be the modeled nal control error that is due to incapacity of the controller to perfectly
track the desired trajectory in the general case, as discussed before. Let a unicycle with
a DFL controller track a desired trajectory y (t), as done in Chapter 4. However, con-
sider now that the input (! 5; !) of the unicycle is processed by a low-level "hardware'
control loop that manages the actual wheel spinning speeds (! r; ! L) by controlling
the applied torques via the electrical current passing through the motors. This low-level
servoing loop affects the dynamics of the unicycle, by limiting the bandwidth of the ac-
tual spinning velocities — w.r.t. the ideal control input. Now let us simulate the behavior

117

Part Il, Chapter 5 — Improvements and generalization of the sensitivity minimization framework

of such a unicycle dynamics with limited bandwidth several times, across a set of pa-
rameter values ranging from 80%¢to 120%of the true system parameters. To do so we
consider a bandwidth of 5 [rd/s] — which corresponds to the measured behavior of our
real unicycle robot used for experiments. This bandwidth limitation is implemented in
the simulation by inserting a rst order low-pass lter of cutting frequency 5 [rd/s] in the
dynamics, as a pre-processing of the two submitted wheel spinning velocities. Doing so
results in the tracking performance depicted on Fig. 5.2. Note that the two parameters
r and b, i.e., radius of the wheels and distance between them, were changed together
with the same perturbation rate.

€

8l
sl

Figure 5.2 — On the left, the reference trajectory for a simulated unicycle with limited
input bandwidth in black, and the resulting tracking trajectories with perturbed param-
eters in colors. On the right, the corresponding pro les of nal tracking error compo-
nents x (blue) and y (red) as functions of the parameter perturbation rate.

On this gure, one can see on the left the resulting trajectories for each parameter
set in colors, and the desired trajectory fed into the DFL controller in black. We clearly
see that the tracking performance is affected both by the wrong value for the control
parameters, which results in the variations of the tracking error shape among the colors,
and by the hardware limited input bandwidth, resulting in the lag one can observe for all
the colored trajectories compared to the desired black one. The plot on the right shows
the tracking error at the nal time t;, i.e., y(t;) Vy;, decomposed in the two spatial
components x in blue and y in red. Two important facts can be observed from these
plots:

1. the tracking error is not zero even when employing the right parameter values p,
because of the modeled control lag. This can be seen in the right plot by looking
at the y-intercept of the tracking error values, which are non-zero;

118

5.2. Generalization to arbitrary outputs

2. the tracking error components evolve in an almost linear way around the point
Pc= P.

This illustrates well the necessity of taking into account the previously de ned con-
trol error e; in the de nition of a suitable sensitivity minimization framework. Secondly,
this shows that in this case, the sensitivity gives a good hint of how the tracking error
varies with the parameters, i.e., in the af ne way that is described by the truncated
Taylor development of eq. (5.4). Indeed, the curvature of the error pro le seems in this
case low enough to justify the approximation of neglecting the remainder of the Taylor
development in (5.4). Obviously, this should be checked with a thorough study for more
complex robots as well. One way to assess whether this holds in general would be
to give an explicit characterization of the second order and higher terms in the Taylor
expansion for ensuring that they remain low in some range p of parametric varia-
tion!. However, we assume in this Thesis the hypothesis that the curvature remains
low enough for us to ignore the effect of the higher order terms in the Taylor develop-
ment, as a generalization of our observations concerning the unicycle case.

Thereafter, putting all the pieces together and by taking o(jj pjj) 0O allows us to
rewrite the cost (5.5) in a slightly approximated version

J@@ J@=ijer+ y(po) pii* (5.6)

In this norm to be minimized, only one term that depends on the unknown real
parameters p remains, namely the parameter error p, while all the rest is related
to known or computable quantities. Ideally, we seek a method that would be able to
completely cancel the cost J{(a), i.e., nding a trajectory a such that J{a) = 0. This
would be done by ensuring that the nal control error e; exactly compensates the rst
orderterm (pc) p with the relation e; = y(Pc) p.Of course, as the rst order
term is not completely known because of the true system parameters p being involved,
it is not possible to directly ensure this relation.

A possible workaround consists in making sure that both of these terms are close to
zero. Indeed, ensuring that bothes = Oand (p:;) p = 0 would solve the minimiza-
tion problem (5.2) — it is simply a particular case of the equality e; = y(Pd) P

1. At the moment, we consider that this is a dif cult problem with the current formalization introduced
in this Thesis, because of the high dimensionality of the involved quantities, and because of the com-
plexity of the successive derivatives. As a future work, we plan to study the possibility of leveraging
model simpli cation techniques to make these assumptions more testable, as well as to improve the
computational performance of our trajectory optimization scheme in general.

119

Part Il, Chapter 5 — Improvements and generalization of the sensitivity minimization framework

The difference is that this reformulation allows us to get rid of the unknown term p,
thanks to the implication

[y(P)=0]) [y(Pe) P=0] (5.7)

Thus, a way to solve our general problem can be to ensure that & = 0 and
y(Pc) = 0. Note, however, that “around' zero, i.e., when | 6 O,

argminjj y(pe) pii* 6 argminji y(po)ii*;

eventhough p does not depend on the trajectory vector a. Indeed, the arbitrary values
in p weight the elements of the matrix (pc) such that the costjj y(pc)jj does not
capture the same information than (5.6). This means that in the case where the matrix

y cannot be completely cancelled, it is not possible to optimally solve the general
problem (5.2) as wanted.

Incidentally, there are few chances in practice that a trajectory a guaranteeing both
e = 0and = O exists, because it is quite constraining to keep such equalities
respected while at the same time complying with the inevitable actuation limits of the
system. Moreover, it may not even be possible to reach these conditions for a given
arbitrary dynamics with actuation saturations and for a trajectory that is limited in du-
ration as we do consider here. However, in most robotic applications the actuation
limits will still let enough room in the trajectory space for the rst equality e; = 0 to be
reached through an optimization of the trajectory vector a. The other sensitivity term,
vy (Pc), may not be completely cancelled, but can still be reduced to the minimum pos-
sible via optimization. Though not optimal as discussed, we think that this approach is
good compromise for formulating a solvable problem that is as close as possible to the
desired general problem (5.2).

Summarizing, we propose a suboptimal approach to the optimization problem (5.2),
which consists in solving the alternative optimization problem

min iy (pe)ii®
st. =0 ; (5.8)
st. c(a=0

where the constraint function c(a) does not include any imposed value for the submitted

120

5.2. Generalization to arbitrary outputs

nal output y (t;) to be tracked by the controller, contrarily to Chapter 4 where we had
the constrainty (ty) y; = 0. Indeed, as discussed, the task of dealing with the nal
output of the closed-loop system is now handled by the other constraint, i.e., e = O.

Resulting from the foregoing construction, this alternative problem features some
interesting properties:

(i) in the ideal best case where the sensitivity norm jj y(p¢)jj? can be exactly can-
celled to zero, the solutions of this problem are solutions of the general prob-
lem (5.2);

(i) as explained before, problem (5.8) is constructed such that its solutions in the
other general cases, i.e., when k (pc)k® > 0, are the closest possible to the
ones of the general problem (5.2);

(iif) as in Chapter 4, addressing this problem allows to reduce at best the error due
to parameter imprecision, even though the real parameters p. are not known;

(iv) unlike problem (5.2), it is addressable because all the quantities appearing in it
are either known or computable.

Concerning this last point, we note that the nal control error e; is evaluated at the
control parameters p.. Of course, it can be computed if and only if the control loop
is modeled in depth with enough precision, i.e., if the effects of the potential internal
control loops, and the potential closed-loop lag due to any inherent controller imper-
fection, are all known. The closed-loop output sensitivity is also evaluated at the
control parameters p., which makes it computable based on the previously derived
state sensitivity as we will see next.

One can notice that problem (5.8), though it may seem similar to the problem (4.36)
that was constructed from intuition and asserted in Chapter 4, is meaningfully improved
in terms of scope. Indeed, this problem allows to consider any output of the considered
dynamical system, which makes its processing closer to the task perspective. Finally, it
re nes the accuracy of the theory by considering the control error e in the construction
of the cost function to be minimized. In addition, this problem allows, as problem (4.36),
to keep a control-aware approach that integrates at best the effect of the control loop
together with the dynamics into the planning stage.

Let P R" be a neighbourhood of p. in the parameters space, that also contains
the true parameters p. Fig. 5.3 shows a formal representation of the effect of our opti-
mization problem on the error pro le. In this plot, a unidimensional case is considered,

121

Part Il, Chapter 5 — Improvements and generalization of the sensitivity minimization framework

which means that the nal output tracking error e; is represented as a scalar quantity in
R, as well as the true parameter p and the control parameter p., which makes it easier
to understand the concept. However, all these quantities clearly behave in the same
way in higher dimensions. The abscissa of the graph corresponds to the parameter
value, centred on the control parameter p. which is known. The real parameter p is
represented somewhere around p., though it is not known in practice. On the ordinate
we nd the nal output tracking values.

y(Piang,

& (P,

_ €t (Pc)] apep
et (P)lagy

& (P,

y (p C)J Aopt

€t (P)Jayop
Pc p

Figure 5.3 — Graphical representation of the effect of solving problem (5.8) in a unidi-
mensional case. The two vertical red arrows show the effect of the optimization on the
control error e (pc) and on the real error e; (p). In this plot, p is shown indicatively but
is not known in practice. Still, the resulting optimized pro le guarantees that whatever
the value of p, the error e (p)jaopl remains small.

One can see that the curve representing the nal error e as a function of the
parameters for the initial trajectory vector a,q, Showcases a certain y-intercept value,
which corresponds to the control error e (p.) that can be completely predicted from
the models of the system dynamics and controller. This is the quantity that is denoted
by e; and that we seek to cancel in the optimization problem formulation (5.8). If a
solution aqp: can be found, solving this problem makes that control error null, because
it is one of the constraints of the optimization. This is graphically translated into the
red arrow that vertically brings the control error e (p.) to zero. Jointly, the pro le of

122

5.2. Generalization to arbitrary outputs

the output tracking error is changed from e (P)janopt in gray to e (P)janopt in orange.
This change happens because the new considered trajectory vector aqy is different,
and thus makes the tracking performance — especially at the ending time t; of the
trajectory — differently affected by a perturbation of the control parameter.

At this stage the real output error e; (p) might already be reduced in certain cases.
Nevertheless, the most important change in the error pro le is the second one, i.e., the
reduction of the slope of the tangent at p. (the dashed blue lines), which is guaran-
teed by the minimization of the closed-loop output sensitivity y(p¢). This minimization
makes the new error pro le the most at possible around p., as one can see from the
illustration of the orange curve. As derived theoretically just before, we see here that
the combination of both 1) the minimization of the sensitivity norm, and 2) the cancella-
tion of the control error, makes the real error e; (p)jaopt in the optimized case lower than
the initial one e; (p)jampt , and actually the lowest possible. Even better, this is all done
without knowing the value of the real parameter p, and still it holds whatever value it
has, by construction of the optimization problem.

5.2.1 Solving procedure in the general case

In this section we propose a general method for solving the optimization prob-
lem (5.8) set up previously. Unlike in Sec. 4.3.2 of Chapter 4, we now make a distinction
between the submitted target output y (t) that the controller of the robot will try to track
over the time interval T, and the desired nal output y; that we really want the robot to
arrive at. Indeed, as discussed before, the controller imperfection might induce a small
but non-negligible tracking lag in the general case. In particular, we may thus have that
y (t;) 6 y;, i.e., the trajectory that is submitted to the controller may optimized in such
a way that it does not end at the target in order to compensate the effect of the lag of
the controller.

Still considering the generic dynamics of eq. (4.1), let the upgraded control laws be

% (O

«t) = g(a(t); ();at;pc)
u(t) = h(q(t); (t);a;t;pc)

(1) = z(a(t); pe)

with the output being a function of the control parameters p. rather than the real pa-

(5.9)

123

Part Il, Chapter 5 — Improvements and generalization of the sensitivity minimization framework

rameters p, in order to take into account the fact that the output is usually estimated
over time by leveraging some model of the system, which can thus only be function of
the control parameters p.. Note that here, the trajectory a determines the target output
y (t) through the representation functiony (t) = (a; t), instead of some desired state
or part of it as it was the case in eq. (4.14). Clearly, it would be the same if y was
actually a subset of the state g, but in the general case it may be more complex as
mentioned in Sec. 5.2.

As seen before, we seek at minimizing the cost function of problem (5.8), de ned
as some norm of the closed-loop output sensitivity, i.e., jj (pc)ji®. To do so, we rst
need to compute this quantity, which will be detailed now. Furthermore, the gradient of
this cost w.r.t. the optimization vector a is of paramount importance in the optimization
process and will thus be computed afterwards. Note that the choice of the norm does
not affect the way the sensitivity is computed, though it does intervene in the gradient
derivation. As in Chapter 4, we use the Frobenius matrix norm, which can basically be
described as the square root of the sum of the squared components of the matrix, by
extension of the Euclidean norm on the matrix space R" ",

The closed-loop output sensitivity can be derived from eq. (5.9) by simply taking the
derivative of the output function w.r.t. the parameters which yields
_9,-9@ 0, @
Y(pc) @(pc) @(pc) @(pc) (5.10)
= Zq(Pc) (Po)

In this condensed form that makes use of the notation z., = % again for the differ-
entiation, we clearly see the closed-loop state sensitivity (p.) evaluated at the control
parameters p. emerging. Note that the time variable t does not appear in the argu-
ments of the output function z, and so the Jacobian z is not a function of the time
directly, though it is a function of the state g which may vary with t. Also, note that the
output function z do not depend on the true parameters p but on the control parame-

ters p¢, which is why there is no term z, in this expression. Indeed, as before we have

@ —
@ - 0

As a consequence, the evaluation of the closed-loop output sensitivity can be done
by leveraging the differential system (4.21) that has been set up in Chapter 4. As seen
before, solving this system enables us to numerically compute the values of the com-
ponents of the state sensitivity (t), which can then be injected in eq. (5.10) to get the

124

5.2. Generalization to arbitrary outputs

desired output sensitivity (t).

If we go back to the simple unicycle case where the output y just consists in the
position of the robot (g,; g,), we get the simple Jacobian matrix

2 3
1 00

z., =4 5 5.11
a1 o (5.11)
which is a constant matrix. It then affects very slightly the computations as they were
done before. Note also that pre-multiplying the state sensitivity by this matrix is
roughly equivalent to selecting only certain elements of the sensitivity matrix in the
norm to be minimized, as we did in our statistical analysis of Sec. 4.5.

As a comparison, when considering the alternative three-dimensional output exam-
ple of eq. (5.1), we get a richer expression for this Jacobian. First note that in this case
the body-frame offset position and orientation of the on-board component, are geomet-
rical properties of the system that need to be measured or estimated in practice, and
thus they are parameters of our model. We then have to extend the parameter vector
from (r; b) to (r; b; dx; qy;). As aconsequence, our Jacobian of interest writes

2 3
10 sin(q) gxc €0S@) Qyc

Z;q:§o 1 cosl)dxe SIN(@) dye 2 (5.12)
0 0

1

In this case, there is a dependency of the Jacobian to the state g and to the param-
eters p.. Note however that, as explained, the parameters that intervene here are the
control parameters and not the real parameters p.

The second important change that occurs when switching from the rst formulation
of Chapter 4 to the new one of problem (5.8), is the gradient derivation. Indeed, this
optimization problem under non-linear constraints requires us to provide both the gra-
dient of the cost to be minimized, and of the non-linear constraint e = 0. This is of
course possible, because we have constructed this problem while carefully checking
the feasibility of all the involved computations, see Sec. 5.2.

Let .2 = % 2 R" " "a phe the tensor gradient of the output sensitivity w.r.t. the

125

Part Il, Chapter 5 — Improvements and generalization of the sensitivity minimization framework

trajectory vector a. The gradient of the cost function w.r.t. a then writes

=2, ya (5.13)

which is naturally similar to the expression we had for the state sensitivity. However, the
complete derivation of the expression for the gradient ., is a bit more complicated.
In detail, we have that

@ @,, @
y:a @ @ | q @
_ %q g N (5.14)
=2Z.q + 24 a
where we recall that the matrix quantity = % can be computed by integrating the

differential system (4.50). On the last line, on can see that the products between the
involved elements are either tensor-matrix, or matrix-tensor products. These are such
that the following matrix equality holds for each component of the trajectory vector a

ya =(Z.q i) *Zq a5 8 N (5.15)

where the symbol denotes the same tensor-vector product as de ned and used
lately in this Thesis. As wished, all the quantities in egs. (5.10-5.15) are known or
computable, and thus the cost minimization (without the non-linear constraint) is imple-
mentable.

Concerning the non-linear constraint e; = 0, note that the scalar formulation ke; k? =
Ois equivalent, thanks to the separation property of the Euclidean vector norm over R".
Adopting this formulation allows to reduce the constraint to a unidimensional space,
which makes more sense w.r.t. the task we actually seek, i.e., cancelling the distance
between the nal output y(t;) and the target y; . In the same way that the gradient of
the cost function was required, it is also the case for the gradient of the constraint func-
tion. Indeed, the solver, e.g., an interior-point algorithm, will use this gradient to guar-
antee that the solution respects the constraint. Recalling that the control error equals

126

5.2. Generalization to arbitrary outputs

e = y(tr) y;, the differentiation of this norm yields the expression

k@ k* oo @
@ @ (5.16)
=2ef Zg

Again, we see that all the terms involved in this expression are either known or
computable through integration of the differential systems established so far. Thus,
one can compute the value of this gradient matrix given a certain trajectory vector a to
be tracked by the system.

5.2.2 Final error compensation case study

As a benchmark of our previous theoretical derivations, we applied the sole control
error compensation idea to a simple case, when there is no parameter perturbation,
i.e., pc = p. Here, we consider again a simple unicycle with limited input bandwidth,
in order to simulate a control lag that corresponds to some hardware handling of the
wheel spinning velocities, as usual in this chapter. Then, to implement the control error
compensation, we set a simple optimization problem that consists in minimizing the
control error ke; k?, instead of using it as a constraint with the sensitivity norm cost.
Hence, we treat the optimization problem

min kes k?
a ; (5.17)
st. c(a=0

where the constraint function c(a) only imposes the initial con guration of the robot,
without integrating the nal position as discussed before.

After implementing the cost function and gradient as described in eq. (5.17) and
eg. (5.16), we solve this problem by means of the wide spread solver fmincon within
MATLAB. Fig. 5.4 shows the result of this optimization. The blue trajectory corresponds
to the tracking of a non-optimized desired trajectory, which ends at the target point y; .
We clearly see that the control lag results in the robot not being able to bring itself to
the target (circled cross). In contrast, one can see that the generated trajectory (the
dash line) does not end at the target y;, as expected. This allows the robot to realize
the red trajectory, which is able to reach that target because the control lag has been

127

Part Il, Chapter 5 — Improvements and generalization of the sensitivity minimization framework

anticipated perfectly by the optimizer, and results in a deviation of the tracking that is
completely mastered. Note that the solver was actually able to reach the minimal cost
value of zero, which con rms in this case our sayings that this control error can be
completely cancelled.

Figure 5.4 — lllustration of the concept of tracking error pre-compensation. The dash
line is the trajectory that was generated thanks to the knowledge of the controller's
bandwidth, which ends up in the red trajectory when submitted to the controlled unicy-
cle. As opposed to the initial guess tracking, in blue, the nal target is reached.

5.3 Other sensitivity metrics

Heretofore, we have been interested in the closed-loop output sensitivity, because
this metric allows us to quantify the variations induced by the discrepancy between the
control parameters p. and the true system parameters p, as demonstrated in Sec. 5.2.
However, it can be noticed that in practice the realization of the tracking task with a high
accuracy in the output may not be the sole objective roboticists are interested in. In-
deed, among others, the guarantee that the system internal states remains controlled,
as well as the repeatability of the task, are often essential for development, economic
and security reasons. In practice, these considerations are completely bound to the
behavior of the inputs that are submitted to the system dynamics. Therefore, we inter-
ested ourselves in the dynamics of the input u(t) along the trajectories that are realized
in our work.

128

5.3. Other sensitivity metrics

One way to control that the inputs do what they are expected to do, i.e., remain
in their bounds, and more generally remain predictable despite the presence of para-
metric uncertainty, is to look at the values of a different quantity that we call here the
closed-loop input sensitivity

_ @

@
Indeed, the elements of this matrix represent the amount of variations that would occur
on the inputs, consequentially to a perturbation of the parameters. In other words, the

closed-loop input sensitivity is able to quantify how much the inputs are affected by

the discrepancy between the control parameters p. and the true ones p. It is the input
counterpart of the previously derived output sensitivity .

The main difference with the output sensitivity, though, is that the inputs are gen-
erally not meant to reach a certain pre-determined target. They are in contrast meant
to be predictable and feasible. Hence, it does not make sense to apply the exact same
reasoning that we developed in Sec. 5.2 for the construction of a resembling optimiza-
tion problem that would be adapted to the input. Nevertheless, what makes sense
w.r.t. the elements we just discussed in this section, is to ensure that the inputs be-
have in a way that is in some sense “similar' to what is expected at the planning stage
by exploiting the closed-loop input sensitivity. Making so would henceforth guarantee,
or at least increase the probability, that the hardware is operated in the conditions it
was designed for. Furthermore, we observed that in practice the behavior of the input
when tracking an output-optimized trajectory (following the algorithm described before)
is susceptible of great variations against parameter deviations. Actual measures of this
effect will be shown in the analysis of the next section.

Encouraged by this re ection, we propose another use of the sensitivity framework,
that is completely different in terms of goal and results. More speci cally, we propose
to address the matter exposed just before by setting up a new optimization problem,

min J (a)
a (5.18)
st. c(@=0

that is independent from the one of eq. (5.8), and where the cost function J is con-
structed with the input sensitivity. The constraint function c(a) is, however, similar to the
one of Chapter 4, i.e., it de nes the initial and nal con gurations of the trajectory, and
possibly the input bounds.

129

Part Il, Chapter 5 — Improvements and generalization of the sensitivity minimization framework

Considering the task of making the input globally predictable, as wished here, we
construct the following cost function that we think captures well the envisioned task
Z,,
J (a)= k (;a)ks d (5.19)
0
where the norm k ky, is a special weighted norm. Given a weighting matrix W 2 R" "»
and the matrix 2 R"™ " which we want to evaluate the norm of, we de ne this
weighted norm with the rule
S X
k kW = ma Wi;j (520)
i5j

which is the same as the one used in Chapter 2 for the open-loop state sensitivity.

This choice for the cost function allows to take into account the inputs along the
whole trajectory equally in time, via the integral, and by means of the weighting ma-
trix W to freely chose to put more attention on a particular input than on the others,
which may be useful for complex systems where the inputs do not all have the same
importance. Thanks to the relation between and the other sensitivities and
that is given by eq. (4.21), the cost J is completely computable by the same way than
the state and output sensitivities, i.e., by integrating the differential systems that we
provided.

Before going further with problem (5.18), note that one can apply the cost J to
any of the trajectories that were previously studied. In particular, this enables us to
evaluate the impact of changing a trajectory from an initial guess to another one that
is optimized w.r.t. some criterion that is not the one of problem (5.18). Doing so on
the initial trajectory and optimized one of Fig. (4.6)-left, and with a unitary weighting,
l.e.,, wi; = 1;8i;j, we obtain that respectively J (anopt) = 65 and J (aqn) = 4090
(rad’m 2s 1). This means that in that particular case, the optimization of the trajec-
tory w.r.t. the state sensitivity cost function was detrimental for the closed-loop input
sensitivity norm, and thus for the input predictability. Note that the fact it varies in this
direction is completely incidental, because the value the input sensitivity was not con-
trolled during that optimization process.

With this in mind, let us now derive the gradient of the cost function J . Similarly to

130

5.4. Statistical analysis

the previous cases, we have that

2 3
@ k3 @ ,X
@W :@4i;j Wi (@5°
_ X @(a);; (5.21)
=2 wi; (a)i;
. J J @
=2(W ?) a

where ? is the Hadamard product, i.e., element-wise, and where is the matrix-tensor
product de ned before. In this expression one can recognize the raw input sensitivity
gradient ., that was already introduced and computed in eq. (4.51).

We now have all the required elements to produce an optimal trajectory in the sense
of problem (5.18).

5.4 Statistical analysis

In this section we present a new statistical analysis of larger scale that aims at
testing the soundness of the optimization problems (5.8) and (5.18) when applied to
various trajectory global shapes. In particular we wish to verify that the minimization of
the costs that were obtained from the sensitivity quantities actually result in improve-
ments of the performances at the task level, i.e., for problem (5.8) a reduction of the
output tracking error in case of perturbed parameters and for problem (5.18) a global
reduction of the discrepancy between the expected input (along the submitted trajec-
tory) and the realized input (along the actual trajectory). Given the number of possible
test cases, we chose to focus on the unicycle case, which already generates a lot of
cases as we will see. The application of the same analysis to others robots is part of
our future work, although we can notice that we do not expect signi cant differences in
the behavior of our framework against a quadrotor for example, which features a close
dynamics and control overall.

The concept of this analysis is to 1) generate a bunch of Ny, non-optimized tra-
jectories and corresponding optimized trajectories on which we would like to test the
framework, and 2) to evaluate the resulting performance for each trajectory case, by
means of statistical analysis of the dynamical behavior against N parameter perturba-
tions. Thus, after having selected meta parameters that we think are relevant for these

131

Part Il, Chapter 5 — Improvements and generalization of the sensitivity minimization framework

tests, we conducted a trajectory generation phase followed by an evaluation campaign
of each conditions against a set of randomly perturbed parameters. In order to be gen-
eral and thus more realistic in the testing conditions, we wanted to test the effectiveness
of the framework against variations in the trajectory limit conditions. Changing both the
initial and nal position is equivalent to changing only the nal position and moving

the whole trajectory. Hence, only the nal position is varied. Similarly, the orientation
of the initial tangent (given by the initial velocity) is constantly set to zero (aligned with
the x axis) while the nal position and orientation are varied relatively, without loss
of generality. As there is a spatial symmetry in the behavior of the unicycle dynamics
w.r.t. the initial orientation, we also consider only nal positions that are in the top half
disk above the initial position. Finally, the initial guesses are also randomized to avoid,
or at least to limit, any bias that would be induced by the speci cities of the polynomial
representation function that is used. This is done by adding a random vector in the
nullspace of the initial and nal linear constraint,

where 2 R" is a random vector, which makes the polynomial coef cients arbitrary
while still making the trajectory respect the initial and nal conditions.

Note that in these simulations, the control lag was not simulated, because it would
have complexi ed the computations a lot while not changing signi cantly the results.
Thus, in the coming analysis, there was no nal error constraint e; in the simulations
because as shown before, the DFL controller already guarantees that e; (p;) = 0, so
there is no need to compensate.

Concretely, the rst phase of generating trajectory conditions is done by picking a
target y; = (cos(); sin()) with O and 0:5 [m]. The initial orientation is
set to zero, while the nal one is chosen randomly by picking an angle value from
to

Then in the optimization constraints c(a), we add the restriction that the speed v(t)
of the unicycle has to remain strictly above zero along the trajectory. This condition
originates from the structure of the DFL controller, which requires in its computations
to divide by the internal state , that represents the velocity norm. As a consequence
we seek trajectories that won't excite this intrinsic singularity with, e.g., a sharp change
of moving direction. The constraint of keeping the inputs bellow some saturations is

132

5.4. Statistical analysis

also added, i.e., j' r(1)] !'max @and ! (t)] ! max, because it is absolutely necessary
in practice and thus makes the study closer to the reality of the application of the theory.

Then, for each initial trajectory that is generated according to these rules, we rst
test the output sensitivity minimization of problem (5.8). To do so, we rst solve the
optimization problem for these speci c conditions, i.e., with the initial guess and con-
straints that were produced as we described. Afterwards, we run N simulations of the
unicycle tracking 1) the initial guess and 2) the optimized trajectory, while randomly
varying each time the parameters p in range from 80%to 120%of their nominal val-
ues. Once these 2N simulations are run, we measure the corresponding nal errors
ke k? for the initial guess and for the optimized trajectory. Then, on each of these two
resulting sets of error values, we measure the mean value and the standard devia-
tion. As a synthesis, starting from a single initial guess trajectory we end up with four
numbers, namely the means and standard deviations of the nal tracking errors for the
randomized non-optimized trajectory and for the optimized trajectory.

Finally, we aggregate these numbers over the whole set of Ny trajectories that
were generated in phase 1, by computing the boxplot characteristics of these means
and standard deviations. In other words, for every initial trajectory, we compute the
median, the rst and third quartiles, and the rst and last centiles of the Nyg error
means. The same is also done for the standard deviations on the initial guesses, as
well as for error means and standard deviations of the optimized trajectories.

Fig. 5.5-left shows the resulting boxplots, with the error means boxplots on the top
plot, and the error standard deviations boxplots on the bottom plot. For this statistical
analysis we took Ny, = 100 trajectory conditions, and N = 100 simulations for each
case. On these graphs, it appears that the repartition of the error means is clearly re-
duced both in terms of height and of spreading, for the optimized trajectories compared
to the initial ones. The direct conclusion we can formulate is that the errors are indeed
reduced when applying our optimization process, and they are also made more pre-
dictable. This rmly demonstrates the effectiveness of the proposed method, at least
in the conditions we described.

The second test we conducted consists in the evaluation of the input sensitivity.
More precisely, for each of the trajectories described above, i.e., optimized and non-
optimized with different nal conditions, we evaluated the quantity

Z,,
E,= ku(pe) u(p)k?d (5.23)

to

133

Part Il, Chapter 5 — Improvements and generalization of the sensitivity minimization framework

Figure 5.5 — Boxplots of the evaluated performances for the conducted statistical cam-
paign. On the left, repartition of the tracking error means (top) and standard deviations
(bottom) for the non-optimized and optimized trajectories w.r.t. problem (5.8). On the
right, repartition of the integral input errors (top) and standard deviations (bottom) for
the non-optimized and optimized trajectories w.r.t. problem (5.8).

which measures the discrepancy between the inputs that are planned based on the
model parameters p., and the realized inputs that occur when applying the control
laws on the real system with parameters p. This input error metric is suitable to check
the effectiveness of problem (5.18). That being said, we found interesting to wonder
how this metric is affected by the solving of the other problem (5.8). For this purpose,
we measured the values of the input error E, on the same set of non-optimized and
optimized trajectories that were generated for the evaluation of the output tracking per-
formance just before. From this data we generated new boxplots depicting the input
errors characteristics. Fig. 5.5-right shows these new boxplots, with the two boxplots
of the means of E, on the top plot, and the two boxplots of the standard deviations of
E. on the bottom plot. What can be seen here, is that this time the optimized case is
worse than the non-optimized case, i.e., the input errors were higher in the optimized
case than in the non-optimized case, and more spread. This means that the generation
of trajectories that minimize the output tracking error (problem (5.8)) has the side effect
of statistically making the input less predictable, and more subject to variations due to
parameters error.

134

5.4. Statistical analysis

Therefore, this justi es even more the investigation of problem (5.18). The same
method is thus applied to this problem, i.e., for the same set of Ny initial trajecto-
ries, 1) optimize them w.r.t. problem (5.18), and 2) run N simulations with perturbed
parameters. Fig. 5.6-right shows the results of this second statistical analysis. We can

Figure 5.6 — Boxplots of the evaluated performances for the second statistical analy-
sis. On the left, repartition of the tracking error means (top) and standard deviations
(bottom) for the non-optimized and optimized trajectories w.r.t. problem (5.18). On the
right, repartition of the integral input errors (top) and standard deviations (bottom) for
the non-optimized and optimized trajectories w.r.t. problem (5.18).

observe that, as wished, the inputs are made less subject to perturbations in the pa-
rameters and more predictable by the optimization. This validates the effectiveness of
our method for input sensitivity reduction. Then, Fig. 5.6-left shows the boxplots of the
output tracking errors for the same trajectories. This time, we see that the optimization
of the input almost did not affect the characteristics of the output, and just barely wors-
ened them. This means that the output errors are not made more predictable by this
optimization method.

Consequently, we observe that when optimizing the output errors, the input behaves
in a more unpredictable way, and conversely when optimizing the input, the output
errors are (slightly) deteriorated. The objectives of problem (5.8) and (5.18) thus seem
con icting. As a rst approach to treat this issue, we propose, among other possibilities
like Pareto front, to design a cost function to be minimized that integrates both the

135

Part Il, Chapter 5 — Improvements and generalization of the sensitivity minimization framework

information of the output and input problems.

To do so, we de ne the new cost function

z
Ju= Kk y(t)k2+ tt’ kK (K d (5.24)
0
where 2 Rand 2 R are weights that determine the relative importance of each
component. These weights are chosen as follows: for a given set of trajectory condi-
tions (nal position and so on), rst solve the optimization problem (5.8). The resulting
optimal trajectory vector a results in a cost J; = k ,(a ;t¢)k? which is supposedly
minimal. We then use this minimal cost value as a reference to de ne the cost weight
= 1=J;. Doing the same for the other problem of the input optimization, we get an
optimal trajectory vector a associated with a minimal cost value J, = J (a), which
results in the second weight value = 1=J,. These choices for the weights allow to
somehow normalize the importance of both contributions. As an example to show the
interest of such weights, if the solutions to both problem were the same, i.e.,a = a ,
we would have the weighted cost J,, = 2. Then if a slight difference exists between
the solutions, the cost resembles J,(a) =1+ ; onthe optimal trajectory vector a of
problem (5.8), and Jy(a) = ,+1 onthe optimal trajectory vector a of problem (5.18).
Thus, there should exist a trajectory vector "between' those solutions that minimizes the
weighted cost.

The solving of this method resulted in the boxplots of Fig. 5.7. On this third boxplot
graph, we see that, as expected, both the input and output errors were reduced along
the optimized trajectories compared to the non-optimized ones. Anyway, we note that
the effectiveness of the input optimization was modest, with only a little reduction of the
median input error over all the Ny, considered trajectory conditions. This is of course
highly dependant on the choice of the weights in the weighted cost function (5.24).
From the task perspective, if one wants to give more importance to the predictability of
the input, then the weighted cost can be adjusted by increasing the weight so that
this component affects more the optimization.

As a side note, one can notice how in all the presented boxplots, the standard
deviations always evolve in the same manner than the means in terms of height and
spreading, i.e., both reduced when the means do so, and conversely. This apparent
correlation can be interpreted as a validation of the fact that the curvature of the error

136

5.5. Experimental validation

Figure 5.7 — Boxplots of the evaluated performances for the third statistical analysis. On
the left, repartition of the tracking error means (top) and standard deviations (bottom)
for the non-optimized and optimized trajectories w.r.t. the weighted cost (5.24). On the
right, repartition of the integral input errors (top) and standard deviations (bottom) for
the non-optimized and optimized trajectories w.r.t. the weighted cost (5.24).

pro les (led by the second order sensitivity and higher order terms) does not prevent
our methods from working correctly. In fact, the standard deviation reduction tends to
prove that the application of the optimizations effectively makes the error pro les more
at, as formally depicted on Fig. 5.3. Note that this holds for the input sensitivity as
well, even if in that case there is only a relative error reduction, and no absolute error
compensation such as e; .

5.5 Experimental validation

After having tested the effectiveness of the theory that was developed in this chapter
through a large statistical analysis (see Sec. 5.4), we now present an experimental
validation that we conducted with a real robot for the sake of application the described
methods in practice. The experiments have been run on a Pioneer 3DX, see Fig. 5.8,
that is standard commercial unicycle robot able to achieve any tracking task. Though
it is capable of estimating its relative position in space and control it by itself with an

137

Part Il, Chapter 5 — Improvements and generalization of the sensitivity minimization framework

Figure 5.8 — The pioneer 3DX, a unicycle robot used for our experiments.

integrated servoing command, for this set of experiments we commanded this robot
with low-level wheel velocity inputs (! g; !), which allows us to perfectly master the
behavior of the position control loop. Remaining consistent with the rest of our work,
we implemented the DFL controller that was described and used in simulation so far.
The hardware wheel velocity control is supposed to affect the dynamics as a bandwidth
limitation that can be modeled with a rst order linear low-pass lter, as in Sec. 5.2.

Although we could have leveraged the internal odometry, the measure of the posi-
tion and orientation of the robot is done through the Vicon pose estimation system. This
allows absolute positioning in the room frame, and prevents from integration biases that
would affect the tracking performance in a non-modeled way. The DFL controller is im-
plemented in MATLAB Simulink, on a laptop that is put on the robot and connected to
it via USB in order to feed the velocity inputs to the hardware. Data is exchanged over
Wi-Fi between the Vicon ground-station and the centralizing laptop.

The software architecture is based on the middleware genom (see Part I), which
allows to interconnect the multiple programs that are involved for the whole machinery
to operate. To maximize the repeatability of the experiments, the initialization of the
trajectory is automated with a simple servoing that only authorizes the start of a certain
trajectory tracking when both the position and orientation of the robot correspond to
the wished initial con guration of the trajectory. To do so, we use the DFL controller for
position initialization, followed by a simple differential PI control law for the orientation.

The calibration of the parameters is done by running the robot in open-loop over in-
puts that excite the dynamics enough [19, 10, 62]. We then solve the optimization prob-

138

5.5. Experimental validation

lem that consists in nding the parameters that ensure the best tting of the recorded
behavior with a simulation of the dynamics that rely on the same open-loop inputs. Do-
ing so allows us to get the wheel radius r = 0:09 [m], the distance between the wheel
b= 0:39[m], and also the bandwidth of the hardware control loop b, =5 [rd/s]. We also
take note of the actuation saturations j! | j;j! .j 15[rd/s].

The tested cases are the following:

1. minimization of the output sensitivity (as in Chapter 4),
2. minimization of the input sensitivity as de ned in Sec. 5.3,
3. minimization of the weighted sum,

4. minimization of the output sensitivity with compensation of the nal control error
as in problem (5.8).

As the theory is based on the idea that the parameters p of the system cannot be
known with a better approximation than p., we do not have in practice the reference
case to compare the performance when applying the method. What can be measured
instead is the behavior of the robot when tuning its controller with parameters that are
different w.r.t. the best approximate available. In other words, we measure the validity
of our method by checking that the wished reduction of the dependence of the errors
to the parameters, i.e., of the sensitivities, actually happens. To do so, we run the robot
on our trajectory tracking tasks with each time two different con gurations: the one
where the parameters are set to the best estimation, and another one where we “fake'
the controller with an emulation of perturbed parameters that are 120% of their true
values. Concretely, this is done by emulating a different set of parameters between the
controller and the actual dynamics. This emulation of different parameter sets allows us
to evaluate the behavior of the robot as if we had changed a bit its physical properties
— but still all from a software tuning approach.

Note that for the three rst experiments, the limitation of the input bandwidth of our
real robot was not taken into account in the model of the dynamics. This allows us to
test separately the method as described in Chapter 4 and the control error compen-
sation envisioned for problem (5.8). As a consequence, the sensitivity equations used
for solving the optimization problems of the three rst experiments were based on the
simple unicycle dynamics as derived in Sec. 4.4.1. In contrast, the last experiment was
done on a trajectory generated with extended equations for the unicycle, that take into
account the input bandwidth limitation.

139

Part Il, Chapter 5 — Improvements and generalization of the sensitivity minimization framework

As said, the rst experiment consists in tracking a trajectory that is optimized w.r.t. the
norm of the output sensitivity. The nal position is set to (1; 1) [m] with a trajectory
duration of ty =5 [s]. We then apply the method described before to generate an opti-
mal trajectory vector a . Fig. 5.9 shows the corresponding trajectories. The tracking of
these trajectories was realized ve times in identical conditions, in order to average the
behavior and thus try to limit any circumstancial bias. The corresponding non-optimized
and optimized trajectories where tracked by the real robot, which led to the results of
Table 5.1, rst and second columns. In this table, the numbers are the averaged error
values over the repeated runs, with the following de nitions: E,(p) = ky(t;) y kis
the nal tracking error for the parameters p, and E, is the input error as de ned in
eq. (5.23). The units in Table 5.1 are meters for the output error, and rad?m 2s ! for
the input error.

Figure 5.9 — Trajectory that was optimized for the output sensitivity. We see that the
target is circumvented with a round maneuver, which allows the system to compensate
the possible parameter errors by going back and forth.

Initial guess | Output-optimized | Input-optimized | Weighted cost Output-optimized with
-optimized control error compensation

Ey(po) 0.0452 0.0335 0.0518 0.0647 0.0152
E,(12py) | 0.1016 0.0481 0.1143 0.0903 0.0396
= 10.74 3226 3.86 10.12 462.1

Table 5.1 — Average errors obtained by making the real robot track various non-optimal
and optimal trajectories. Output errors are in m, and input errors in rad?’m ?s 1,

One can see that the error when not perturbing the parameters is not null, which as
explained before comes from the fact that the real parameters p of the system remain

140

5.5. Experimental validation

unknown to us. Moreover, the control lag was not modeled in these tests, and thus
result in a tracking error that cannot be cancelled with this method. Obviously, note that
other non-modeled perturbation may occur and participate in the tracking deterioration.
Therefore, even with our best estimate for the control parameters p., we get a positive
nal tracking error for any tested trajectory.

The interesting point to be raised, however, is that the nal error when tracking
the output-optimized trajectory is smaller in the perturbed case (second line) that the
error we get when perturbing identically the parameters but on the tracking of the initial
trajectory. That is, the output-optimized trajectory is such that the increase of the error
when tracking it with wrong parameters is small, i.e., it is less than the one obtained on
the non-optimized trajectory in the same circumstances. This con rms the soundness
of the output sensitivity minimization technique.

A second point that can be raised, is that the error in the nominal case (not per-
turbed), is also lower for the output-optimized trajectory than for the initial one. This
tends to prove that the error may be partly explicable by an imperfection of the pa-
rameters: reducing the sensitivity of this error w.r.t. the parameters reduced the error
because it partly comes from the parameters.

Finally, one can note that the input error E, was highly increased by the trajectory
optimization w.r.t. the output problem. As discussed before, this is not a big surprise be-
cause the input behavior is not mastered at all during this optimization process (except
for the saturations). In this particular case, this resulted in a high sensitivity of the input
w.r.t. the parameters, which means that the inputs are highly susceptible of changing
from a parameter set to another even close.

The second experiment consists in the tracking of a trajectory optimized for prob-
lem (5.18). In solving this problem, the weighting matrix is chosen unitary as in the
tests of Sec. 5.3, because the inputs are symmetric and thus do not necessitate any
distinction. The resulting trajectory is showed in Fig. 5.10. We see that this trajectory
do not feature the nal circumvention of the target, which makes sense because this
maneuver would probably make the input more shaky and thus less predictable. The
guantitative results are reported in the third column of Table 5.1. We see that the output
tracking error E, were pretty bad in this experiment. As discussed, this is well expected
since the objective of the optimization problem was different from the previous one, and
thus there is no reason for the tracking performance to improve. On the other hand,

141

Part Il, Chapter 5 — Improvements and generalization of the sensitivity minimization framework

Figure 5.10 — Trajectory that was optimized for the input.

what we are interested in here is the input behavior: we clearly see that the tracking
of this input-optimized trajectory led to smaller input error E,,, which demonstrates that
the behavior of the input is more predictable in this case, because it less affected by
the parameters.

The third trajectory that we tested is the one generated with the weighted cost de-
scribed before. As explained, we chose to set the two weights to the inverse of the
obtained cost for the two previous optimization. The optimization led to the trajectory of
Fig. 5.11, which again features an interesting rounded maneuver near the target. We

Figure 5.11 — Trajectory that was optimized for the weighted sum.

see that the resulting output error was reduced in the perturbed case compared to the
initial guess. However, we see that the input error is almost unchanged compared to
the initial guess. This is explicable by the fact that the weighted sum technique is not

142

5.6. Conclusion and perspectives

able to correctly tune the importance of each cost, even with a normalization of the
weights as we did. This also tends to prove that the link between the two objectives
of input and output optimization (as treated in this Thesis) is complex and needs more
investigation for us to be able to control them both.

Finally, we conducted a last experiment in which the robot tracked a trajectory that
was optimized with the control error compensation that we described in Sec. 5.2. As
said, we derived to this end the sensitivity equations for the case of the unicycle with
limited input bandwidth. We chose not to implement the weighted sum cost for this
test, in order to evaluate purely the ability of our framework to reduce the output error
without caring for the input behavior. The results of this trial are reported in the last
column of Table 5.1. One can see that in this case, the error is signi cantly reduced
w.r.t. the others tested cases. The nal control error compensation actually allowed the
system to reach the target with ore precision, as wished. We also see that the increase
of the error in the perturbed case is quite low, con rming that the variations in the
parameters do not affect, or at least very slightly, the behavior of the system at the end
of the trajectory.

5.6 Conclusion and perspectives

As a conclusion, in this chapter we have developed the sensitivity framework, yield-
ing a few methods to improve the precision of trajectory tracking tasks. First, we have
shown how the sensitivity metric can emerge from the wish of minimizing the output
tracking error of a robot. This allowed us to set up a rst optimization problem (5.8), that
captures the idea of optimizing the runtime behavior at the prior planning stage by inte-
grating some information about the controller into the trajectory generation. Moreover,
this problem has been constructed such that it does not require to know the actual sys-
tem parameters p, but yet it ensures that the tracking errors are minimized in a certain
way (see Sec. 5.2 for details of what it means).

Furthermore, a number of simulations have been conducted during and after this
theoretical derivation, which we think justify the formulation and approach that we have
chosen to pursue. This also led us to the construction of a second and third optimization
formulation, derived in problem (5.18) and cost (5.24), that extend the application scope
of our trajectory generation methods. The multiple analysis and tests conducted in

143

Part Il, Chapter 5 — Improvements and generalization of the sensitivity minimization framework

simulation made it possible for us to construct, re ne and validate these methods in
the most relevant way possible. In particular, we have conducted a large statistical
analysis that aims at validating in depth the consistence of our “sensitivity framework'.
The results have shown that using these methods to improve the quality of the robotic
behavior is sound.

Finally, we conducted a series of real experiment on a unicycle robot, that gave
us the opportunity to test the methods for real. The results once again show that the
methods make sense and improve the performances in terms of output tracking error
and input predictability.

Based on this work, the perspectives for future studies are multiple:

1. apply the new closed-loop framework to the generation of trajectories for the
MonkeyRotor (which should improve the tracking performance even more than
the preliminary open-loop framework that was used in Chapter 2),

2. improve the computational speed,

3. apply the framework to other robotic case studies such as tele-operation with
haptics,

4. evaluate the relevance of model simpli cation/reduction to make the analytical
expressions more tractable.

144

CONCLUSION

In this Thesis we have presented our contributions to the elds of aerial robotics
and trajectory planning under uncertainty. In particular, we have studied the concept
of aerial locomotion, which consists in developing a special application of aerial navi-
gation assisted by physical contacts with the environment. To do so, we have derived
the case study of the contact- y-contact problem for the MonkeyRotor, a quadrotor
equipped with an actuated arm. This speci ¢ problem is the one of nding a suitable
overall trajectory that brings the MonkeyRotor from an initial con guration with a phys-
ical contact, to a nal con guration with another contact with the environment. After
studying the switching dynamics and the features of this system (including the fact that
the system is underactuated when ying but overactuated when hooked to the environ-
ment), we have proposed a planning algorithm that is able to provide feasible trajecto-
ries for the whole task of going from the rst con guration with contact to the second
one. This trajectory generation algorithm is able to propose near-optimal trajectories for
an objective such as the time minimization, which we applied to numerous simulations.
Thanks to this framework, we studied the effect of having a limited thrust to realize the
locomotion task. Interesting trajectory features emerged from the trajectory generation
that were not imposed by design, such as a back swing at the beginning for helping
the MonkeyRotor to build enough kinetic energy before the ying phase. We also im-
plemented a special cost that aims at maximizing the precision of the re-hooking event
despite discrepancies in the parameter knowledge, by means of the so-called open-
loop state sensitivity minimization. This cost helps in mitigating the negative effects of
poorly known model parameters in the trajectory tracking performance. We veri ed in
a number of simulations that this effectively improves the precision of the system when
the controller works with perturbed parameters.

In a second part, we have studied more in details the concept of the sensitivity min-
imization that we think is interesting in general for any robotic trajectory planning un-
der parametric uncertainty. Based on previous works that were conducted in this eld,
we proposed a new control-aware scheme that is able to integrate some knowledge
concerning the controller at the planning stage (prior to tracking execution). We thus

145

derived a more general theory that aims at constructing a more solid framework for tra-
jectory optimization, and validated it through statistical analysis based on simulations of
two robots (a unicycle and a quadrotor). After checking the validity of the theory when
tested on these systems with perfect controllers, i.e., able to track a trajectory with zero
error when the parameters are exactly known, we extended the theoretical derivation
to the cases were the controller has some limitations, i.e., may not be able to track a
trajectory because of other issues (e.g., limited control authority or unmodeled second
order effects), even with correctly known parameters. We also extended the concept
to other sensitivity metrics such as the input sensitivity, which is an interesting metric
to quantify the ability of a trajectory in minimizing the deviations of the control efforts
also in presence of parameter discrepancies. After setting up implementations of the
required algorithms, we then tested the framework in large-scale statistical analysis,
and in a real experiment with a unicycle robot. The results con rmed the bene ts of
using our framework for trajectory generation, with improved precision in the trajectory
tracking as wished.
Future work on these two elds should include:

1. validation of the developed locomotion concept through experiment with the real
MonkeyRotor prototype,

2. extension of the aerial locomotion trajectory generation framework to more gen-
eral contexts such as multiple branches and 3D space,

3. application of the sensitivity framework to other robots with uncertain parame-
ters,

4. improvements in the solving method for the sensitivity optimization, e.g., based
on model simpli cation/reduction to speed up the computations.

146

BIBLIOGRAPHY

[1]

2]

[3]
[4]
[5]

[6]

[7]

[8]
[9]

[10]

D. Abeywardena et al., « Improved State Estimation in Quadrotor MAVs: A Novel
Drift-Free Velocity Estimator », in: IEEE Robotics & Automation Magazine 20.4
(2013), pp. 32-39.

AeRoArms, EU Collab. Project ICT-644271, www.aeroarms-project.eu , 2015-
20109.

AEROworks, EU Collab. Project ICT-644128, www.aeroworks2020.eu
AlIRobots, EU Collab. Project ICT-248669, www.airobots.eu , 2010-2013.

Alex Ansari and Todd Murphey, « Minimum Sensitivity Control for Planning with
Parametric and Hybrid Uncertainty », in: Int. J. Rob. Res. 35.7 (June 2016),
pp. 823-839, ISsN: 0278-3649, pol: 10.1177/0278364915600536 URL: http:
//dx.doi.org/10.1177/0278364915600536

G. Antonelli et al., « Adaptive Trajectory Tracking for Quadrotor MAVs in Presence
of Parameter Uncertainties and External Disturbances », in: IEEE Transactions
on Control Systems Technology (2017).

Tomoki Anzai et al., « Aerial Grasping Based on Shape Adaptive Transforma-
tion by HALO: Horizontal Plane Transformable Aerial Robot with Closed-Loop
Multilinks Structure », in: May 2018, pp. 6990-6996, pol: 10.1109/ICRA.2018.
8460928

ARCAS, EU Collab. Project ICT-287617, www.arcas-project.eu , 2011-2015.

Uri M. Ascher and Linda R. Petzold, Computer Methods for Ordinary Differen-
tial Equations and Differential-Algebraic Equations, 1st, Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 1998, ISBN: 0898714125.

A. Bahloul, S. Tliba, and Y. Chitour, « Dynamic Parameters Identi cation of an In-
dustrial Robot: A Constrained Nonlinear WLS Approach », in: 2018 26th Mediter-
ranean Conference on Control and Automation (MED), 2018, pp. 1-6, pol: 10.
1109/MED.2018.8442630

147

[11] Moses Bangura and Robert Mahony, « Real-time Model Predictive Control for
Quadrotors », in: IFAC Proceedings Volumes 47.3 (2014), 19th IFAC World Congress,
pp. 11773 -11780, ISSN: 1474-6670, DOI: https://doi.org/10.3182/20140824-
6-ZA-1003.00203, URL: http://www.sciencedirect.com/science/article/
pii/S1474667016434890.

[12] A. Becker and T. Bretl, « Approximate Steering of a Unicycle Under Bounded
Model Perturbation Using Ensemble Control », in: TRo 28.13 (2012), pp. 580—
591.

[13] Richard Ernest Bellman, Dynamic Programming, New York, NY, USA: Dover
Publications, Inc., 2003, ISBN: 0486428095.

[14] S. Bouabdallah and R. Siegwart, « Backstepping and sliding-mode techniques
applied to an indoor micro quadrotor », in: 2005 ICRA, 2005, pp. 2247-2252.

[15] O. Bourquardez et al., « Image-Based Visual Servo Control of the Translation
Kinematics of a Quadrotor Aerial Vehicle », in: IEEE Transactions on Robotics
25.3 (2009), pp. 1552—-3098.

[16] P. Byrne and M. Burke, « Optimization with trajectory sensitivity considerations »,
in: IEEE Transactions on Automatic Control 21.2 (1976), pp. 282—-283, ISSN:
0018-9286, DoOI: 10.1109/TAC.1976.1101182

[17] S. Candido and S. Hutchinson, « Minimum uncertainty robot navigation using
information-guided POMDP planning », in: IEEE Int. Conf. on Robotics and Au-
tomation, 2011, 6102-6108.

[18] A. Censi, L. Marchionni, and G. Oriolo, « Simultaneous maximume-likelihood cal-
ibration of robot and sensor parameters », in: 2008 ICRA, Pasadena, CA, 2008,
pp. 2098-2103.

[19] A. Censi et al., « Simultaneous Maximume-likelihood Calibration of Odometry and
Sensor Parameters », in: IEEE Transactions on Robotics 29.2 (2013), pp. 475—
492,

[20] Piwai N. Chikasha and Chioniso Dube, « Adaptive Model Predictive Control of
a Quadrotor », in: IFAC-PapersOnLine 50.2 (2017), Control Conference Africa
CCA 2017, pp. 157 —162, ISSN: 2405-8963, DoI: https://doi.org/10.1016/j.
ifacol.2017.12.029 , URL: http://www.sciencedirect.com/science/article/
pii/S2405896317335656.

148

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Marco Cognetti, Paolo Salaris, and Paolo Robuffo Giordano, « Optimal Active
Sensing with Process and Measurement Noise », in: ICRA 2018 - IEEE Interna-
tional Conference on Robotics and Automation, Brisbane, Australia: IEEE, May
2018, pp. 2118-2125, pol: 10.1109/ICRA.2018.8460476, URL: https://hal.
inria.fr/hal-01717180

I. D. Cowling, J. F. Whidborne, and A. K. Cooke, « Optimal Trajectory Planning
and LQR Control for a Quadrotor UAV », in: ICC, Glasgow, Scotland, 2006.

Davide Falanga et al., « The Foldable Drone: A Morphing Quadrotor That Can
Squeeze and Fly », in: IEEE Robotics and Automation Letters PP (Dec. 2018),
pp. 1-1, pol: 10.1109/LRA.2018.2885575.

M. Fliess et al., « Flatness and defect of nonlinear systems: Introductory theory
and examples », in: 1IJC 61.6 (1995), pp. 1327-1361.

J. Ghommam and M. Saad, « Autonomous Landing of a Quadrotor on a Moving
Platform », in: IEEE Transactions on Aerospace and Electronic Systems 53.3
(2017), pp. 1504-1519, por: 10.1109/TAES.2017.2671698

G. Gioioso et al., « A Force-based Bilateral Teleoperation Framework for Aerial
Robots in Contact with the Environment », in: 2015 ICRA, Seattle, WA, 2015,
pp. 318-324.

V. Grabe, H. H. Biilthoff, and P. Robuffo Giordano, « On-board velocity estimation
and closed-loop control of a quadrotor UAV based on optical ow », in: 2012
ICRA, St. Paul, MN, 2012, pp. 491-497.

K. Hausmana et al., « Observability- aware trajectory optimization for self-calibration
with application to uavs », in: IEEE Robotics and Automation Letters (2017).

Markus Hehn, Robin Ritz, and Raffaello DOAndrea, « Performance Benchmark-
ing of Quadrotor Systems Using Time-Optimal Control », in: Autonomous Robots
33.1-2 (2012), pp. 69-88.

B. Houska and M. E. Villanueva, « Robust Optimization for MPC », in: Handbook
of Model Predictive Control, Springer, 2018, pp. 415-447.

D. C. Jiles and D. L. Atherton, « Theory of ferromagnetic hysteresis (invited) », in:
Journal of Applied Physics 55.6 (1984), pp. 2115-2120, pol: 10.1063/1.333582,
eprint: https://doi.org/10.1063/1.333582 , URL: https://doi.org/10.1063/
1.333582.

149

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

M. Jufer, Electromecanique, Traite d'electricite de I'Ecole polytechnique federale
de Lausanne, Presses polytechniques et universitaires romandes, 1995, ISBN:
9782880742850.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, « Optimization by Simulated An-
nealing », in: Science 220.4598 (1983), pp. 671-680, IssN: 0036-8075, DOI:
10.1126/science.220.4598.671 , eprint: https://science.sciencemag.org/
content/220/4598/671.full.pdf , URL: https://science.sciencemag.org/
content/220/4598/671 .

E. Kreindler, « Formulation of the minimum trajectory sensitivity problem », in:
IEEE Transactions on Automatic Control 14.2 (1969), pp. 206207, ISSN: 0018-
9286, bol: 10.1109/TAC.1969.1099130

D. Kubus, T. Kroger, and F. M. Wahl, « On-line estimation of inertial parameters
using a recursive total least-squares approach », in: 2008 IROS, Nice, France,
2008, pp. 3845—-3852.

T. Lee, M. Leoky, and N. H. McClamroch, « Geometric tracking control of a
quadrotor UAV on SE(3) », in: 49th CDC, Atlanta, GA, 2010, pp. 5420-5425.

R. Mahony, V. Kumar, and P. Corke, « Multirotor Aerial Vehicles: Modeling, Esti-
mation, and Control of Quadrotor », in: IEEE Robotics & Automation Magazine
19.3 (2012), pp. 20-32.

R. Mahony, V. Kumar, and P. Corke, « Multirotor Aerial Vehicles: Modeling, Esti-
mation, and Control of Quadrotor », in: IEEE Robotics & Automation Magazine
19.3 (2012), pp. 20-32.

A. Majumdar and R. Tedrake, « Funnel libraries for real-time robust feedback
motion planning », in: IJRR 36.18 (2017), pp. 947-982.

P. Martin, R. M. Murray, and P. Rouchon, « Flat systems, equivalence and trajec-
tory generation », in: 2003 CDS Technical Report, 2003.

C. Masone et al., «Interactive Planning of Persistent Trajectories for Human-
Assisted Navigation of Mobile Robots », in: 2012 IROS, Vilamoura, Portugal,
2012, pp. 2641-2648.

C. Masone et al., « Semi-autonomous Trajectory Generation for Mobile Robots
with Integral Haptic Shared Control », in: 2014 ICRA, Hong Kong, China, 2014,
pp. 6468-6475.

150

[43] C. Masone et al., « Shared Trajectory Planning for Human-in-the-loop Naviga-
tion of Mobile Robots in Cluttered Environments », in: 5th Int. Work. on Human-
Friendly Robotics, Bruxelles, Belgium, 2012.

[44] D. Mellinger and V. Kumar, « Minimum Snap Trajectory Generation and Control
for Quadrotors », in: 2011 ICRA, Shanghai, China, 2011, pp. 2520-2525.

[45] D. Mellinger et al., « Design, modeling, estimation and control for aerial grasping
and manipulation », in: 2011 IROS, San Francisco, CA, 2011, pp. 2668-2673.

[46] Daniel Mellinger, Michael Shomin, and Raghvendra Kumar, « Control of Quadro-
tors for Robust Perching and Landing », in: 2010.

[47] Brian Vincent Mirtich, « Impulse-based Dynamic Simulation of Rigid Body Sys-
tems », AAI9723116, PhD thesis, 1996, ISBN: 0-591-32089-4.

[48] V. Mistler, A. Benallegue, and N.K. M'Sirdi, « Exact linearization and noninter-
acting control of a 4 rotors helicopter via dynamic feedback », in: Proc. of the
2001 IEEE Int. Worksop on Robot and Human Interactive Communication, 2001,
pp. 586-593.

[49] Marco M. Nicotra, Roberto Naldi, and Emanuele Garone, « Nonlinear control of
a tethered UAV: The taut cable case », in: Automatica 78 (2017), pp. 174-184.

[50] M. J. Van Nieuwstadt and R. M. Murray, « Real-time trajectory generation for
differentially at systems », in: IJRNC 8 (1998), pp. 995-1020.

[51] G. Oriolo, A. De Luca, and M. Vendittelli, « WMR control via dynamic feedback
linearization: Design, implementation and experimental validation », in: IEEE Trans-
actions on Control Systems Technology 10.6 (2002), pp. 835—-852.

[52] Bryan Penin, Paolo Giordano, and Frangois Chaumette, « Vision-Based Reac-
tive Planning for Aggressive Target Tracking while Avoiding Collisions and Occlu-
sions », in: IEEE Robotics and Automation Letters PP (July 2018), poi: 10.1109/
LRA.2018.2856526

[53] G. V. Raffo, M. G. Ortega, and F. R. Rubio, « An integral predictive/nonlinear H-
in nity control structure for a quadrotor helicopter », in: Automatica 46.1 (2010),
pp. 29-39.

[54] M. Ryll et al., « 6D Physical Interaction with a Fully Actuated Aerial Robot », in:
2017 ICRA, Singapore, 2017.

151

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Markus Ryll, Davide Bicego, and Antonio Franchi, « A Truly Redundant Aerial
Manipulator exploiting a Multi-directional Thrust Base », in: 12th IFAC Sympo-
sium on Robot Control, Budapest, Hungary, 2018.

I. Sa and P. Corke, « System identi cation, estimation and control for a cost ef-
fective open-source quadcopter », in: 2012 ICRA, St. Paul, MN, 2012, pp. 2035—-
2041.

D. E. Soltero, S. L. Smith, and D. Rus, « Collision Avoidance for Persistent Mon-
itoring in Multi-Robot Systems with Intersecting Trajectories », in: 2011 IROS,
San Francisco, CA, 2011, pp. 3645-3652.

S.Ponda, R.Kolacinski, and E.Frazzoli, « Trajectory Optimization for Target Local-
ization Using Small Unmanned Aerial Vehicles », in: AIAA Guidance, Navigation,
and Control Conference, 2012.

William Squire and George Trapp, « Using Complex Variables to Estimate Deriva-
tives of Real Functions », in: SIAM Review 40 (1998), pp. 110-112.

Nicolas Staub et al., « The Tele-MAGMaS: an Aerial-Ground Co-manipulator
System », in: IEEE Robotics and Automation Magazine 25 (2018), pp. 66—75.

Nicolas Staub et al., « Towards a Flying Assistant Paradigm: the OTHex », in:
2018 IEEE Int. Conf. on Robotics and Automation, Brisbane, Australia, 2018,
pp. 6997-7002.

J. Swevers et al., « EXPERIMENTAL ROBOT IDENTIFICATION USING OPTI-
MISED PERIODIC TRAJECTORIES », in: Mechanical Systems and Signal Pro-
cessing 10.5 (1996), pp. 561 -577, IssN: 0888-3270, DoOI: https://doi.org/
10.1006/mssp.1996.0039, URL: http://www.sciencedirect.com/science/
article/pii/S0888327096900394

Russ Tedrake and the Drake Development Team, Drake: A planning, control, and
analysis toolbox for nonlinear dynamical systems, 2016, URL: http://drake.
mit.edu .

J. Thomas et al., « Toward autonomous avian-inspired grasping for micro aerial
vehicles », in: Bioinspir. Biomim. 9.2 (2014).

M. Tognon and A. Franchi, « Dynamics, Control, and Estimation for Aerial Robots
Tethered by Cables or Bars », in: IEEE Transactions on Robotics 33.4 (2017),
pp. 834-845, 1IssN: 1552-3098, pol: 10.1109/TR0O.2017.2677915

152

[66]

[67]

[68]

[69]

[70]

[71]

M. Tognon et al., « Dynamic Decentralized Control for Protocentric Aerial Manip-
ulators », in: 2017 ICRA, Singapore, 2017.

A. D. Wilson, J. A. Schultz, and T. D. Murphey, « Trajectory Optimization for Well-
Conditioned Parameter Estimation », in: IEEE Transactions on Automation Sci-
ence and Engineering 11.1 (2015), pp. 28-36.

Y. Yong, T. Arima, and S. Tsujio, « Inertia parameter estimation of planar ob-
ject in pushing operation », in: 2005 ICIA, Hong Kong and Macau, China, 2005,
pp. 356-361.

B. Yiksel, N. Staub, and A. Franchi, « Aerial Robots with Rigid/Elastic-joint Arms:
Single-joint Controllability Study and Preliminary Experiments », in: 2016 IROS,
Daejeon, South Korea, 2016, pp. 1667-1672.

B. Yuksel et al., « A Nonlinear Force Observer for Quadrotors and Application
to Physical Interactive Tasks », in: 2014 AIM, Besancon, France, 2014, pp. 433—
440.

K. Zhang et al., « SpiderMAV: Perching and stabilizing micro aerial vehicles with
bio-inspired tensile anchoring systems », in: 2017 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 2017, pp. 6849-6854, DO!I:
10.1109/IROS.2017.8206606.

153

Titre : Algorithmes d'estimation et de commande pour des quadrirotors en interaction physique

avec l'environnement

Mot clés : robotique aérienne, locomotion, plani cation de trajectoires

Résumé : Le champ de la robotique aérienne
pour l'interaction physique permet aujourd'hui
a un robot aérien d'appliquer un effort mai-
trisé sur un objet ou sur I'environnement alors
qu'il vole. En s'inspirant de [I'utilisation des
contacts faite en robotique humanoide, nous
proposons dans cette thése de s'appuyer sur
ces approches pour dépasser l'idée que I'envi-
ronnement est une contrainte, en exploitant le
contact physique avec celui-ci dans le but de
réaliser de la locomotion aérienne. Cette idée
est étudiée et démontrée au travers de simula-
tions et expérimentations d'une nouvelle plate-
forme robotique aérienne consistant en un

guadrirotor équipé d'un bras robotique a 1 de-
gré de liberté. D'autre part, nous avons aussi
étudié le probleme de la génération de tra-
jectoires dont la sensibilité aux parametres du
modéle est minimale. Ce probléme est géné-
ralisé a n'importe quel robot, et se révéle par-
ticulierement approprié dans le cas du quadri-
rotor du fait de l'incertitude importante concer-
nant ses paramétres inertiels et d'actionne-
ment. Pour traiter ce probléme, nous dé nis-
sons et utilisons la “sensibilité de I'état aux pa-
rameétres” a n de générer des trajectoires dont
la sensibilité aux parametres est minimale, ga-
rantissant une forte robustesse.

Title: Algorithms for estimation and control of quadrotors with physical interaction with their

environnement

Keywords: aerial robotics, locomotion, trajectory planning

Abstract: In recent years, the eld of aerial
robotics has been improved, allowing the
UAVSs to apply a controlled wrench on their en-
vironment or on an object while ying.Inspired
by the use of contacts in legged robots, in
this Thesis, we propose the idea of exploiting
physical contact with the environment for the
purpose of “locomotion' during ight, with the
goal of going beyond the common thought that
the surrounding environment is a constraint to
avoid. These ideas are studied and demon-
strated in simulations and experiments on a
novel aerial platform consisting of a quadro-

tor with a 1-dof arm that realizes maneuvers
by leveraging contacts with pivot points. Addi-
tionally, we also study the problem of gener-
ating trajectories that are most insensitive to
variations in the model parameters.This prob-
lem has a general validity for any robot, and
it is particularly relevant for UAVs because of
the high uncertainty in their inertial parameters
and actuation. In order to address these is-
sues, we de ne and leverage the novel notion
of "closed-loop state sensitivity" for generating
trajectories that are minimally-sensitive to pa-
rameters with high robustness guarantees.

	Introduction
	Context
	Overview of the state of the art
	Aerial robotics
	Trajectory generation
	Thesis contributions
	Thesis structure

	I Part I
	MonkeyRotor concept and analysis
	Introduction
	Dynamical modeling
	Definitions
	Hooked phase
	Free-flying phase
	Impact Model

	Flight control
	Hooked phase
	Free-flying phase

	Validation of the Control Strategy
	Conclusion

	Trajectory planning for the MonkeyRotor
	Introduction
	Planning algorithm
	Optimization procedure
	Cost function

	Results
	Trajectory planning
	Trajectory tracking

	Conclusion

	Conception of the MonkeyRotor prototype
	Introduction
	Design of the hooking system
	General concept
	Choice of the solution
	Magnetic coil design
	Rotating joint design

	Implementation
	Hardware manufacturing
	Software structure

	Conclusion

