
THÈSE DE DOCTORAT DE

L'UNIVERSITÉ DE RENNES 1
COMUE UNIVERSITÉ BRETAGNE LOIRE

ÉCOLE DOCTORALE N°601
Mathématiques et Sciences et Technologies
de l'Information et de la Communication
Spécialité : Automatique, Productique et Robotique

Par

Quentin DELAMARE

Algorithmes d'estimation et de commande pour des
quadrirotors en interaction physique avec l'environnement

Thèse présentée et soutenue à Rennes, le 9/12/19
Unité de recherche : IRISA

Rapporteurs avant soutenance :
Nicolas Marchand Directeur de Recherche au GIPSA-lab, Université Grenoble-Alpes
Pascal Morin Professeur à l'ISIR, Université Pierre et Marie Curie

Composition du Jury :
Président : Isabelle Fantoni Directrice de Recherche CNRS, LS2N Nantes
Examinateurs : Isabelle Fantoni Directrice de Recherche CNRS, LS2N Nantes

Nicolas Marchand Directeur de Recherche au GIPSA-lab, Université Grenoble-Alpes
Fabio Morbidi Maître de Conférences au MIS, Université de Picardie Jules Verne
Pascal Morin Professeur à l'ISIR, Université Pierre et Marie Curie

Dir. de thèse : Paolo Robuffo Giordano Directeur de Recherche CNRS, IRISA/Inria Rennes
Co-dir. de thèse : Antonio Franchi Chargé de Recherche CNRS, LAAS, Toulouse

Résumé de la thèse

Le domaine de la robotique aérienne est en plein essor grâce aux avancées tech-

nologiques des dernières décennies. Le problème de la commande de ces systèmes

volants, comme les quadrirotors par exemple, aura constitué un vrai dé� du fait de

leur sous-actionnement en général, et des phénomènes aérodynamiques complexes

impliqués. Il faut noter que les techniques de commande développées sont principale-

ment axées sur la captation de données et la cartographie en environnement ouvert.

Au cours des dernières années cependant, le champ de la robotique aérienne pour

l'interaction physique s'est beaucoup développé. Ce type de scénario fait intervenir un

robot aérien devant appliquer un effort maîtrisé sur un objet ou sur l'environnement,

alors qu'il vole. Des avancées signi�catives ont été réalisées, au travers notamment de

projets européens centrés sur cette thématique, comme [2, 3, 8, 4].

Dans ces deux grandes familles d'approches, qui s'intéressent donc aux dépla-

cements libres sans contact vs. avec interaction physique, l'environnement est gé-

néralement traité comme une contrainte indésirée limitant les mouvements du robot.

En d'autres termes, les tâches de déplacements libres/rapides et celles d'interactions

physiques sécuritaires sont perçues comme antagonistes avec la présence d'éléments

indésirés dans l'environnement. Une conséquence immédiate de ceci est que les mou-

vements réalisés avec contact sont peu dynamiques. En s'inspirant de l'utilisation des

contacts faite en robotique humanoïde, nous proposons dans cette thèse d'exploi-

ter le contact physique avec l'environnement dans le but de réaliser de la locomo-

tion aérienne. Autrement dit, nous proposons de considérer l'environnement comme

une source de contacts exploitables à des �ns de locomotion, plutôt que comme une

contrainte à éviter. Avec cette approche, nous souhaitons exploiter pleinement la dy-

namique des robots aériens en interaction physique.

Dans la première partie de cette thèse, nous détaillons les travaux réalisés relatifs à

ce concept de locomotion aérienne. Cette idée est étudiée et démontrée au travers de

simulations et expérimentations d'une nouvelle plate-forme robotique aérienne consis-

tant en un quadrirotor équipé d'un bras robotique à un degré de liberté. Le premier

chapitre détaille la dynamique particulière de ce système, qui comporte trois modes

de fonctionnement différents. Les deux plus évidents correspondent aux dynamiques

3

en vol libre et en vol avec contact, tandis que le troisième correspond au comportement

particulier lors d'une possible collision au moment d'établir le contact. Un modèle de

collision est proposé pour comprendre et intégrer au mieux ce phénomène dans les

développements consécutifs. Deux stratégies de commande sont également données

a�n de permettre à ce robot de suivre une trajectoire en temps-réel.

Dans le deuxième chapitre nous expliquons la démarche entreprise a�n de mettre

en place un algorithme d'optimisation de trajectoires adapté à ce système. Un cas

élémentaire de locomotion est choisi, dans lequel le système doit exécuter une ma-

nœuvre partant d'une con�guration initiale en contact avec l'environnement (le bras

"s'accroche" à un premier point de pivot), et terminant dans une con�guration avec un

autre point d'attache plus loin, en passant par une phase intermédiaire de vol libre.

La structure du plani�cateur de trajectoires développé lui permet d'intégrer le compor-

tement dynamique complet du robot, y compris une possible collision comme évoqué

précédemment, ce qui lui donne la possibilité de tirer au mieux parti de ses particula-

rités. Une fonction de coût spéci�que est également développée a�n de garantir une

précision maximale du robot dans la phase la plus critique. Des trajectoires sont en-

suite générées pour différentes conditions, à savoir pour différentes limites d'actionne-

ment et quelques variations de la fonction de coût minimisée. Les trajectoires obtenues

sont ensuite analysées au regard de la tâche de locomotion considérée.

Pour terminer, le chapitre 3 expose les détails de conception et de réalisation d'un

prototype en vue de tester les simulations précédentes. Un système d'attache magné-

tique est développé puis réalisé et testé, ce qui permet au robot de s'attacher au point

de pivot dans des conditions propices à la locomotion. La phase de conception de ce

sous-système est détaillée, notamment la modélisation de celui-ci qui a été réalisée en

vue de simuler son comportement magnéto-mécanique et d'optimiser sa performance

au vu des conditions. Le comportement thermique de ce sous-système est également

modélisé a�n d'assurer un fonctionnement nominal non destructif. Des éléments de

conception mécanique sont également donnés.

Dans la seconde partie, nous nous intéressons au problème de la précision réali-

sable par un robot en suivi de trajectoire lorsque le modèle est incertain, et plus préci-

sément lorsque les paramètres du modèle sont entachés d'erreur. Une généralisation

de la fonction de coût spéci�que introduite auparavant (au chapitre 2) est proposée,

améliorant le concept tout en le rendant applicable à une large gamme de robots. En

4

effet, nous avons étudié le problème de la génération de trajectoires dont la sensibilité

aux paramètres du modèle de robot considéré est minimale, dans le cas général. Ce

type de trajectoires est généralisé à n'importe quel robot présentant une dynamique

avec des incertitudes sur les paramètres, et se révèle particulièrement approprié dans

le cas du quadrirotor étudié dans cette thèse, du fait de l'incertitude importante concer-

nant ses paramètres inertiels et d'actionnement. Pour traiter ce problème, nous propo-

sons donc la nouvelle notion de "sensibilité de l'état aux paramètres en boucle fermée"

et nous montrons comment cette quantité peut être utilisée dans un contexte d'optimi-

sation de trajectoires a�n de générer des trajectoires dont la sensibilité aux paramètres

est minimale, garantissant ainsi une forte robustesse.

Le chapitre 4 propose une première approche de ce concept pour produire des

trajectoires dites à “sensibilité minimale”, avec des analyses statistiques a�n de tester

l'ef�cacité de la méthode. Plusieurs cas sont considérés, faisant intervenir un robot

mobile différentiel (unicycle) et un quadrirotor avec des lois de commande comprenant

ou non un intégrateur, et avec une minimisation soit de la sensibilité de l'état �nal, soit

de la sensibilité de l'état sur l'ensemble de la trajectoire (avec un coût intégral). Il en

ressort que la méthode semble bien fonctionner en simulation pour les cas considérés,

à savoir que les trajectoires générées donnent lieu à une erreur de suivi moindre par

comparaison avec des trajectoires non optimisées ayant les mêmes conditions limites

lorsque les paramètres du modèle sont mal calibrés.

Finalement, le chapitre 5 propose une généralisation de la méthode a�n de produire

une théorie plus générale, rigoureuse, et susceptible d'être appliquée plus largement

à différents types de robots. Entre autres, la possibilité d'avoir une loi de commande

imparfaite, c'est-à-dire, ici, qui n'est pas capable d'annuler l'erreur de suivi en dépit de

paramètres bien calibrés et d'absence de perturbations, est intégrée dans la méthode.

D'autres métriques issues de la sensibilité sont également calculées. En particulier,

une utilisation de la sensibilité des entrées par rapport aux paramètres est proposée

pour pallier leur manque de prédictibilité observé dans certains cas. Plusieurs ana-

lyses statistiques sont ainsi réalisées sur des simulations, avec des résultats validant

là aussi les méthodes proposées en terme de réduction d'erreur. En�n, une série d'ex-

périmentations est menée sur un robot réel de type robot mobile différentiel (modèle

Pioneer 3DX), validant également la méthode en améliorant les performances de suivi

de trajectoire obtenues.

5

Contributions

Les éléments développés dans cette thèse ont fait l'objet de trois publications scien-

ti�ques listées ici :

(a) Q. Delamare, P. Robuffo Giordano, and A. Franchi, “Toward aerial physical lo-

comotion : The contact-�y-contact problem,” in IEEE Robotics and Automation

Letters (RAL), vol. 3, no. 3, pp. 1514–1521, 2018, au sujet de la locomotion

aérienne. Un algorithme de génération de trajectoires adapté à cette tâche par-

ticulière y est présenté et testé en simulation.

(b) P. Robuffo Giordano, Q. Delamare, and A. Franchi, “Trajectory generation for mi-

nimum closed-loop state sensitivity,” in 2018 IEEE International Conference on

Robotics and Automation (ICRA), 2018, concernant la génération de trajectoires

minimisant la sensibilité de l'état aux paramètres. Une analyse statistique y est

présentée qui valide l'utilité et l'ef�cacité de l'algorithme présenté.

(c) N. Staub, M. Mohammadi, D. Bicego, Q. Delamare, H. Yang, D. Prattichizzo,

P. Robuffo Giordano, D. Lee, A. Franchi, “The Tele-MAGMaS : an Aerial-Ground

Co-manipulator System,” in 2018 IEEE Robotics and Automation Magazine (RAM),

vol. 25, no. 4, pp 66–75, 2018, qui présente un système de co-manipulation fai-

sant intervenir un hexacoptère spécial et un manipulateur au sol en coopération

pour mouvoir un objet.

Plusieurs vidéos ont été réalisées a�n d'illustrer les résultats principaux associés à

ces travaux, concernant la locomotion aérienne 1, la génération de trajectoires à sensi-

bilité minimale 2, et le système Tele-MAGMaS présenté à la Hannover Fair à l'occasion

des KUKA Innovation Awards 3 4.

1. video at https ://proxy.ens-rennes.fr/owncloud/index.php/s/Nrx5Rmm9S93TsmF
2. video at https ://proxy.ens-rennes.fr/owncloud/index.php/s/nxFbMCRzD7wCzQp
3. video at https ://proxy.ens-rennes.fr/owncloud/index.php/s/KZgB2TCAYfoJ6wW
4. video at https ://proxy.ens-rennes.fr/owncloud/index.php/s/6ZBXsf9peCaHX52

6

REMERCIEMENTS

Je tiens à remercier pour commencer mes directeurs de thèse, Paolo et Antonio, qui

ont su faire preuve au cours de ces trois années d'un enthousiasme à toute épreuve et

d'une ingéniosité riche et insolite, ce qu'il me fallait. Je remercie également les mem-

bres de l'équipe Rainbow pour la bonne ambiance qui y règne. Un grand merci aux in-

génieurs pour leur aide précieuse, Fabien, Pol, Thomas, ainsi qu'à Marie pour m'avoir

permis d'accéder aux ateliers de l'INSA. Merci également à Tristan et Pascal pour les

chouettes moments partagés durant leurs stages. Merci aussi aux collègues de l'ENS,

qui m'ont accompagnés et soutenu dans cette aventure tant sur le plan scienti�que

que sur le plan de l'enseignement. Merci à tous ceux avec qui j'ai partagé de super

sessions musicales.

Je remercie également mes proches pour leur soutien et leur patience (il en fallait).

Merci à ma famille et Evelyne d'avoir été là plus que je n'ai été là pour eux. Je vous dois

beaucoup. Merci aussi aux trois Fontaine de m'avoir abreuvé de moments de bonheur

partagés, de randos (promis on l'aura ce vieux caillou), et autres repas à gogo. Merci à

Simon pour ces 10 ans de bidouilles en tout genre (ce n'est que le début) et pour ces

moments passés tous les 4, et merci aux Mektro12 pour le chemin parcouru ensemble.

En�n je remercie Anaïs qui, au-delà de son indéfectible soutien, est le beurre salé

de mes galettes, et avec qui je suis �er de partager la valse de la vie.

7

TABLE OF CONTENTS

Introduction 13

Context . 13

Overview of the state of the art . 14

Aerial robotics . 14

Trajectory generation . 16

Thesis contributions . 18

Thesis structure . 19

I Part I 21

1 MonkeyRotor concept and analysis 23

1.1 Introduction . 23

1.2 Dynamical modeling . 23

1.2.1 De�nitions . 24

1.2.2 Hooked phase . 26

1.2.3 Free-�ying phase . 27

1.2.4 Impact Model . 27

1.3 Flight control . 30

1.3.1 Hooked phase . 31

1.3.2 Free-�ying phase . 32

1.4 Validation of the Control Strategy . 33

1.5 Conclusion . 35

2 Trajectory planning for the MonkeyRotor 37

2.1 Introduction . 37

2.2 Planning algorithm . 37

2.2.1 Optimization procedure . 38

2.2.2 Cost function . 41

2.3 Results . 42

9

TABLE OF CONTENTS

2.3.1 Trajectory planning . 43

2.3.2 Trajectory tracking . 47

2.4 Conclusion . 48

3 Conception of the MonkeyRotor prototype 53

3.1 Introduction . 53

3.2 Design of the hooking system . 53

3.2.1 General concept . 53

3.2.2 Choice of the solution . 55

3.2.3 Magnetic coil design . 56

3.2.4 Rotating joint design . 69

3.3 Implementation . 70

3.3.1 Hardware manufacturing . 70

3.3.2 Software structure . 72

3.4 Conclusion . 73

II Part II 77

4 Trajectory generation for minimum state sensitivity 79

4.1 Introduction . 79

4.2 Open-loop state sensitivity . 81

4.2.1 Simple integrator case . 82

4.2.2 More complex dynamics . 84

4.2.3 Computation of the sensitivity in the general case 86

4.3 Closed-loop sensitivity . 88

4.3.1 Motivation . 88

4.3.2 Derivation . 89

4.4 Application to robotic trajectory generation 92

4.4.1 Unicycle dynamics and control 92

4.4.2 Planar quadrotor dynamics and control 94

4.4.3 Trajectory generation . 97

4.4.4 Gradient derivation . 100

4.4.5 Simulations . 103

4.5 Validation through extended statistical analysis 105

10

TABLE OF CONTENTS

4.6 Conclusion . 111

5 Improvements and generalization of the sensitivity minimization frame-

work 113

5.1 Introduction . 113

5.2 Generalization to arbitrary outputs . 114

5.2.1 Solving procedure in the general case 123

5.2.2 Final error compensation case study 127

5.3 Other sensitivity metrics . 128

5.4 Statistical analysis . 131

5.5 Experimental validation . 137

5.6 Conclusion and perspectives . 143

Conclusion 145

Bibliography 147

11

INTRODUCTION

It is nowadays common to see quadrotor UAVs both in the domain of public enter-

tainment with a large range of commercial products, as well as in professional appli-

cations such as remote inspection, cartography, agricultural spraying, or even �lming.

As well known, this �ourishing of the �eld of aerial robotics has been made possi-

ble thanks to the common progress of on-board computational capabilities, together

with the miniaturization of the associated electronics and power cells. Indeed, the

mass/energy ratio of modern lithium-based batteries coupled with the high ef�ciency

of synchronous motors allow the conversion of enough mechanical power to keep a

multirotor aircraft in hover �ight, for a non negligible duration. Moreover, the associated

control algorithms have been heavily developed together with the computing capacity

of on-board electronics.

As a result, current multirotor robots are more than ever autonomous, and present

a huge potential for future robotic applications with complex tasks in complex environ-

ments. It is clear however that this kind of robotic platforms are challenging to control

by nature, because of the complex aerodynamics of the rotating propellers (especially

when close to a surface or in adverse wind conditions) and because of their freedom

in the 3D environment. The possibilities are thus vast, but still a lot of challenges need

be dealt with to make this kind of aerial robots able to handle complex real-world situ-

ations. To this extent, the �eld of aerial robotics have been developed a lot during the

past decade, with substantial improvements in the control and localization of multirotor

robots.

Context

The development and control of multirotor UAVs can be considered a practically

solved problem for a wide range of navigation applications, mainly with surveillance or

sensing tasks. Indeed, small aircrafts such as quadrotors are well suited to navigation

tasks in tight or complex environments, because of their interesting agility and low

price. Their relatively low weight associated with their important actuation capabilities

13

Introduction

(in terms of force and torques) allows highly dynamical motions, thus such robots can

achieve maneuvers that are adapted to dif�cult environments, for example in rescue or

exploration applications.

Simultaneously, a number of recent works have also studied the possibility of having

a contact between such a multirotor aircraft and its environment in the past years, which

extends the robot applications a lot. The three main motivations for such studies are

the ability of multirotors to

1. grasp some objects in the environment and displace them,

2. apply a force or, more generally, a wrench to some part of the environment such

as a switch on a wall, a door handle to turn or some mechanism to screw (as

can be found in the DARPA challenge for instance),

3. perform a proper (smooth) landing with special properties, e.g., land against a

wall or on a moving platform [25, 46].

However, in these applications of aerial physical interaction, the structure of the

environment is always a source of constraints that must be avoided in order to pre-

serve both the integrity of the robot and of the environment. This is even more true for

complex environments such as in indoor applications or in cluttered urban or industrial

places, where possible collisions are numerous. As a consequence, in this kind of ap-

plications, the behavior of aerial robots is mostly bounded by the need to avoid or to

master the contacts with the environment.

Overview of the state of the art

Aerial robotics

In this context, numerous works have been conducted to assess the problems of

estimation and robust command of quadrotors. The speci�c dynamics of this kind of

aerial robot have been studied and leveraged so that, with the proper framework, one

can locate and control them in order to track desired trajectories, see e.g. [22, 36, 44,

37]. The problem of the servoing of these robots has also been studied with a lot of

different approaches, e.g., [37, 14, 22, 15, 53], ranging from sliding mode to H-in�nity

or LQR. These works propose control algorithms that either focus on the robustness,

or on the fastness of the control loop.

14

Introduction

Note that in the vast majority of these works, the sensing relies on an external

localization structure such as indoor motion capture in order to retrieve the location of

the aircraft. A number of studies propose methods to improve the sensing component

by means of on-board sensors (mainly vision) and relevant associated algorithms [27,

45, 56, 1]. More recently, we have also seen methods that are able to treat cases where

only low quality information is available for sensing [52].

As stated before, the main applications of these works deal with navigation and

data acquisition, which places the focus on the �ight of the quadrotor itself. However,

recent research has begun to leverage their operational potential in order to make them

physically interact with their environment. With this kind of approach, the quadrotors

can be used as aerial manipulators able to interact. The corresponding research �eld

is called Aerial PHysical Interaction (APhI). For instance, [70, 54, 55] have explored the

possibility for a multirotor equipped with an on-board `manipulator` (active or passive)

to achieve manipulation tasks. Interestingly, we have also seen a few new concepts

in the past years that tend to push the boundaries of multirotor capabilities by means

of original features, e.g., [71] which studied an original stabilizing fast perching, or [7]

which proposed a multi-part aerial robot with variable con�guration for grasping, but

also [61] which propose a framework for aerial interaction that is based on a special

hexarotor with tilted propellers, thus fully actuated.

In parallel, some works have been focused more on the high level interaction with

an operator, e.g., [26, 60], proposing algorithms for conveying information between

an operator and the actual contact at best. This area of research presents several

challenges since translating the control methods from grounded robots with physical

interaction to equivalent aerial situations is not straightforward. This �eld have also

been supported through the past years by large international projects such as [2, 3, 8,

4], which have focused on complex scenarios that tend to be more realistic.

As a consequence, we see that the current state of the art allows one to achieve

some aerial robotic task with interaction with the environment. However, in all these

works the interaction remains either highly restrictive, or needs to be controlled to follow

a mastered mechanical wrench. Therefore, in this thesis we propose to change this

perspective by considering the environment as a source of possible contacts that can

be leveraged for the sake of locomotion. Indeed, the aerial robot may be able to bene�t

from the way certain particular contacts affect its dynamics, and thus achieve complex

movements that improve its maneuverability.

15

Introduction

Figure 1 – Examples of modern applications of aerial robotics. On the left, a commercial
product that is designed for waterproof rescue missions. On the middle, a foldable
quadrotor able to adapt its shape from [23]. On the right, a cooperative framework
sharing the task of moving an object between a grounded manipulator and an aerial
robot, from [60].

Trajectory generation

The second topic we are interested in throughout this thesis is the generation of

robotic trajectories, in particular for mobile robots. Indeed, the foreseen concept of

aerial locomotion is closely related to the ability of our algorithms to plan trajectories

that achieve the desired maneuvers. This kind of behavior also rely a lot on the ability

of the robot to track precisely the planned trajectory via its controller.

Research has been conducted on these subjects over the years, that led to different

kind of strategies for trajectory generation. One of the most used techniques for gener-

ating feasible trajectories that minimize some cost consists in leveraging the �atness of

the robot, whenever this property is available. This concept was introduced in [24] and

exploited for trajectory generation in [50]. Basically, featuring this property for a dynam-

ical system means that it is possible to express both its input and output as functions

of a certain `�at output` (and possibly some of its derivatives). In practice, this allows

to easily compute the state of the system given a certain trajectory of the �at output,

by means of an algebraic relation and thus without needing to integrate the dynamics.

This makes the trajectory generation much more ef�cient in theory. A known pitfall of

this method, however, is that the expression for the input (as function of the �at out-

put) is often highly non-linear and computationally heavy, and thus tend to cancel the

bene�t of the method in cases where the actuation is part of the optimized elements,

e.g., in presence of actuation bounds. Moreover, this relation as well as the one for the

state require an high accuracy in the model parameters and often include the position

of some center of mass and inertia which are dif�cult parameters to measure.

16

Introduction

The most common other methods for generating trajectories are simple direct tran-

scription, i.e., forward integration of the dynamics, but also direct collocation [9]. The

method of the (orthogonal) collocation consists of using orthogonal polynomials to rep-

resent at the same time the input and output of the dynamics at knot points. Contrary

to the �atness method or direct transcription where the dynamics is intrinsically re-

spected by construction, here the relation between the input and output of the robot

is enforced as a constraint at each considered knot point (but not between them in

general). The precision of this approximation remains however controlled and can be

arbitrarily reduced by increasing the number of considered knot points.

A number of works have applied these methods to multirotor UAVs in the past years,

e.g., [57, 58, 67, 28, 52], with great success in the obtained performances. In all these

studies, the achieved planned trajectories make it possible to optimize an objective

(performance of a parameter estimation, observability) and/or respect special con-

straints (collision avoidance, actuation limits). However, we note that in these works

the trajectory tracking remains decoupled from the planning stage. Hence, the achieved

performance when tracking the planned trajectory is bound to the strict respect of the

conditions that are envisioned for the planning. In particular, any discrepancy that was

not modeled at the planning stage, i.e., disturbances, unmodeled phenomena or poorly

calibrated model, needs to be compensated by the real-time control loop, which will

inevitably affect the tracking performance in an unmastered and potentially high pro-

portion in case of inaccurate modeling.

Another kind of approach is to handle this dif�culty by means of strategies that rely

on a human-in-the-loop, see e.g. [42, 43, 41]. With such methods, some part of the task

realization is given to the responsibility of the operator, which allows good compromises

between the �exibility of the human operator and the achievable precision and strength

of the robot.

Finally, a more recent class of strategies try to integrate the behavior of the control-

loop at the planning stage in order to build `control-aware` schemes that leverage at

most the information of the models, like in [28, 6, 21]. In this last kind of works, the way

that the controller will behave during execution of the trajectory is taken into account

from the planning stage. This approach makes the complete stack planner–controller

more tightly coupled by making the planner `aware` of the real-time control loop.

In this thesis we will propose a control-aware trajectory planning framework that

is adapted to robots with uncertain parameters, such as aerial robots which feature

17

Introduction

complex aerodynamics that are dif�cult to model and compensate precisely.

Thesis contributions

In this thesis we develop strategies for trajectory generation, with the purposes of

improving aerial locomotion capabilities, and improving the tracking of trajectories for

systems that feature poorly known parameters. In particular, we focus on the two main

issues that are raised when considering aerial locomotion, which are

1. the generation and tracking of trajectories for an aerial robot with switching dy-

namics,

2. the generation of trajectories that are robustly tracked in presence of model

parameter uncertainties.

The study of these thematics led to a new trajectory planning algorithm for aerial

locomotion, described in

1 Q. Delamare, P. Robuffo Giordano, and A. Franchi, “Toward aerial physical lo-

comotion: The contact-�y-contact problem,” in IEEE Robotics and Automation

Letters (RAL), vol. 3, no. 3, pp. 1514–1521, 2018.

A video demonstrating simulations of the resulting trajectories for aerial locomotion

is available 5. A prototype have also been realized in the course of the thesis, including

a magnetic hooking system and the robotic platform of the MonkeyRotor, which will

allow further explorations of the concept of aerial locomotion.

Then, we developed a novel trajectory optimization framework for mobile robots with

uncertain models, based on sensitivity metrics, which led to the following contribution:

2 P. Robuffo Giordano, Q. Delamare, and A. Franchi, “Trajectory generation for

minimum closed-loop state sensitivity,” in 2018 IEEE International Conference

on Robotics and Automation (ICRA), 2018,

This work was synthesized in a video showing the improvement in the tracking per-

formance when using a trajectory that is optimized w.r.t. the closed-loop state sensitiv-

ity, for a unicycle and a quadrotor 6. It also led to further developments and validations

of this theory as described in the last chapter of thesis, including new metrics of interest

based on the sensitivity.

5. video at https://proxy.ens-rennes.fr/owncloud/index.php/s/Nrx5Rmm9S93TsmF
6. video at https://proxy.ens-rennes.fr/owncloud/index.php/s/nxFbMCRzD7wCzQp

18

Introduction

Finally, in relation with these two �elds, we also participated in the development

of the Tele-MAGMaS project presented at the Kuka Innovation Awards 2017 (�nalist),

which led to the following paper:

3 N. Staub, M. Mohammadi, D. Bicego, Q. Delamare, H. Yang, D. Prattichizzo,

P. Robuffo Giordano, D. Lee, A. Franchi, “The Tele-MAGMaS: an Aerial-Ground

Co-manipulator System,” in 2018 IEEE Robotics and Automation Magazine (RAM),

vol. 25, no. 4, pp 66–75, 2018.

A video of the realized simulation framework is available 7, as well as a video of the

Hannover Fair demonstration 8.

Thesis structure

This thesis is split in two main parts. The �rst one, Part I, is dedicated to the study of

the MonkeyRotor, a robot concept whose goal is to evaluate the properties and bene�ts

of aerial locomotion. The second part, Part II, contains the theoretical development and

validations of a new trajectory generation framework that aims at improving the track-

ing performances of robots — especially when subject to uncertainties in their model

parameters.

Outline of Part I

In this part, we develop the contact-�y-contact problem which is a case-study of

aerial locomotion. The MonkeyRotor is introduced as the aerial robot dedicated to the

study of this problem.

Chapter 1 provides an analysis of the particular dynamics and control of the Mon-

keyRotor. The speci�cities of this robot and how they can be leveraged in the context

of aerial locomotion are discussed.

Chapter 2 details the trajectory generation algorithm that was designed for this sys-

tem. We show the important features of the realized aerial locomotion, with an analysis

of the resulting generated trajectories among different planning conditions.

Chapter 3 gives the details about the realization of a prototype of the MonkeyRotor.

A novel magnetic hooking system is designed and realized, that makes it possible for

7. video at https://proxy.ens-rennes.fr/owncloud/index.php/s/KZgB2TCAYfoJ6wW
8. video at https://proxy.ens-rennes.fr/owncloud/index.php/s/6ZBXsf9peCaHX52

19

Introduction

the system to alternate between states with and without contact as wished.

Outline of Part II

This part is dedicated to the novel algorithm for the generation of `minimum sensi-

tive` trajectories.

Chapter 4 proposes a method that allows to generate trajectories resulting in a

minimization of the tracking error that are due to erroneous calibration of the model

parameters. A statistical analysis is conducted which validates the soundness of the

concept, based on a Monte Carlo simulation campaign.

Chapter 5 provides a generalization of the theory to robots that have controllers with

arbitrary tracking performance (including lag or �ltering behaviors). Other sensitivity

metrics of interest are also proposed which improve the robustness of the overall task

realization. The concept is validated through large scale statistical analysis and real

experiment on a unicycle.

20

PART I

Part I

21

CHAPTER 1

MONKEYROTOR CONCEPT AND

ANALYSIS

1.1 Introduction

In this chapter we will describe the theoretical study of a new robotic concept. As

stated in the main introduction, the starting point lies in the observation that in aerial

robotics the environment is usually considered as an obstacle to be avoided, or more

generally, as a constraint. Conversely, in this Thesis we focus on the possibility of ex-

ploiting a contact between the aerial robot and the environment for the sake of enhanc-

ing the navigation capabilities.

To do so, we isolate a particular case-study which consists in making a quadrotor

equipped with an arm able to locomote under two pivot points. More precisely, the

goal of such a robot is to navigate through its environment not only by means of its

own ability to �y, but also with phases where a physical contact with the environment

happens and is leveraged to the bene�t of the overall maneuver. This aerial robot

thus has a particular dynamics because of its ability to be in physical contact with its

environment. Figure 1.1 illustrates a possible depiction of this system when realizing a

maneuver that utilizes a contact with a pivot point.

1.2 Dynamical modeling

The MonkeyRotor consists of a quadrotor UAV equipped with an actuated 1-DOF

arm meant to grasp a pivot point (e.g., a branch) in the environment with its end-

effector. In this section we illustrate the dynamical model of the MonkeyRotor during the

two phases, i.e., hooked and free-�ight, by borrowing from the previous works [69, 65]

which have considered similar scenarios. In particular, [69] has considered a quadrotor

23

Part I, Chapter 1 – MonkeyRotor concept and analysis

Figure 1.1 – Illustration of the concept of the MonkeyRotor: a quadrotor equipped with
an arm which leverages a pivot point in the environment in order to achieve aerial
locomotion.

with actuated arm but only in free-�ight, while [65] has considered the hooked case but

with a passive arm. As already done in many previous works on similar subjects, see,

e.g., [29, 64, 49, 69, 65], we restrict the analysis to the vertical plane.

1.2.1 De�nitions

With reference to Fig. 1.2, let FW be an inertial world frame with axes f xW ; zW g

and origin OW , and FB a body frame attached to the quadrotor with axes f xB ; zB g: the

axis zB represents the body-frame thrust direction, and the origin OB is placed at the

quadrotor center of mass (CoM). The con�guration of the quadrotor can be speci�ed

by the position of OB in FW , denoted as pB = [xB zB]T 2 R2, and the orientation of FB

w.r.t. FW here parametrized by the angle � B from zW to zB .

The arm is assumed to have the length L1 and to have its joint mounted at the

24

1.2. Dynamical modeling

LB

p1

d1

L1

ut

ur

�

f l

f r

� B
� 1

pE

xW

zW

OW

OB

zB
xB

Figure 1.2 – Geometry of the MonkeyRotor, a �ying robot with an actuated arm.

quadrotor CoM pB , around which it can rotate by an angle � 1 de�ned as the angle from

zB to the arm direction. The CoM of the arm, denoted as p1, is placed at a distance

d1 from OB . The con�guration of the whole MonkeyRotor (quadrotor + arm) is then

denoted as q = [pT
B � T]T 2 R4 where we let � = [� B � 1]T .

The quadrotor is equipped with two propellers generating two thrust vectors f lzB

and f r zB : the forces produced by the propellers result in a total thrust vector utzB =

(f r + f l)zB and torque ur = L B
2 (f r � f l), with LB being the distance between the two

propellers. The arm is also assumed actuated by a torque � acting at OB . These three

inputs for the whole MonkeyRotor are then denoted as u = [ut ur �]T 2 R3. For conve-

nience, we also de�ne the alternative input vector u f = [f r f l �]> = Ku where

K =

2

6
6
6
4

1=2 1=LB 0

1=2 � 1=LB 0

0 0 1

3

7
7
7
5

: (1.1)

Indeed, while the MonkeyRotor dynamics are more naturally expressed in terms of

the input vector u, the physical actuation constraints, i.e., min and max joint torque

and propeller thrusts, affect the input u f . This distinction will be important in the next

developments. We �nally let mB , JB , m1, J1 be the mass and inertia of the quadrotor

and arm, respectively.

25

Part I, Chapter 1 – MonkeyRotor concept and analysis

We now describe the dynamical model of the MonkeyRotor in the two considered

phases of hooked and free-�ight.

1.2.2 Hooked phase

Let

pE = pB + L1

2

4
� sin(� 1 + � B)

cos(� 1 + � B)

3

5 (1.2)

represent the position of the arm end-effector in FW and p �
E 2 R2 the (�xed) position

of the hook in FW . Following [65], the hook constraint pE (q) = p �
E restricts the Mon-

keyRotor motion to a circle centered at p �
E . In this constrained case the MonkeyRotor

con�guration is fully determined by the con�guration variables � : by applying standard

techniques (Euler-Lagrange procedure), one can then obtain the following (reduced)

dynamical model governing the behavior of the states (� ; _�)

M h(�) •� + gh(�) = Gh(�)u (1.3)

where

M h(�) =

2

4
JB 0

0 J1 + mB L2
1 + m1(L1 � d1)2

3

5 ; (1.4)

Gh(�) =

2

4
0 1 � 1

L1 sin(� 1) 0 1

3

5 ; (1.5)

and gh(�) = [0 (mB L1+ m1(L1� d1))gsin(� B + � 1)]> . Since the matrix Gh(�) is always full

rank, the hooked MonkeyRotor is overactuated, with two controlled variables � for the

three control inputs of u. We note that in [65] the joint arm was considered passive, i.e.,

� = 0 thus resulting in a fully-actuated system with a singularity for � 1 = 0 as opposed

to the case under consideration which is singularity-free. Sect. 1.3.1 will elaborate more

about the possible use of the MonkeyRotor overactuation.

The behavior of the remaining MonkeyRotor states (pB ; _pB) can then be alge-

braically expressed as a function of � and _� by exploiting the hook constraint pE (q) =

p �
E as

pB = p �
E � L1

2

4
� sin(� 1 + � B)

cos(� 1 + � B)

3

5 (1.6)

26

1.2. Dynamical modeling

and

_pB = L1(_� 1 + _� B)

2

4
cos(� 1 + � B)

sin(� 1 + � B)

3

5 : (1.7)

1.2.3 Free-�ying phase

The free-�ying dynamical model of the MonkeyRotor is a particular case of the

system presented in [69]. In particular one has

M f (q) •q + cf (q; _q) + gf (q) = G f u; (1.8)

where the expression of the various terms are given in [69].

We note that, as opposed to the hooked scenario, the MonkeyRotor is underactu-

ated during free-�ight (three inputs u for four con�guration variables q). However, as

discussed in [69], it is possible to �nd a �at output or linearizing output [24] which al-

lows for full dynamic linearization of the system dynamics. More details about this point

are given in Sect. 1.3.2.

1.2.4 Impact Model

One particularity of the concept of aerial locomotion is that the contact between the

end-effector of the robot and the pivot point is possibly accompanied by a voluntary

shock, which means that the hooking event itself may not be smooth for the sake of the

global maneuver. Indeed, let th be the time at which the MonkeyRotor switches from

a free-�ight phase to a hooked phase because the end-effector has reached the pivot

location p �
E and performed a successful hook. If _pE (t �

h) 6= 0, i.e., the end-effector ve-

locity is non-zero just before hooking, a sudden impact will occur affecting the evolution

of the MonkeyRotor state (q; _q).

Therefore, the goal of this section is to propose a simple impact model based on

impulse theory, see, e.g., [47] able to capture the instantaneous change from _q(t �
h)

to _q(t+
h) because of a possible collision between the end-effector and the hook. As

customary, we assume continuity of q, i.e., q(t �
h) = q(t+

h), in presence of an instan-

taneous impact [47]. The availability of this impact model will then allow us to have a

complete model of the MonkeyRotor full dynamics that integrates the effects of a pos-

sible collision. In a trajectory planning context, as it will be done later in this Thesis,

27

Part I, Chapter 1 – MonkeyRotor concept and analysis

this allows the planner to be `aware' of the possible collision, and thus generate more

realistic motion plans that can also take advantage of this . For example, as far as the

feasible trajectory space is large enough, the collision between end-effector and pivot

can be controlled by the trajectory planner for quickly reducing the system kinetic en-

ergy. Conversely, the magnitude of the impact can also be reduced in the same way if

necessary.

j n

p1

peq
pB

p �
E

_pE (t �
h)

�! eq

veq(t �
h)

Figure 1.3 – Notations for the collision model. The large and `instantaneous' reaction
force at E is synthesized in the impulse vector j n.

Recalling that _q = [_pT
B

_�
T
]T , we �rst consider the effects on the two angular veloc-

ities _� = [_� B
_� 1]T . First of all, we remark that the choice of placing the joint base at

the quadrotor CoM — a property also known as protocentricity [66] — implies that the

rotational dynamics of the quadrotor base is completely decoupled from the dynamics

of the collision. Indeed, the efforts that are transmitted through the arm joint are only

linear forces (no torque), which do not generate any torque on the quadrotor base as

they are directly applied to its CoM without offset. Therefore one has _� B (t+
h) = _� B (t �

h),

i.e., the rotational velocity of the quadrotor base is not affected by the impact. Concern-

ing the angular velocity of the arm after the impact, we compute it by assimilating the

MonkeyRotor to an equivalent body with the following properties for the sake of impact

modeling:

— mass meq = mB + m1

28

1.2. Dynamical modeling

— CoM peq =
mB pB + m1p1

meq

— inertia Jeq = J1 + m1kp1 � peqk2 + mB kpB � peqk2,

and with an equivalent linear velocity veq = _peq and the total absolute angular velocity

! eq = _� B + _� 1.

During the short time interval �t = t+
h � t �

h , a force Fc is applied by the pivot to the

end-effector of the arm because of the collision. One can de�ne the impulse vector j ,

which is the total momentum exchanged by the end-effector and the pivot during this

impact:

j =
Z

�t
Fcdt = j n

= � j
_pE (t �

h)
k _pE (t �

h)k

(1.9)

with n the unit vector de�ning the direction of the impulse j , see Fig. 1.3. The duration

of the collision is small enough for us to consider that this direction is given by the

velocity before the impact � pE (t �
h). Therefore, the direction n is determined by the

MonkeyRotor state at t �
h .

This quantity can be used for determining the precise effect of the impact. Indeed,

the change in the linear and angular velocities veq and ! eq before and after the collision

can be modeled with
8
>>>><

>>>>:

meq(veq(t+
h) � veq(t �

h)) = j

Jeq(! eq(t+
h) � ! eq(t �

h)) = (p �
E � peq) � (j n)

= j kp �
E � peqk sin�

(1.10)

where p �
E is the location of the pivot point where the collision occurs and � is the angle

between vectors p �
E � peq(t �

h) and n. Thus we get that

8
>>>><

>>>>:

veq(t+
h) = veq(t �

h) +
j

meq

! eq(t+
h) = ! eq(t �

h) +
j

Jeq
kp �

E � peqk sin�
: (1.11)

Moreover, one has the kinematics relationships

8
><

>:

veq(t+
h) = _p1(t+

h) + S(! (t+
h)) � (p1 � peq)

_pE (t+
h) = _p1(t+

h) + S(! (t+
h)) � (p1 � pE)

(1.12)

29

Part I, Chapter 1 – MonkeyRotor concept and analysis

where S(a) =

2

4
0 a

� a 0

3

5 2 R2� 2.

Then, by combining eq. (1.11) with the kinematics of eq. (1.12), and by using the

fact that the end-effector velocity is zero after the impact, i.e., _pE (t+
h) = 0, one can

solve for the impulse norm j = kjk as

j =
meq k _pE (t �

h)k

1 +
meq kpeq(t �

h) � p �
E k2

Jeq
sin�

: (1.13)

Note that j can be expressed in terms of only known quantities, in particular the

MonkeyRotor state (q(t �
h); _q(t �

h)) just before the collision. Therefore, plugging (1.13)

in (1.11) yields the value of ! eq(t+
h) = _� B (t+

h) + _� 1(t+
h), which in turn determines _� 1(t+

h)

since, as explained before, _� B (t+
h) is known. Having obtained _� B (t+

h) and _� 1(t+
h), the

relationship (1.7) �nally allows us to determine the remaining _pB (t+
h) and, thus, the

whole vector _q(t+
h) as sought.

We observe that the obtained expression for the impulse norm j is such that 1) if

the velocity of the end-effector before the impact is null, i.e., the hooking is done in

a perfectly smooth way, then the impact has no effect, and, 2) the impulse is greater

when the angle � is closer to zero, i.e., when the arm arrives frontally towards the pivot.

Note that no parameter — like elasticity or any other mechanical property related

to the materials — was required in this modeling of the collision, which makes it inde-

pendent from the mechanical implementation of the end-effector, and from the detailed

characteristics of the pivot. Indeed, the possible loss of kinetic energy that occurs with

this impact event is purely linked to the direction of the velocity w.r.t. the target pivot.

1.3 Flight control

In this section we propose two control laws that allow the system to track some

desired outputs both in the hooked and free-�ying phases. The desired output to be

tracked and their derivatives may be computed as trajectories in a prior planning stage,

as it will be discussed in the next chapter. Then, the tracking policies that are described

here compute a real-time input u for the system dynamics with the goal of bringing its

output as close as possible to the desired one, even in the presence of perturbation.

30

1.3. Flight control

1.3.1 Hooked phase

The goal of the control in the hooked phase is to let the MonkeyRotor con�guration

� track the reference optimal trajectory � � (t) generated by the planning algorithm. This

can be accomplished by implementing a static feedback linearization of the Monkey-

Rotor constrained dynamics (1.3)

u = G y
h(�)(M h(�)� + gh(�)) + � nh (1.14)

where the :y operator indicates the usual Moore-Penrose pseudoinverse, � 2 R is a

scalar gain and

nh =

2

6
6
6
4

1

� L1 sin(� 1)

L1 sin(� 1)

3

7
7
7
5

(1.15)

is a vector spanning the one-dimensional null-space of matrix Gh (due to the Monkey-

Rotor overactuation during the hooked phase).

By plugging (1.14) into (1.3), one then obtains the linearized dynamics •� = � which

can be stabilized along the reference trajectory � � (t) by choosing

� = •�
�

+ kd(_�
�

� _�) + kp(� � � �) (1.16)

where kd > 0 and kp > 0 are suitable gains.

As well-known, setting � = 0 in (1.14) yields the minimum-norm solution for vector u.

However, the null-space term � nh can be exploited for accomplishing a secondary

objective besides the tracking of � � (t). In our case, we chose to exploit this term for

coping, as much as possible, with the actuation constraints:

u f � u f � �u f : (1.17)

This is obtained as follows: by rewriting (1.14)–(1.16) as u = u � + � nh, we seek the

optimal value � � solving this linear minimization problem

� � = arg min j� j

s:t : u f � Ku � + � Kn h � �u f :
(1.18)

If a solution exists, then setting � = � � in (1.14) will guarantee ful�lment of the tracking

31

Part I, Chapter 1 – MonkeyRotor concept and analysis

task and, at the same time, of the actuation constraints with the smallest possible norm

for the control input u. In case (1.18) does not admit a solution, no control action can

meet the constraints while realizing the tracking task. In this case the input vector u f is

simply saturated. We note that this case is quite unlikely to occur in practice since the

trajectory to be tracked � � (t) is already compliant “by construction” with the actuation

constraint. Any additional control authority needed to recover possible perturbations

and disturbances during the �ight can then be typically accommodated by exploiting

the null-space term � � nh.

Note that in the case where we only seek a value for � that makes the input respect

the bounds without considering the cost minimization, one can solve analytically the

corresponding problem. Indeed, the following equivalence holds:

8
>>><

>>>:

u1 � � � nh1 + uc1 � u1

u2 � � � nh2 + uc2 � u2

u3 � � � nh3 + uc3 � u3

() � min � � � � max

where 8
>>><

>>>:

� min = max(min(
ui � uci

nhi
;
ui � uci

nhi
); 8i 2 [[1; 3]]

� max = min(max(
ui � uci

nhi
;
ui � uci

nhi
); 8i 2 [[1; 3]]

Hence, by calculating the values of � min and � max , a range is determined for � that

guarantees that the inputs lie in their bounds. Among this range, we can then choose,

e.g., the smaller � in absolute value, which corresponds to minimizing the growth of the

input norm implied by this null-space exploitation. In the case where � min > � max , there

is no solution and the input must be truncated.

1.3.2 Free-�ying phase

As explained in Sect. 1.2.3, during free-�ight the MonkeyRotor is underactuated but

one can still achieve full dynamical linearization of its dynamics by acting on a suitable

�at/linearizing output. In short, this is obtained as follows: let � 1B = � 1 + � B , de�ne

y(q) = [pT
B � 1B]T 2 R3 as the �at/linearizing output and let y � (t) be the corresponding

reference optimal trajectory generated by a trajectory planner such as the one which

will be presented in Sect. 2.2. Let also �u = [•ut ur •�]T be the new (extended) input

vector, where two integrators have been placed on both the ut and � original inputs.

32

1.4. Validation of the Control Strategy

The new extended state which includes the dynamic extensions of the original inputs

is then denoted as �x = [pT
B _pT

B � T _�
T

ut _ut � _�]T 2 R12. With these settings, one can

show (see [69]) that differentiating the �at output y four times yields

....y = �f (�x) + �A (�x) �u (1.19)

where �A (�x) is a square nonsingular matrix as long as ut 6= 0. System (1.19) can then

be inverted by choosing �u = �A (�x)� 1(�� � �f (�x)) . Tracking of the optimal trajectory y � (t)

is then obtained by choosing, as usual,

�� =
....y � + k1(

...y � �
...y) + k2(•y � � •y) + k3(_y � � _y) + k4(y � � y) (1.20)

where k1; k2; k3; k4 > 0 are suitable gains.

1.4 Validation of the Control Strategy

In order to test the validity of the proposed dynamics and control laws derived in the

previous sections, we conducted simple simulations of the system in the two situations:

hooked and free-�ying. For the two cases, we design a simple polynomial trajectory for

the desired output which allows us to derive the analytical expressions for the time

derivatives. In this Thesis we mostly use polynomials for the trajectory representation.

Let be a representation function for the trajectory, which transforms a �nite vector

of coef�cients a and a current time t into an evaluation of the corresponding trajec-

tory at t. For a unidimensional trajectory y� (t) 2 R, this means that the polynomial

representation translates into the following expression

y� (t) = (a; t) =
na � 1X

i =0

ai +1

t
t f

! i

(1.21)

where the order of the polynomial is na � 1, and where t f is the duration of the tra-

jectory (5 s here). Extending to multiple dimensions, i.e., y � (t) 2 Rny , is as simple as

33

Part I, Chapter 1 – MonkeyRotor concept and analysis

duplicating the expression for each coordinate, which can be written

y � (t) = (a; t) =
N � 1X

i =0

2

6
6
6
6
6
6
4

ai +1

ai +1+ N

:::

ai +1+ N (ny � 1)

3

7
7
7
7
7
7
5

t
t f

! i

(1.22)

where N � 1 is the order of the polynomials, such that na = Nny.

This de�nition of the trajectory also allows us to easily construct a vector of polyno-

mial coef�cients a which respects initial and �nal constraints synthesized in a vector d,

by means of the linear relation

a = M i d (1.23)

where M i is a simple matrix that only depends on the duration t f .

Figure 1.4 – Simulation of the hooked dynamics of the MonkeyRotor. On the left, the
realized angles � B ; � 1. On the right, the corresponding tracking errors: the controller
perfectly tracks the trajectory in these ideal conditions.

For the hooked phase, we test the control law on a simple trajectory that begins

with angles [0; 0] and ends at [� �= 6; �= 2] rad. The �nal angular velocities arbitrary are

set to [� �= 4; �= 4] rad/s, while the initial ones and other derivatives are set to zero.

We observe on Fig. 1.4 that the tracking task is realized as expected, with decoupled

dynamics for the two angles as wished. The tracking error is of the order of numerical

precision of the solver, which means that the controller was able to perfectly track the

desired trajectory. This is of course possible because the parameters of the system are

perfectly known, and there is no unmodeled perturbation. However, this would not be

the case in real conditions, because of these two sources of error.

34

1.5. Conclusion

Then, concerning the free-�ying phase, note that for the sake of the implementa-

tion we also use the �atness to derive expressions for the initial condition (angle � 1 in

particular). For this test we set the initial position to [0; 0] and the �nal position to [3; 2]

(m). The derivatives and angles are set to zero at the beginning, while a �nal velocity of

[� 1; 1] m/s is imposed in order to get a trajectory that excites the dynamics. Figure 1.5

illustrates the results of this simulation. We can see that the tracking is perfectly done:

once again the controller was able to cancel the tracking error down to the numerical

precision of the solver, which validates the choice of the control law.

Figure 1.5 – Simulation of the free-�ying dynamics of the MonkeyRotor. On the left, the
realized position x; z. On the right, the tracking error (in position and angle): the error
is of the order of numerical precision, which shows that the controller perfectly tracks
the trajectory in these ideal conditions once again.

1.5 Conclusion

In this chapter we have introduced the concept of aerial physical locomotion by

considering the MonkeyRotor system — a quadrotor UAV equipped with a 1-DOF arm

able to hook at some pivot points and to exploit these contacts for enhancing its ma-

neuvering possibilities. To this end, a suitable dynamical model for both the hooked and

free-�ying phases has been presented. The speci�cities of the two corresponding dy-

namics are mainly related to their degree of actuation: the system is overactuated when

in contact, while underactuated when not. As a consequence, the maneuverability of

the system varies along with its state, i.e., it is more maneuverable when in contact.

35

Part I, Chapter 1 – MonkeyRotor concept and analysis

Thus, one can expect that a proper exploitation of the whole dynamics should leverage

this particularity: the hooked phase should be subject to `informative` maneuvers.

We also introduced a collision model for the re-hooking event, which we think is

of paramount importance for further exploration of the aerial locomotion concept. This

model is based on global energy dissipation, which implies that it does not require

any physical parameter. Two control laws for the two hooked and free-�ying phases

have also been proposed and tested in simulation. In ideal conditions, i.e., parameters

perfectly known and no perturbations/unmodeled phenomenon (also no input satura-

tion), the two controllers are able to track a desired trajectory that is submitted to them

without any error.

36

CHAPTER 2

TRAJECTORY PLANNING FOR THE

MONKEYROTOR

2.1 Introduction

This chapter is dedicated to the presentation of the trajectory planning algorithm

that has been developed and tested in simulation specially for the MonkeyRotor. Still

considering the case-study of the contact-�y-contact problem, the sought planner aims

at building a trajectory that brings the robot from an initial hooked con�guration under

a �rst branch, to a second hooked con�guration under another branch. Therefore, this

planner is constructed in a way that includes the models of the two dynamics of the

system (hooked and free-�ying) that were described before, but also the impact that

occurs at the rehooking.

2.2 Planning algorithm

As explained above, we focus in this chapter on the objective of bringing the Mon-

keyRotor from the initial rest con�guration under the �rst branch, to the �nal rest con-

�guration under the second branch, while minimizing some cost. We formally describe

this problem in this section.

To do so, we discuss here a trajectory planning strategy meant to generate feasible

trajectories for letting the MonkeyRotor passing from a hooked con�guration to another

hooked con�guration. Figure 2.1 depicts the considered scenario: let x = [qT _qT]T 2

Rnx , nx = 8, represent the MonkeyRotor state, and assume two initial and �nal states

x0, x f are given corresponding to the MonkeyRotor hovering stationary while hooked to

the initial and �nal pivot point. represent the actuation constraints on the MonkeyRotor

input u f = Ku (see (1.1)). The goal is to �nd an optimal (w.r.t. a cost of interest) and

37

Part I, Chapter 2 – Trajectory planning for the MonkeyRotor

x0

x r

xh(x r)

x f

Figure 2.1 – Optimization scheme, where x0 is the initial state, x r the transition state
where the system passes from its hooked dynamics to its free �ying one, xh the recip-
rocal one and x f the �nal state.

feasible trajectory for the pair (x(t); u(t)) over a time interval t 2 [t0; t f] able to bring

the MonkeyRotor from x(t0) = x0 to x(t f) = x f while coping with the actuation con-

straints 1.17. Depending on the conditions (initial/�nal states, actuation constraints),

one can expect the optimal trajectory to involve an initial `swinging' (attached to the

�rst pivot point) until the hook is released (state x r in Fig. 2.1), followed by a free-

�ying phase, and subsequently a possible �nal `swinging' when re-hooking with the

next pivot point (state xh in Fig. 2.1). Indeed these swinging maneuvers can be ex-

ploited for ef�ciently building up/losing energy, thus fully exploiting the possibility to

actively exchange forces with the environment (as in a locomotion task) in addition to

the available thrust/torque inputs.

The complexity of this optimization problem, also due to the change in the Mon-

keyRotor dynamics when switching from a hooked phase to a free-�ying phase, does

not allow for an analytical solution (i.e., �nding the complete optimal trajectory over t 2

[t0; t f]). Therefore, a numerical optimization method needs to be employed: among the

many possible strategies, we now discuss the adopted one which we found amenable

to a numerical resolution despite the fact it is possibly slightly suboptimal as we will

see.

2.2.1 Optimization procedure

In order to handle the optimization problem, we split it in two loops: the inner loop

looks for an optimal trajectory given a candidate release state x r . The outer loop then

38

2.2. Planning algorithm

tries to optimize the candidate x r . This method is inspired from the concept of dynami-

cal programming where the global optimum is built from solutions of smaller problems,

see [13]. However here, the cost function may differ between the considered subprob-

lems as we will see next, and thus the procedure may not be globally `optimal` w.r.t. a

single objective.

Inner loop

Given a candidate release state x r and a cost function J1(x) (to be speci�ed later

on), this �rst optimization problem

J �
1 (x r) = min

u(t); t2 [t0 ; t r]
J1(x)

subject to _x= fh (x) + Gh (x)u

x(t0) = x0

x(t r) = x r

u f � Ku � �u f

returns the optimal trajectory w.r.t. the cost J1(x) for joining x(t0) = x0 with x(t r) = x r

at some release time t r > t 0 to be determined by the optimization algorithm. Here,

_x = fh (x) + Gh (x)u is a shorthand for the MonkeyRotor constrained dynamics (1.3)–

(1.6–1.7). Note also that the optimal cost J �
1 (x r) is a function of the release state x r .

Subsequently, this second optimization problem

J �
2 (x r) = min

u(t); t2 [t r ; t h]
J2(x)

subject to _x= f f (x) + G f (x)u

x(t r) = x r

pE (th) = p �
E

k _pE (th)k � vmax

u f � Ku � �u f

�nds an optimal trajectory for bringing the (now free-�ying) MonkeyRotor from x(t r) = x r

to a hooked state with the second pivot point represented by the hook constraint

pE (th) = p �
E , where th > t r (the hooking time) is to be determined by the optimiza-

tion. Here, similarly to before, the notation _x = f f (x) + G f (x)u is a shorthand for the

39

Part I, Chapter 2 – Trajectory planning for the MonkeyRotor

free-�ying MonkeyRotor dynamics (1.8).

Note that the expected constraint _pE (th) = 0 (null end-effector velocity when hook-

ing) is here replaced by the milder k _pE (th)k � vmax , with vmax > 0 being a small positive

threshold. Indeed, we empirically found that accepting a nonzero but small k _pE (th)k fa-

cilitates the optimization procedure since the optimal trajectory is allowed to `exploit' a

hard but controlled impact with the pivot for quickly reducing the system energy with-

out spending control effort, in a way, again, reminiscent of how humans/animals exploit

contact when moving. We note that the effects of a possible nonzero k _pE (th)k are taken

into account by the impact modeling discussed in Sect. 1.2.4). Finally, note that the op-

timal cost J �
2 (x r) and the whole optimal state evolution x � (t), t 2 [t r ; th], are again a

function of the release state x r . We will then denote with xh(th; x r) the �nal hook state

reached at th as a function of the release state x r .

Finally, this third optimization problem

J �
3 (x r) = min

u(t); t2 [th ; t f]
J3(x)

subject to _x= fh (x) + Gh (x)u

x(th) = � (xh(t �
h ; x r))

x(t f) = x f

u f � Ku � �u f

�nds an optimal trajectory for bringing the MonkeyRotor which is now hooked from

x(th) to the �nal state x(t f) = x f , where t f > t h is to be determined by the optimization

algorithm. Here � (xh(t �
h ; x r)) is a shorthand for the reset action performed by the

collision model of Sect. 1.2.4 because of the possibly nonzero hooking velocity _pE (th).

Finally, the optimal cost J �
3 (x r) is, again, a function of the release state x r .

These three optimization problems are solved by exploiting the direct transcription

method, in particular the Matlab implementation of the Drake libraries [63], on second

order spline trajectories for x and u. Other possible approaches could include the use

of the �atness property for the MonkeyRotor, in order to avoid numerical integration of

the system dynamics [50, 40], or a direct collocation method [9]. We found out that the

�atness approach is not very well suited to this case because the expressions of the

input constraints are too complex, especially for the free-�ying dynamics. Likewise, the

direct collocation method, though it seems computationally interesting by construction,

did not give a signi�cant upturn in the solving speed, hence the choice of the direct

40

2.2. Planning algorithm

transcription method.

Outer loop

The outer loop, as opposed to the inner one, attempts to determine the optimal

release state x �
r by solving the following minimization problem

x �
r = arg min

x r
(J �

1 (x r) + J �
2 (x r) + J �

3 (x r)) :

In this case, we opted for a simple grid search (i.e., brute-force) algorithm for �nding

the optimal x �
r . Indeed x r can be parameterized by the pair (� ; _�) (four variables) since

it must be compatible with the hook constraints (1.6–1.7), thus considerably reducing

the search space.

2.2.2 Cost function

Reasonable choices for the cost functions J1(x), J2(x) and J3(x) could be the

execution time or control effort or energy for generating minimum-time or minimum-

effort/energy trajectories from x0 to x f . Based on the observation that the precision of

the trajectory tracking is highly dependent on the quality of the parameter estimation,

here we however choose to also consider optimality of the state sensitivity w.r.t. vari-

ations in the system parameters, e.g., mass, inertia, CoM location, propeller charac-

teristics, and so on. Indeed, one can expect some unavoidable level of uncertainty in

the various parameters of the MonkeyRotor dynamical and actuation model. Starting

from the idea of [5], we thus aim at generating an optimal trajectory that ensures min-

imal effect of the parametric uncertainty onto the tracking performance, i.e., generate

an optimal state trajectory x � (t) which ends up to be most insensitive to parametric

variations by construction. Therefore, as a �rst step to this approach, we implement

a minimization of some norm of the open-loop state sensitivity. The tracking of such

optimized trajectory will be facilitated when a parameter is poorly known as explained

in [5].

Note that this open-loop state sensitivity does not capture the effect of the controller

on the dynamics when tracking a trajectory with parameters that are not perfectly cali-

brated. A detailed study of this problem and a more complete framework is developed

in Part II, which is able to take into account the control laws at the planning stage.

41

Part I, Chapter 2 – Trajectory planning for the MonkeyRotor

We here recap, for the reader convenience, the essential machinery for computing

the sought open-loop state sensitivity. Let then p 2 Rp be a vector of parameters of

interest which, in our case, is taken as p = [JB J1 mB m1 LB d1] 2 Rnp , np = 6, and

de�ne

� (t) =
@x(t)
@p

2 Rnx � np (2.1)

as the state sensitivity matrix w.r.t. the parameters p. Although � does not admit, in

general, a closed-form expression, one can �nd an expression for its dynamics as

_� (t) =
@f
@x

� (t) +
@f
@p

; � (t0) = 0; (2.2)

where f in our context stands for the hooked or free-�ying dynamics depending on

the particular phase. It is then possible to numerically integrate (2.2) over the interval

[t0; t f] for obtaining the behavior of � (t).

By exploiting the availability of � , we then choose, among other possibilities, to

minimize a weighted sum of the total execution time t f � t0 and of a norm of the

state sensitivity at the hook time � (th), with the aim of generating near minimum-

time trajectories that are also most insensitive to uncertainties in the MonkeyRotor

parameters when approaching the second hook. This is formally obtained by letting

J1 = t r � t0; J2 = th � t r + k� (th)kw ; J3 = t f � th: (2.3)

The gain > 0 is meant to tune the relative weight between the two optimization

objectives which we combine here, and the matrix norm is de�ned as

k� k2
w =

X

i;j

wij � 2
ij (2.4)

for a set of non-negative weights w = [: : : wij : : :] whose purpose is to select (and give

relative importance to) the desired entries in matrix � .

2.3 Results

In this section we present a number of simulation results meant to validate the

proposed modeling, planning and control strategies for the MonkeyRotor. The �rst sub-

section is dedicated to the results of the trajectory planning algorithm, and the second

42

2.3. Results

(a)

(b)

(c)

(d)

Figure 2.2 – Time-optimal trajectories of the MonkeyRotor CoM pB (t) for the cases of a
total thrust/weight ratio of (a) 60%, (b) 70%, (c) 90%and (d) 150%. Note how, depending
on the case, a swinging maneuver is produced for either building up energy before �ight
and/or for quickly losing energy after �ight.

one to the control tracking performance when also considering parameter uncertainty.

A video was made that illustrates some of the tested cases 1.

2.3.1 Trajectory planning

We implemented the trajectory planning framework described in Sect. 2.2 with the

values reported in Table 2.1. We �rst report the results of only minimizing w.r.t. the

execution time by setting = 0 in (2.3)). We then consider the concurrent minimization

of the state sensitivity norm by setting = 1.

Minimization w.r.t. execution time

In order to better appreciate the effects of the actuation constraints on the trajec-

tory generation, we considered a total thrust limited to 60%, 70%, 90% and 150% of

the total weight while keeping the same constraints on the other inputs for testing the

1. video at https://proxy.ens-rennes.fr/owncloud/index.php/s/Nrx5Rmm9S93TsmF

43

Part I, Chapter 2 – Trajectory planning for the MonkeyRotor

Hook-hook d1 L1 LB mB m1 JB J1

distance (m) (m) (m) (m) (kg) (kg) (kg m2) (kg m2)
2.5 0.3 0.75 0.5 1.3 0.2 0.33 0.027

Table 2.1 – Values of the parameters used for the MonkeyRotor model.

States and
parameters

(x; z) vs. (mB ; m1) pE vs. p q vs. p q vs. d1

Only
time-optimal

0.1902 0.1615 0.0376 0.2128

Time- and
sensitivity-optimal

0.0827 0.1083 0.0163 0.1157

Table 2.2 – Comparison of the norm of the state difference at th between a time-optimal
trajectory, and a time- and sensitivity-optimal trajectory. As expected, when perturbing
the parameters, the perturbed state deviates less from the nominal state when execut-
ing a time- and sensitivity-optimal trajectory.

MonkeyRotor behavior in different regimes from low to high control effort modes, and

ultimately assessing how the environment interaction can be exploited for performing

the desired maneuver. The resulting trajectories are reported in Fig. 2.2. In all cases,

the MonkeyRotor starts at rest while hooked at the left pivot, and ends at rest hooked

at the right pivot. One can note how, in the `low' control effort modes (cases (a)–(c) with

thrust less than weight), an initial swing allows for building up the energy needed for

reaching the second hook. In particular, in cases (a) and (b) the low thrust/weight ratio

causes the trajectory to look approximately ballistic during the free-�ying part. On the

other hand, when more thrust is available (cases (c) and even more (d)), the free-�ying

phase is much more “direct”: however, the breaking phase at the second hook is nev-

ertheless performed by exploiting hook constraint, either thanks to the allowed collision

with the second hook in case (c), or by performing a �nal swing in case (d) where the

thrust exceeds the total weight.

We believe that the representative cases reported in Fig. 2.2 constitute a good

validation of the MonkeyRotor concept, in particular of its switching dynamics which is

cleverly leveraged by the trajectory optimization algorithm.

44

2.3. Results

(a)

(b)

(c)

(d)

Figure 2.3 – MonkeyRotor trajectories when minimizing for time and state sensitivity
at th. The considered sensitivities are (a) x and z w.r.t. mB and m1, (b) pE w.r.t. p,
(c) q w.r.t. p, (d) q w.r.t. d1. These sensitivity minimized trajectories are less direct and
therefore slower as compared to the time-optimal cases of Fig. 2.2, but they are also
less sensitive to variations in the considered parameters.

Minimization w.r.t. execution time and state sensitivity

Focusing on the state sensitivity minimization, several trajectories have been gen-

erated while considering the sensitivity of different sets of states and parameters by

suitably activating/deactivating the coef�cients � ij via the weighting matrix w in (2.4).

The thrust limit was always �xed at 70%of the total weight, as in the case of Fig. 2.2(b).

The resulting trajectories (and combinations of states/parameters) are reported in the

four case studies of Fig. 2.3. We can notice that the trajectories, although close in

shape, present some variations in their characteristics. In particular, the shape of the

�ying phase is closer to a ballistic parabola in the cases (a) and (b) while a bit �attened

in the other cases. Furthermore, the re-hooking state xh systematically comes later

(i.e., � 1B is closer to 0) than in the corresponding time-optimal trajectory of Fig. 2.2.

In order to verify the effectiveness of having also optimized w.r.t. the state sensitivity,

we performed the following test: we simulated the evolution of the MonkeyRotor states

when applying the optimal (open-loop) input u � (t) in the nominal non-perturbed case

45

Part I, Chapter 2 – Trajectory planning for the MonkeyRotor

and in the perturbed case (by increasing each considered parameter by 10%). We then

evaluated the difference in the selected states at th when executing a trajectory only

optimized w.r.t. time and when executing a trajectory also optimized w.r.t. the state sen-

sitivity at th. Table 2.2 reports the results: one can note how the norm of the difference

between nominal and perturbed states at th is always lower in the case of a trajectory

also optimized w.r.t. the state sensitivity, thus indicating that open-loop execution of this

trajectory results intrinsically more robust w.r.t. parametric variations, as expected.

Behavior of the optimization

Fig. 2.4 highlights the role of the outer loop of the optimization. It shows how the

duration of a trajectory varies when changing the release state x r characterized by the

four coordinates � B , � 1B , _� B and _� 1B .

B
B

B B

Figure 2.4 – Colormaps of the minimum trajectory duration in seconds, reachable with
two �xed states at the release instant.

Interestingly, we observe that the resulting costs seem to feature some smoothness

in the explored space. In particular, we see that the release velocity _� 1B features a

maximum zone around a certain value (4:2 m=s here). Likewise, we see from the plots

that the release angle needs to remain small while not cancelled. This is explained by

the fact that the free-�ying phase bene�ts from a nonzero initial vertical velocity which

ballistically pre-compensates the effect of gravity.

46

2.3. Results

Figure 2.5 – V-REP visualization of the MonkeyRotor.

2.3.2 Trajectory tracking

We now illustrate the performance of the control laws described in Sect. 1.3 in

tracking the reference near-optimal trajectories generated by the planning algorithm. To

this end, we implemented the MonkeyRotor switching dynamics and the control laws

in Simulink, and employed, for the sake of visualization, the V-REP 2 simulation envi-

ronment as shown in Fig. 2.5. This software, V-REP, provides a speci�c client-server

interface allowing to control it by means of the provided “Remote API“ library. We in-

tegrated the corresponding Remote API functions within C S-Functions in Simulink,

which makes possible to set the pose of any virtual object or joint in the virtual environ-

ment. The resulting 3-D visualization is illustrated on Fig. 2.5.

As a representative case study, Fig. 2.6 reports the tracking performance for a time-

optimal trajectory obtained for a thrust limit of 70% of the weight, and with random

perturbations to the parameters of � 5% of their nominal values. It is worth noting how,

despite the parametric variations, the control inputs always remain within their bounds

(represented by dashed horizontal lines), and how the norm of the end-effector velocity

k _pE k falls below the threshold vmax at th as planned. The performance in tracking the

reference optimal state (dashed lines) is also quite satisfactory.

As an additional validation, we also ran a statistical analysis of the overall tracking

2. http://www.coppeliarobotics.com/

47

Part I, Chapter 2 – Trajectory planning for the MonkeyRotor

error (averaged over the whole trajectory) and end-effector re-hooking error at th on

the trajectory of Fig. 2.3-(b) (whose state sensitivity is optimized against all the con-

sidered parameters p) when varying some parameters of interest from 90% to 110% of

their nominal value. Figure 2.7 reports the results of this analysis: in Figs. 2.7(a–c) we

consider the variation of mB , L1 and m1, while Fig. 2.7(d) considers the presence of an

external disturbance, a wind gust of varying amplitude with duration 0:2 s and applied

during the free-�ying case along the negative xW axis.

One can note how the performance remains quite satisfactory despite the param-

eter variations and/or external disturbance especially in terms of the re-hooking error,

thus showing that the proposed combination of the state sensitivity minimization (plan-

ning stage) and the closed-loop tracking controller control is able to yield a successful

MonkeyRotor maneuver also in more realistic conditions. We note that the re-hooking

error remains almost constant except when changing the length of the arm, which is

expected since the parameter L1 does not affect the free-�ying dynamics and thus is

not taken into account in the sensitivity minimization.

2.4 Conclusion

In this chapter we have proposed and tested an optimization framework for gen-

erating optimal motion plans for the MonkeyRotor under constrained actuation. The

proposed algorithm breaks the problem into three subproblems and assesses then in

two stages: an inner loop and an outer loop. The whole concept has been successfully

validated in a number of simulations, including the behavior of the trajectory tracking

by means of the two control laws derived in the previous chapter.

Several conditions have been considered for the trajectory generation, including a

range of thrust limitations and multiple cost functions to be minimized, which allows

us to widely study the behavior of the planner and the resulting trajectories for aerial

locomotion.

Possible improvements of the proposed framework could include the possibility of

executing more complex maneuvers, e.g., jumping to multiple branches in sequence,

as well as the use of online replanning strategies for continuously re�ning the initial

optimal trajectory during motion. An application of the trajectory generation framework

presented in Part II is also foreseen, which should improve even more the tracking

performance by leveraging the knowledge of the control law (as opposed to the open-

48

2.4. Conclusion

loop state sensitivity approach used in this chapter).

49

Figure 2.6 – Behavior of the MonkeyRotor states, inputs and end-effector norm velocity
while tracking an optimal trajectory.

(a)

(b)

(c)

(d)

Figure 2.7 – Performance of the proposed planning/control framework under paramet-
ric variations (Figs. (a–c)) and external disturbances (Fig. (d)): in each �gure the top
plot reports the mean (solid line) and max (dashed line) values of the tracking error
norm during the trajectory execution, and the bottom plot reports the value of the re-
hooking error kpE (th) � p �

E k. The parameters mB , m1 and L1 are varied from 90% to
110% of their nominal value, while the external perturbation (wind gust) has amplitude
ranging from 0 N to 20 N.

CHAPTER 3

CONCEPTION OF THE MONKEYROTOR

PROTOTYPE

3.1 Introduction

This chapter is dedicated to the description of the MonkeyRotor prototype that has

been designed and realized in order to test the previously derived theoretical elements

in real conditions. The content is divided in two main parts that each covers one of the

main design themes that have been involved in the process, namely the design of the

hooking system, and the implementation of a real robot with details on its mechanical

structure and the software architecture.

3.2 Design of the hooking system

3.2.1 General concept

In the following, we call the part of the environment to which the MonkeyRotor hooks

itself a branch.

The �rst thing to notice about the joint between the MonkeyRotor and the branch is

that it is a multifunctional subsystem. In fact, it should implement the following require-

ments:

1. the rotating joint with the environment when the system is hooked;

2. the controllable hooking, i.e., arm of the MonkeyRotor attached to the branch or

not.

Note that the aim for the scope of this chapter is to build a prototype in order to

test and showcase the MonnkeyRotor special dynamics, which implies that we allow

53

Part I, Chapter 3 – Conception of the MonkeyRotor prototype

ourselves to design a special branch system that includes parts of the actuation mech-

anism. However, of course, it is clear that in a real application the branch would be

supposed to be some passive part of the environment, which is not necessarily under

control and thus may not provide such ideal rotating joint and hooking system as here.

This is considered to be out of the testing scope we have here and thus, we limit our-

selves to the simpler case where the branch is completely under control at the design

stage.

Several classes of solutions have been imagined to implement these two function-

alities. One �rst intuitive idea consists of a mechanical gripper with two or more �ngers

able to grasp the branch. Starting from there, two possibilities arise: either the rotating

joint is part of the arm — below the gripper —, or it is part of the branch. In the case it

is part of the arm, it means that during the �ying phase it has to be somehow oriented

towards the branch for the hooking event to happen properly. This could be achieved

either with a passive spring system, or with the assistance of a dedicated actuator. In

both cases the dynamics is affected, and the onboard weight is increased.

Another solution consists of a pneumatic system. This system would rely on a suc-

tion cup able to grip a planar surface by means of a commanded depression of the

air contained in the cup. Several electrical pumping systems exist that are able to �t

this need. The main interest of this class of solutions lies in the small complexity of

the mechanical parts. The same two options as for the mechanical gripper remain

concerning the placement of the rotating joint, i.e., either we place it above of below

the end-effector. As discussed before, the case where the joint is under the attachment

system requires the use of a heading actuation — passive or active. On the other hand,

a pneumatic gripper would require some �at surface in order to work properly, which

means that an actuated heading of the target �at surface must be set up.

A third idea is to leverage magnetism to tackle this attachment problem. As illustra-

tion, the use of magnetism in such a system would be the same as in an electrically

commanded door: a coil is powered with a controlled electrical current which results in

a magnetic �eld both in the coil and in the separated part to be locked, i.e., the door,

and for us the end-effector at the extremity of the arm. The resulting magnetic �eld

lines circulate in a magnetic circuit especially designed for this purpose, which leads

to an adhesion force that keeps the end-effector stuck to the coil. Such a solution may

seem unreasonable at �rst glance because of the required metallic parts for the mag-

netic circuit and the coil, as well as the electrical power to be fed into the coil which

54

3.2. Design of the hooking system

(a) (b)

Figure 3.1 – Two of the four proposed solutions for the hooking system. On (a), an
onboard mechanical gripping system that surrounds the branch, and on (b), an active
suction cup that grips a pivoting planar surface available on the branch.

intuitively seems high. Nevertheless, putting the coil system on the environment side

considerably simpli�es the design.

Finally, the possibility of a passive hook can be considered. Indeed, choosing some

particular rounded shape for the end-effector could allow the system to implement the

sought behavior. However, this would require a special control policy in order to achieve

a release maneuver, which may be quite restrictive for the dynamics, because of the

very speci�c movements it would require in order to ensure the complete release. This

solution features the advantage of simplicity, at the expense of restrictions in the ex-

ploitation of the system particular dynamics.

3.2.2 Choice of the solution

These four design ideas are illustrated in �gures 3.1 and 3.2, which render some

possible implementations. Table 3.1 synthesizes the pros and cons that were previously

evoked for each solution.

Though it may sound heavy and inappropriate at �rst glance, we found out that the

magnetic solution actually features signi�cant advantages:

1. it keeps the mechanics simple;

55

Part I, Chapter 3 – Conception of the MonkeyRotor prototype

(c) (d)

Figure 3.2 – Two of the four proposed solutions for the hooking system. On (c), an elec-
tromagnetic system keeping the end-effector stuck to a coil that is part of the branch,
and on (d), a passive hooking system that features the pivoting ability by a direct me-
chanical contact between the end-effector and the branch.

2. the end-effector only consist of a small passive ferromagnetic piece which is

light;

3. it is simple to control;

4. some margin is allowed for the re-hooking phase in case of positioning error.

For these reasons, we �nally chose to implement the hooking system with a mag-

netic solution. Moreover, the rotating joint functionality is undertaken by the branch

instead of the end-effector, which allows a clean, ef�cient and robust joint design with-

out onboard-related limitations.

The speci�c design of such a magnetic hooking system will now be described in

detail.

3.2.3 Magnetic coil design

Geometry

First of all, we chose to implement the rotating joint on the branch side in accor-

dance with the advantages discussed before.

The concept of the magnetic hooking system basically relies on the ability of mag-

netism to imply a force on a part of a magnetic circuit towards another, which we seek

56

3.2. Design of the hooking system

Mechanical Onboard Control Hooking
complexity load complexity margin

Gripper medium high medium medium
Pneumatic high high medium low
Magnetic simple medium simple medium
Passive simple low high low

Table 3.1 – Comparison of the pros and cons of each solution. The mechanical gripper
and the pneumatic system both feature a non-neglectible onboard load and a certain
control complexity. The magnetic and passive solutions on the other hand are simple
and light.

to be strong enough to maintain the MonkeyRotor hooked to the branch by design. To

achieve such a magnetic force, the geometry of the magnetic circuit has to meet simple

criteria:

1. when entering in hooked state, i.e., when the end-effector is close to the right

position and the coil is powered, the �eld lines should travel the shortest possible

distance in the air;

2. when in hooked state, the �eld lines should not go through air but only stay

inside the magnetic circuit.

We found out that a good geometry to answer these requirements is the one de-

picted on Fig. 3.3. It consists of the coil being oriented coaxially to the rotating joint, with

the magnetic circuit being closed by the end-effector disposed in parallel. This choice

for the geometry makes the hooking isotropic, i.e., the end-effector can arrive from

any direction in the plane without the need for steering the magnetic hooking system

towards it, thanks to its cylindrical shape.

Note that this geometry of the coil armature features an axial symmetry, which is

adapted to the design of the rotating joint. One drawback of this solution, though, is

that the coil rotates w.r.t. to the branch and at the same time needs to be powered

through electrical wires. The resulting rotating limitation is overcome by letting a suf-

�cient amount of wire between the moving coil and its grounded power supply. As a

consequence, we assume that the total rotation of the branch joint is still limited to

a certain range of minimum and maximum angles — which can be purposely set far

enough for the prototype operating mode. In case the system would need to achieve

multiple turns, a contact system similar to the collector in continuous current electrical

57

Part I, Chapter 3 – Conception of the MonkeyRotor prototype

Figure 3.3 – Concept of the magnetic hooking system. The hooking system 1 is linked
to the ground via a rotating joint, while the passive ferromagnetic piece 2 is the end-
effector at the extremity of the arm of the MonkeyRotor. When subject to an electrical
current, the coil induces a magnetic �eld H in the magnetic circuit — blue lines are the
corresponding �eld lines — that produces an attractive force F onto part 2.

motors is possible.

Magnetic force model when hooked

When feeding the coil with electrical current, a magnetic �eld occurs in the magnetic

circuit which induces an adhesion force onto the end-effector, and thus makes it stuck

to the armature of the coil. Note that this is done with a 0% ef�ciency, because the elec-

trical power injected in the coil is completely dissipated into heat without mechanical

output power. Indeed, when the end-effector is hooked there is no relative movement

between the arm of the MonkeyRotor and the hooking system, forbidding any mechan-

ical power to be produced. In other words, the system only converts electrical current

into the adhesion force, and does not produce output power. As a consequence, the

coil will warm up because the electrical power it consumes is converted into Joule

losses.

The detailed design of the magnetic circuit geometry needs to take this behavior into

account to ensure that 1) the force is maximized given certain geometrical limits, and 2)

the coil remains cold enough in continuous operation. Hence, the problem of designing

this magnetic hooking system can be expressed as an optimization problem under

constraints. Let g be a vector of the geometrical parameters, Fadh be the magnitude of

the adhesion force that the hooking system is able to provide, Tcoil the temperature of

the coil, and Tmax the maximum allowed temperature for the coil. With these notations,

58

3.2. Design of the hooking system

the problem can be stated as

max
g

Fadh

s.t. Tcoil < T max

: (3.1)

Of course, we need to build a model for the adhesion force in order to assess this

design optimization problem. To do so, the classical magnetic models and associated

methods can be employed, such as the ones described in [32]. Let r i be the inner

radius and r the outer radius of the coil, l the length of the coil, a the border cylinders

width, e the thickness of the end effector, and � the angle it makes with the rotating

joint axis. These geometric parameters are depicted on Fig.3.4, which shows how they

are arranged together with the global geometry.

r

r i

l
a

e

� �

nI

H1; S1

He; Se

H2; S=2

H r (�); Sr (�)

Figure 3.4 – Geometry of the coil with its armature. There are n turns of wire in the coil,
each one passed through by a current I .

Let also n be the number of turns of the coil wire, I the electrical current feeding it,

S the section of the magnetic circuit at the contact, and H the magnetic �eld inside the

magnetic circuit. This magnetic �eld inside the magnetic circuit is derived by applying

the Ampere law to some closed �eld line that loops in the whole circuit, as depicted by

the blue line in Fig. 3.4, I
Hdl = nI (3.2)

where the �eld is considered aligned with the normal of the crossed section. Let L c be

the total length of the magnetic circuit, i.e., of an average �eld line. Let also � r be the

59

Part I, Chapter 3 – Conception of the MonkeyRotor prototype

relative permeability of the magnetic circuit material and � 0 the one of the vacuum, such

that the absolute permeability of the magnetic material is � = � 0� r . In the case where

the section of the magnetic circuit is constant, the above relation can be integrated as

a whole in order to derive the corresponding induction. In fact, the application of the

law results in the magnetic induction approximation

B = �H =
� 0� r nI

L c
: (3.3)

Indeed, this expression does not hold for the detailed geometry that we consider,

because the magnetic �eld may not be the same in the different parts of the magnetic

circuit. However, this relation allows to compute a �rst approximation of the adhesion

force that keeps the end-effector stuck against the armature of the hooking system. In

fact, by linking the work of this magnetic force along a small virtual displacement � with

the corresponding magnetic energy density, we can derive an expression for the force.

Let S be the area of the contact surface between the end-effector and the armature of

the hooking system, on the two cylindrical plates.

F � =
B 2

2mu0
�S (3.4)

Injecting the known expression of the magnetic induction B derived in eq. (3.3), this

rewrites

F =
B 2S
2� 0

=
S

2� 0

� � r nI
L c

� 2

: (3.5)

This expression for the magnetic adhesion phenomenon allows to propose two gen-

eral design rules, i.e.,

1. the length L c of the magnetic circuit must be the shortest possible in order to

maximize the adhesion force;

2. the contact area S between the end-effector and the hooking system must be

the largest possible.

Nevertheless, the steel-based ferromagnetic materials available to produce the hook-

ing system actually saturate. A consequence of such a saturation is that the magnetic

induction B is limited at some point by the material itself instead of the I electrical cur-

rent sent into the coil. In order to chose the geometry correctly, we need to model this

saturation at the different stages of the magnetic circuit. In practice the magnetic circuit

60

3.2. Design of the hooking system

has a complex form and its section changes along with the �eld lines, which involves a

notable re�nement of the magnetic model.

Given the parametric geometry, we can model in a better way this phenomenon in

order to quantify the magnetic induction that is responsible for the adhesion force. Such

a model will also provide a control of the induction in the different parts of the circuit in

order to avoid the saturation. Let us cut the magnetic circuit into six parts:

1. the middle axis of the coil, of section S1, of magnetic �eld H1, and of length

l1 = l + a;

2. the two plates of the armature, of section Sr (�), and of magnetic �eld H r (�) for

a certain radius 0 � � � r ;

3. the end-effector, of section Se, of magnetic �eld He, and of length le = l + a;

4. the two portions that link the center of the end-effector with the contact surface,

of section S=2, of magnetic �eld H2, and of length e=2.

The contact between the end-effector and the armature of the hooking system is

split into two areas, each characterized by a magnetic �eld H2 and a section S=2.

For the section Sr (�) inside the plates, we consider a linear interpolation between the

2 limit areas S1 and S=2. This is justi�ed by the fact that the �eld lines always take

the shortest path, which is linear here to �ll the extremum sections. Note that some

detailed phenomenon like local saturation or �eld leakage may make this assumption

false, which would de�nitely not change the result a lot.

In this more detailed magnetic circuit, the application of the Ampere law becomes

nI =
I

Hdl

= H1l1 + 2
Z r

0
H r (�)d� + H2e+ Hele

(3.6)

Let now � be the magnetic �ux in the magnetic circuit, which is such that � = �H i Si

at any place of section Si and of magnetic �eld H i in the magnetic circuit. One property

of this magnetic �ux is that it remains constant along the whole circuit. This allows us

to rewrite eq. (3.6) by factorizing the constant magnetic �ux �

nI =
�
�

l + a
S1

+ 2
Z r

0

d�
S �

2r + S1(1 � �
r)

+
2e
S

+
l + a
Se

!

(3.7)

61

Part I, Chapter 3 – Conception of the MonkeyRotor prototype

where the integral term can be computed explicitly

2
Z r

0

d�
S �

2r + S1(1 � �
r)

=
4r ln(S

2S1
)

S � 2S1
: (3.8)

Let � be the characteristic length of the magnetic circuit, which is such that

� � 1 =
l + a
S1

+
4r ln(S

2S1
)

S � 2S1
+

2e
S

+
l + a
Se

=
l + a
�r 2

i
+

2r ln(r�a
�r 2

i
)

r�a � �r 2
i

+
e

r�a
+

l + a
(r + e

2)�e

: (3.9)

Consequently, the magnetic �ux can be computed with

� = �nI � (3.10)

From this expression of the magnetic �ux, one can go back to each part of the

magnetic circuit in order to compute the corresponding magnetic inductions and check

that they do not reach the saturation. Indeed, we have

8
>>>>>>>><

>>>>>>>>:

B1 =
�
S1

B2 =
2�
S

Be =
�
Se

: (3.11)

Finally, the force of adhesion can be computed based on the same idea than pre-

viously. To be more precise here, the curvature of the surface have to be taken into

account. This is done by applying the same process than before on an in�nitesimal

portion of the surface. It leads to the following expression for the adhesion force,

F =
Z �

2

� �
2

B 2
2

2� 0
dS(�)

=
Z �

2

� �
2

B 2
2

2� 0
2ra cos(�)d�

=
B 2

2S
2� 0

sinc
� �

2

�

: (3.12)

62

3.2. Design of the hooking system

Based on the trajectories that where generated in the previous chapter, we esti-

mated that the maximum centrifugal force that the MonkeyRotor should endure should

be about 60 N, and thus we aim at an adhesion force of 120 N with a security coef�cient

of 2.

Note that the magnetic circuit physically saturates at an induction of 1 T, which

means that the force is limited by this maximal induction.

Thermal model

As discussed before, there is no mechanical power generated by the system while

it is hooked, and thus all the electrical power is converted into heat via Joule effect.

This heat makes the temperature of the coil increase until an equilibrium is reached

between the source of heat and its dissipation to the environment. Such a temperature

increase typically has a slow exponential transient, which we are not really interested

in here.

Taking apart this transient, the maximal temperature increase � T = Tcoil � Tenv

w.r.t. the environment reached at the equilibrium can be modeled with the basic law

� T = PRth

where P is the heat, and Rth is the total thermal resistance of the coil w.r.t. the environ-

ment. Furthermore, we know that the heat is the electrical power, such that P = RI 2.

In our case the thermal resistance is the consequence of three phenomena, which

are the conduction through the whole magnetic system, and the convection and radia-

tion at the exchange surfaces.

These phenomena can be modeled with 3 corresponding thermal resistances Rd,

Rv and Rr for each subpart of the system, as depicted on Fig. 3.5. Let Rd
c, Rv

c and Rr
c

be the conductive, convective and radiative thermal resistances of the coil. Let also

Rd
e, Rv

e and Rr
e be the conductive, convective and radiative thermal resistances of the

cylindrical surface of one side plate. Likewise, let Rd
s, Rv

s and Rr
s be the conductive,

convective and radiative thermal resistances of the lateral surface of one side plate.

63

Part I, Chapter 3 – Conception of the MonkeyRotor prototype

P

Tenv

Tcoil

Rd
s

Rv
s Rr

s

Rd
e

Rv
e Rr

e

Rd
c

Rv
c Rr

c
R d

s

R v
s

R r
s

R d
e

R v
eR r

e

R d
c

R v
cR r

c

P

Figure 3.5 – Heat transfers and analog electrical schematic. The orange arrows rep-
resent conductive transfers, the blue ones correspond to convection and the red ones
represent radiation. The source of heat is considered to be the inner cylinder of the
coil highlighted in red. The exchange surfaces that are considered for the model are
highlighted in magenta.

We thus get the following expressions:

8
>>>>>>>><

>>>>>>>>:

Rd
c =

ln(r=r i)
2�� cl

Rd
e =

ln(r=r i)
2�� aa

Rd
s =

a
� a� (r 2 � r 2

i)

(3.13)

for the conductive terms, where � c and � a are the thermal conductivities of the coil and

hooking system armature (Wm� 1K � 1). Similarly, we get

8
>>>>>>>><

>>>>>>>>:

Rv
c =

1
2h�rlk �

Rv
e =

1
2h�rak �

Rv
s =

1
h� (r 2 � r 2

i)

(3.14)

for the convective terms, where k� = 0:7(1� �
2�) is a coef�cient that models the surface

reduction that is due to the presence of the end-effector onto the magnetic hooking

system, and where h is the convective coef�cient of the material (Wm� 2K � 1). Finally,

64

3.2. Design of the hooking system

the radiative terms write
8
>>>>>>>>><

>>>>>>>>>:

Rr
c =

� T
2� c��rlk � ((Tenv + � T)4 � T4

env)

Rr
e =

� T
2� a��rak � ((Tenv + � T)4 � T4

env)

Rr
s =

� T
� a�� (r 2 � r 2

i)((Tenv + � T)4 � T4
env)

(3.15)

where � = 5:67 Wm� 2K � 4 is the Stefan–Boltzmann constant and � a and � c are the

emissivities of the hooking system armature and coil (considered constant with the

temperature here).

De�ning the synthetic exchange resistances

8
>>>>>>>>>><

>>>>>>>>>>:

Rex
c =

1
1

Rv
c

+ 1
R r

c

Rex
e =

1
1

Rv
e

+ 1
R r

e

Rex
s =

1
1

Rv
s

+ 1
R r

s

(3.16)

allows to rewrite the total thermal resistances of the three subparts, and �nally the total

resistance of the hooking system:

8
>>>>>>>>><

>>>>>>>>>:

Rc = Rd
c + Rex

c

Re = Rd
e + Rex

e

Rs = Rd
s + Rex

s

Rth =
1

1
Rc

+ 2
Re

+ 2
Rs

: (3.17)

Note that this �nal expression for the total thermal resistance depends on the tem-

perature of the coil, but at the same time is required to estimate this Tcoil . Instead of

trying to solve analytically the expression of the resistance, which would be complicated

perhaps impossible, we chose to implement an iterative method in order to compute its

value. The idea of this iterative process is to consider an initial guess for the temper-

ature, use it to estimate the thermal resistance, then re�ne the temperature estimate

and so on. We found out that this method converges with few steps: in practice just

65

Part I, Chapter 3 – Conception of the MonkeyRotor prototype

Figure 3.6 – Optimized magnetic system geometry. On the left, a front view where the
center dash line is the revolution axis of the hooking system, and on the right, a side
view orthogonally to this axis.

three steps led to a precision inferior to 0.1% for the temperature estimate, which we

consider suf�cient.

Design optimization

Having derived the magnetic and thermal models, one can now implement a solver

for the optimization problem (3.1). Using the solver fmincon in Matlab along with an

implementation of equations (3.11–3.12,3.13–3.17), we could achieve this optimization

and �nd an optimal geometry.

l a e r r i � nI wire resistance
[mm] [mm] [mm] [mm] [mm] [rad] [A] length [m] [
]
10 18 15 35 30 0.32� 63.6 33.1 3.04

Table 3.2 – Optimized parameters for the magnetic hooking system.

Table 3.2 synthesizes the obtained optimized geometry parameters. As one can

notice, the result may not seem very intuitive at �rst glance. Indeed, one could have

66

3.2. Design of the hooking system

expected a large space for the coil as well as a long coil so that the magnetic `strength`

would be maximized. However, we see from the equations that the combination of the

magnetic saturation with the behavior of the magnetic �eld lines makes this optimized

geometry legitimate. Indeed, the thin coil is suf�cient to create a large magnetic in-

duction, which is ampli�ed by the reduction of the section from the coil to the contact

area.

Attraction before hooking

When the MonkeyRotor approaches the branch, a magnetic force applies which

attracts the end-effector to the coil. Note that the analytical force computation is impos-

sible because the exact path where the magnetic �eld will pass is not known. However

some approximations can be done to build an estimation of this force pro�le shape.

In this situation, let x be the distance from the end-effector to the coil. When the x

is low enough w.r.t. the magnetic circuit length L c, thus guaranteeing that the induction

B is uniform enough, the magnetic force has the expression F � � 0S
2 (nI

L c=� r +2 x)2 , which

is of the form 1
x2 whenever x >> L c

2� r
. This condition realized for low distances because

the relative permeability � r is very high (around 1000 in practice).

Then when x gets higher, the magnetic �eld leaks around the coil without passing

through the end-effector anymore, making the force almost null. This happens when

x � l=2.

In conclusion the force pro�le is near to an inverse square function smoothly sat-

urated at the beginning, and with a highly decreasing slope from l=2. This con�rms

that the magnetic hooking system is able to provide some margin at the re-hooking,

however we note that the inverse square form of the force together with its zeroing at

l=2 are quite restrictive, and thus the margin remains low in practice.

Active release

Given the hysteresis behavior of the magnetization in the magnetic circuit, releasing

the electrical power in the coil will not completely cancel the force of adhesion.

For this reason a soft ferromagnetic material is required, i.e., which has a thin hys-

teresis cycle width. We thus chose a standard steel for its mechanical and magnetic

properties. Note that this material choice, though it helps, is not suf�cient to allow a

67

Part I, Chapter 3 – Conception of the MonkeyRotor prototype

Figure 3.7 – Simulation of the hysteresis behavior of a ferromagnetic material, with a
negative impulse at the release to compensate the residual induction.

complete release when stopping to feed the coil with electrical current. In other words,

there will always be a remaining force of adhesion because of the magnetic hysteresis.

As a demonstration of this phenomenon and of a possible workaround, we con-

ducted a numerical simulation of this hysteresis behavior by integrating the Jiles–

Atherton equations that are able to model it, see [31]. For this simulation we consid-

ered a variable magnetic �eld H that grows from 0 to some high value that saturates

the material, and then decreases back to 0. Doing so would let the �nal induction B

to a non-zero value (even if it started at 0) because of the hysteresis. From there two

workarounds exist that make it possible to cancel this residual induction:

1. impose a sinusoidal magnetic �eld H of decreasing amplitude, which results in

successive cycles of decreasing area around 0,

2. or �nd the proper negative value for the magnetic �eld H that is such that when

going from the prior high H value to this negative value and then back to 0, the

induction is perfectly cancelled.

Of course this second strategy is faster, but on the other hand requires a perfect

knowledge of the right negative value for H . Figure 3.7 shows the result of this simula-

tion with such a strategy, in a nearly perfect case: after a complete cycle the induction is

(almost) cancelled. In practice we measured a remaining adhesion force up to a third of

68

3.2. Design of the hooking system

the maximum adhesion force when simply releasing the electrical current without this

kind of compensation.

Hence, the chosen solution consists in smaller negative current in the coil in order

to cancel out the �eld. Obviously, this method would require a perfect knowledge of the

hysteresis cycle parameters to be able to exactly bring the �eld to zero, which would

be dif�cult in practice due to the rounded shape of the hooking system and dif�culty to

measure the necessary parameters. Instead, we chose to implement a tunable nega-

tive current impulse electronics, that is intended to be adjusted experimentally by trial

and error on the real hooking system. We thus designed an electrical power command,

based on a simple L293D H-bridge, that is able to revert the current in the coil, see

Fig. 3.8.

Once tuned, we con�rm that the real system is able to release the end-effector as

wished.

Figure 3.8 – Electrical schematic for the commanded power supply of the magnetic
hooking system.

3.2.4 Rotating joint design

There are a few mechanical rules for bearing arrangement which one needs to

apply in such a situation:

69

Part I, Chapter 3 – Conception of the MonkeyRotor prototype

1. a ring which conveys a charge always in the same (local) direction has to be

arranged with clearance,

2. conversely, a ring which sees a rotating charge has to be arranged tight,

3. the bearings can be axially pre-charged or not, towards or against each other,

4. the effective position where the efforts apply is virtually displaced by this pre-

charge.

In our case the direction of the effort changes little w.r.t. the direction of the arm of

the MonkeyRotor, because it is mainly due to the centrifugal force. As a consequence,

the bearing ring attached to the coil must be arranged with clearance. The other ring

must be arranged tight.

Concerning the axial pre-charge, it is generally used to compensate for axial forces

that may occur on the joint, and/or to act on the rigidity of the joint by extending/reducing

the length between the points of application of the efforts. In our case, the axial force

should remain low as the system evolves in the vertical plane. However, the rigidity is

highly desirable because the distance from the joint to the center of mass will imply

high radial torques which we don't want to destabilize nor deteriorate the system.

Therefore, the bearings must be arranged in the 'O' con�guration, which means that

the bearings are stopped

1. outside for the rings that are attached to the coil, i.e., axially the farthest, and

2. inside for the �xed rings, i.e., axially the nearest.

Two possible designs ensue, depending on whether the external rings of the bear-

ings are attached to the coil or to the �xed structure. For practical and productibility

reasons, we choose the second option, i.e., the external rings of the bearings are at-

tached to the �xed structure of the branch. As a consequence, the external rings must

be stopped from inside while the internal rings must be stopped from outside. Fig.3.9

illustrates these arrangement choices.

3.3 Implementation

3.3.1 Hardware manufacturing

After �xing small productibility details, the armature of the coil was manufactured

by steel turning. Note that two small holes were additionally made in one of the border

70

3.3. Implementation

Tight

Clearance

Figure 3.9 – Bearing arrangement for one side of the hooking system. We see from
this schematic that the bearing must be assembled to the ground support �rst, and the
hooking system must be mounted with (low) clearance afterwards.

plates in order to pass the electrical wire for the coil. The resulting magnetic hooking

system and its electronic command can be seen in Fig. 3.10.

The hooking command is handled by the electrical power circuit described previ-

ously, connected to a simple Arduino Uno in order to interface it to the rest of the

software via USB, see Fig. 3.10.

A validation of the magnetic hooking system ability to hold the MonkeyRotor was

done by means of a dynamometer, see Fig. 3.11. We measured that the coil is able to

hold at least 12 kg as wished, without coming loose. The stall occurs at around 14 kg.

Concerning the shape of the MonkeyRotor itself, we need to design and realize

a special mechanical structure that is able to host the actuated arm as well as the

common electronics for the command of the 4 motors. Given the particularity that the

CoM of the quadrotor base and the arm actuator are coaxial, we chose to design

a speci�c body and 3D-print it. The shape of this body has to meet some practical

requirements:

1. provide space and attachment facilities for the actuator,

2. feature a maximal strength while being light,

3. provide space for the onboard electronics and battery.

In order to ensure these requirements, we conducted a numerical shape optimiza-

tion in FreeCAD, see Fig. 3.12. This tool allows to determine a global shape that maxi-

71

Part I, Chapter 3 – Conception of the MonkeyRotor prototype

Figure 3.10 – Implementation of the real hooking system.

mizes the strength of the object while minimizing its weight given limit efforts, by means

of �nite-element analysis and optimization. The resulting shape was then reworked in

order to be mechanically sound and to provide the required interfaces with the other

components.

3.3.2 Software structure

The middleware genom is then used to interconnect the software components that

provide the necessary fonctionnalities. This software allows us to have a modular ar-

chitecture, based on the interaction of multiple processes associated to the different

functions required for the system to be operational. Fig. 3.15 illustrates the global soft-

ware architecture, which rely on the interaction of multiple components (individual pro-

cesses) through the genom structure. The communication is undertaken by ROS 1, and

the whole machinery is supervised in MATLAB Simulink via the genomix client–server

feature.

1. https://www.ros.org/

72

3.4. Conclusion

Figure 3.11 – Measure of the magnetic adhesion force with a dynamometer. The de-
sired maximal load of 12 kg can be held as wished.

3.4 Conclusion

In this chapter we have presented the design process and the resulting prototype

that we have made. The design of the subparts of the whole system (hooking system

and MonkeyRotor body) have been explained in detail.

Although we could not yet achieve the whole trajectory tracking that has been val-

idated in simulation in the previous chapter, several steps have been realized towards

this �nal goal. In particular, we have designed and realized a magnetic hooking sys-

tem that leverages magnetism to create a suf�cient force of adhesion. The hooking

system associated with its special electronics is able to ful�l the aim of hooking or re-

leasing the end-effector with enough strength and despite magnetic hysteresis that we

73

Part I, Chapter 3 – Conception of the MonkeyRotor prototype

Figure 3.12 – Optimization of the shape of the quadrotor body.

compensated.

The ongoing and future work on this topic consists in exploiting the realized pro-

totype to achieve the tracking of the trajectories that were planned in the previous

chapter.

74

3.4. Conclusion

Figure 3.13 – Design of the MonkeyRotor body. On the left, numerical 3D model before
printing. On the right, printed parts of the body.

Figure 3.14 – Complete MonkeyRotor prototype with the structure for the branch.

75

Part I, Chapter 3 – Conception of the MonkeyRotor prototype

Figure 3.15 – Software architecture based on genom. The orange blocks are genom
components which are independent processes communicating through ROS thanks to
the genom structure and libraries.

76

PART II

Part II

77

CHAPTER 4

TRAJECTORY GENERATION FOR

MINIMUM STATE SENSITIVITY

4.1 Introduction

This chapter will introduce the concept of state sensitivity for a dynamical system,

and its possible uses in the context of trajectory generation for robotics applications.

At �rst an intuitive approach will be proposed to give some insights to the reader. A

generalization of the method will then derived in a rigorous formalization in the follow-

ing sections.

The concept arose during the development of our previous study on the Monkey-

Rotor, which requires — as most of the modern robotic applications — high precision

in the realized task despite the many uncertainties in the system model and actua-

tion. As a starting point, we considered a global control scheme where a trajectory is

�rst planed for the future, and then tracked by the robot by means of a controller. This

method has been used for many years, either with of�ine planning or online replan-

ning as in Model Predictive Control (MPC) [20, 11]. It was proved to be a good way

to combine both local robustness thanks to the real-time stabilization provided by the

controller, and the ability to include complex features such as collision avoidance and

cost minimization in the global robot behavior.

Unfortunately, in some demanding circumstances where high precision is required

and/or complex dynamics are excited, an online replanning scheme could be insuf�-

cient. This kind of situation is typically encountered with aerial robotics and especially

when dealing with physical interaction. First, the performance is highly dependent on

the precision of the parameters used in the planning phase and in the controller. In-

deed, in many cases the main dif�culty lies in the model parameter estimation, or other

uncertainties in the actuation, which may represent a complex step of the task im-

79

Part II, Chapter 4 – Trajectory generation for minimum state sensitivity

plementation, often handled with many �ne-tunings. Second, there is no control over

the effect of running the closed-loop system with erroneous parameters on a certain

planned trajectory, because of the decoupling between the planning (which is done

before) and the tracking.

Indeed, trajectory planning gives the opportunity to determine a priori a feedfor-

ward term that the controller will be able to exploit at the execution stage, which is a

very important step in robotics for maximizing performance or guaranteeing other re-

quirements (e.g., minimum energy, time, actuation bound or collision avoidance, etc.).

Besides, the robustness is in general a goal that is undertaken by the controller at the

execution time, through the derivation of a proper feedback term. For instance, the con-

trol community have worked over the years on adaptive and robust strategies, such as

H-in�nity or passivity-based, that allow a good level of robustness against uncertain-

ties and disturbances, see, e.g., [14, 12]. However, these approaches are mostly “local”

and, besides robustness, can hardly tackle other requirements such as feasibility, (e.g.,

limited actuation, obstacle avoidance), performance and global optimality.

In our case the goal is to study how to generate a feedforward term that directly in-

tegrates information about parametric uncertainty, and thus improves the effectiveness

of the feedback policy. Said otherwise, we seek a strategy for generating a feedfor-

ward that is not decoupled anymore (compared to state of the art strategies) from the

feedback, by integrating as much information as possible concerning the closed-loop

behavior of the robot at the early planning stage. A few works have been conducted

that try to tackle this issue with related approaches [30, 39], however they suffer from

a lack of generality because of special dynamics considered and limited robustness

because of their “open-loop” nature (coming from the decoupling of the planning and

control layers).

A possible approach to try to improve the robustness at the planning stage is, hence,

to leverage the knowledge of how the model depends on any uncertain parameter, and

try to minimize this dependence in the �rst place. A few work have treated this problem

in the past, e.g., [17, 16, 34] and more recently [5] which proposes a method that

we aim at extending in this thesis. In fact, as we will see, it is possible to quantify

this dependence through a suitable state sensitivity matrix, whose norm can then be

exploited as metric in a trajectory generation step. We will now describe more in detail

the idea of the state sensitivity and how it can be leveraged in the context of trajectory

80

4.2. Open-loop state sensitivity

generation.

The �rst section reproduces the idea of the open-loop state sensitivity of [5], which

was applied to the MonkeyRotor in Part I. Then the closed-loop state sensitivity is

derived, which improves the concept, and tested in simulations.

4.2 Open-loop state sensitivity

As explained just before, we aim in this development at reducing the errors achieved

by a robotic system when it tracks a planed trajectory. Two main sources for the tracking

errors can be identi�ed, namely 1) the unmodeled perturbations arising at the execution

stage, e.g., unforeseen obstacles, complex aerodynamics turbulences, defaults in the

mass repartition etc., and 2) the phenomena that are modeled but badly identi�ed

because of approximations in the values of the model parameters. For example, the

inertia or the aerodynamics coef�cients are often dif�cult to estimate precisely, which

affects the closed-loop dynamics of aerial robots in a non-negligible fashion.

The �rst kind of causes is not treatable at the planning stage by de�nition. The re-

lated induced errors are meant to be handled by the real-time controller (or reactive

planning strategy) whose role is to keep the system stable by compensating for them

as much as possible. The second kind of causes — discrepancies between the real

parameters and the estimated ones used in the controller — are usually considered

as unknown perturbations of the dynamics as well. However they are intrinsically dif-

ferent because the model of the system used in the controller gives structure to the

way the parameters intervene in the dynamics. This makes it possible to leverage the

knowledge of the model to reduce the second kind of induced tracking errors.

Indeed, the analytical model of the dynamics is meant to be only evaluated on the

estimated parameters, as the real parameters are unknown. Nevertheless, it can also

be exploited to measure the effect of an evaluation on a different set of parameters than

the estimated ones. In particular, an in�nitesimal variation of the parameters around the

estimated ones should have an in�nitesimal effect on the state dynamics which can be

computed through the corresponding jacobian. We propose then to try to compute this

quantity.

We begin by de�ning a generic non-linear dynamic system described by the differ-

81

Part II, Chapter 4 – Trajectory generation for minimum state sensitivity

ential relation 8
<

:

q(0) = q0

_q(t) = f (q(t); u(t); p)
(4.1)

where q 2 Rnq is the state of the system, u 2 Rnu the input fed into it, and p 2 Rnp a

vector of model parameters, including e.g., masses, lengths, and actuation properties.

Note that many real-world systems can be described with this kind of model, including

non-robotic ones.

Then, recall from Chapter 2 that the state sensitivity is de�ned as the quantity

� (t) 2 Rnq � np , such that

� (t) =
@q
@p

(t): (4.2)

This matrix represents how much sensitive the state is to the parameters, with each

element � i;j being the sensitivity of one state qi w.r.t. one of the parameters pj . As it

is solely related to the dynamical model of the system, the analytic knowledge of this

model should be suf�cient to compute this quantity at �rst glance. Assuming that one

can compute this quantity, it then becomes possible to search a trajectory that, in the

null-space of the task constraints, ensures the sensitivity to be as small as possible.

As a consequence, the errors caused by the discrepancy between the (known)

estimated parameters and the (unknown) real parameters should be reduced. Though

it may not always be possible to completely annihilate these errors, one can reduce

them to the minimum possible by means of trajectory optimization with a cost obtained

from the state sensitivity matrix.

4.2.1 Simple integrator case

Consider the most elementary possible dynamic system which consists in a simple

integrator. Let qbe its scalar state and u its scalar input. The dynamics of such a system

is given by 8
>><

>>:

q(t) = q0; t = 0

dq
dt

(t) = u(t)p; t � 0;
(4.3)

where p is a linear parameter. This model could represent for example the linear dy-

namics of a one-dimensional object of speed q and mass p� 1, subject to a force u.

82

4.2. Open-loop state sensitivity

Hence the state at each time can be expressed analytically with

q(t) = p
Z t

0
u(�)d� + q0: (4.4)

In that case the sensitivity of the state w.r.t. the parameter is the scalar quantity

�(t) =
@q
@p

(t)

=
Z t

0
u(�)d�

=
q(t)
p

:

(4.5)

The direct interpretation of this result is that the state of the system after some time t

is more sensitive to the parameter when the state itself is greater. Coming back to the

one-dimensional object subject to a force u, the result is quite intuitive : the speed q of

the object depends more on its mass if it has changed after being pushed more in one

direction than in the other.

As a consequence, pushing the object in a way that makes its speed close to the

initial one after a duration t f would ensure that the �nal speed q(t f) is less dependent

on the mass. Moreover, leading the �nal speed exactly to the same value as the initial

speed is the best and unique way of completely breaking the dependence, even if the

speed has changed arbitrary meanwhile.

Fig. 4.1 illustrates this interpretation with a simulation of this integrator in the rele-

vant conditions. As predicted, we can see that the �nal state varies with the parameter

when the input is asymmetric, whereas it does not in the symmetric case. For such a

toy system, one could then envisage to plan “robust” trajectories such that the input

is as symmetric as possible for reducing the effects of model inaccuracies in the �rst

place.

83

Part II, Chapter 4 – Trajectory generation for minimum state sensitivity

��������
0 1 2 3 4

-1

0

1

2

��������
�������� ���� �� ��������
�������� ���� ����
�������� ���� �� ���	����

��������
0 1 2 3 4

-1

0

1

2

��������
�������� ���� �� ��������
�������� ���� ����
�������� ���� �� ���	����

Figure 4.1 – Simulation of a simple integrator with three different parameters for the
same input. The input is symmetric on the left, leading to a common �nal state of
zero, and asymmetric on the right, leading to different �nal states depending on the
parameter value.

4.2.2 More complex dynamics

The concept remains the same when the dynamics becomes more complex. Let us

add some damping p2 to the model, such that

8
>><

>>:

q(t) = 0 ; t = 0

dq
dt

(t) = u(t)p1 � q(t)p2; t � 0;
(4.6)

where the mass inverse parameter p was renamed to p1, and the initial state is set to

zero for convenience.

This differential equation can be classically solved in the Laplace domain. Indeed,

taking the Laplace transform of eq. (4.6), we get

Q(s) = U(s)
p1
p2

s
p2

+ 1
(4.7)

where Q(s) and U(s) are the Laplace transform of q(t) and u(t), functions of the Laplace

variable s. De�ning the operator LPF ! 0 f f (t)g which gives a �rst order unitary low-pass

84

4.2. Open-loop state sensitivity

�lter of bandwidth ! 0 of a function f (t), eq. (4.7) rewrites in the time domain

q(t) =
p1

p2
LPF p2 f u(t)g: (4.8)

From there the sensitivity of the state w.r.t. the parameter p1 is given by the relation

� 1(t) =
@q
@p1

(t)

= p� 1
2 LPF p2 f u(t)g

=
q(t)
p1

(4.9)

which is similar to the previous case where no damping was modeled. Thus, the same

interpretation than before still holds.

In contrast, the expression of the sensitivity related to the damping parameter p2

is a bit more complex. To derive it, one can leverage the Laplace domain once more.

As the derivative is a linear operation, we can compute the sensitivity directly in the

Laplace domain,
@Q(s)
@p2

= � U(s)
p1
p2

2

(s
p2

+ 1) 2
(4.10)

and take the inverse Laplace transform to get back to the time domain. We obtain that

� 2(t) =
@q
@p2

(t)

= �
p1

p2
2

LPF 2
p2

f u(t)g

= �
LPF p2 f q(t)g

p2
:

(4.11)

As a consequence, the state sensitivity w.r.t. the damping parameter p2 grows with

the low-pass �ltered state. This means that similarly to the behavior of � 1, the sensitiv-

ity of the state w.r.t. p2 can be reduced at some �nal time t f by ensuring that the state

q(t f) gets close to the initial state q0, but only on a large enough time base, i.e., with

a characteristic time >> p � 1
2 . As shown by Fig. 4.2, the state may thus be affected by

p2 depending on the rate it varies at. Moreover, it may happen that the state is very

shaky — with a characteristic frequency >> p 2 — near t f , without the sensitivity being

increased a lot, because of the low-pass �ltering effect.

85

Part II, Chapter 4 – Trajectory generation for minimum state sensitivity

��������
0 1 2 3 4 5

-1

0

1

2 �������� ���� �� �� ��������

�������� ���� �� ����

�������� ���� �� �� ��������

��������

��������
0 1 2 3 4 5

-1

0

1

2 �������� ���� �� �� ��������

�������� ���� �� ����

�������� ���� �� �� �����	��

��������

Figure 4.2 – Simulation of a damped integrator with three different values of p1 on the
left and three different values of p2 on the right, for the same input. On the left, the
�nal state is the same for any parameter value, because the input is symmetric. On the
right, the gaps between the three states converge in a low-pass �ltered way at the end,
as set out in the formal derivation. It can also be noted that the negative sign of the
sensitivity is re�ected in the order of the curves which is reversed in that case.

4.2.3 Computation of the sensitivity in the general case

As we have seen when the complexity of the dynamics increases — even when

remaining linear — it becomes more and more dif�cult to compute and interpret the

sensitivity of the state w.r.t. the parameters. In fact, it is in most cases even impossible

to get a closed form expression for � (t) for a non-linear system. For this reason, it is

desirable to seek some general method to compute the value of � for a generic robot

dynamics.

This can be obtained as follows: considering the input as an unknown independent

variable a priori, we can take the derivative of eq. (4.1) w.r.t. the parameters p which

leads to 8
>><

>>:

� (0) = 0

_� (t) =
@f
@q

(q(t); u(t); p) � � (t) +
@f
@p

(q(t); u(t); p)
(4.12)

where the initial condition for the sensitivity is zero because the initial state is assumed

not to depend on the parameters 1.

1. In certain particular cases the initial state may actually depend on the parameters, e.g., the height
of the center of mass of a humanoid robot depends on numerous parameters including the leg lengths.

86

4.2. Open-loop state sensitivity

Though we still do not have a closed form for � (t), eq. (4.12) provides us with a

way to compute it. Indeed, integrating this equation over time gives the sought quantity.

Besides, this can be done numerically whenever the dynamics are too complex to solve

the differential equation analytically.

Indeed, at this point we have a differential equation for � (t) that only implies the

jacobians @f
@q and @f

@p , which are matrices that only depend on the state q, the input u

and the parameters p. Thus, for a certain run of the system with known state and input,

one can evaluate these jacobians at any time t for some parameters. In practice, we do

not know the set of real parameters, and thus we evaluate these matrices at the best

guess we have for the parameters.

This best guess of the parameters vector is also the one used by the controller,

hence we call it the control parameters vector pc. Note that the exact de�nition of the

`real' parameters p is subject to discussion, as the set of parameters might seem more

related to the chosen model than to the real system itself. In the following we con-

sider an ideal paradigm where the real system does have a unique set of parameters

associated to, that represents it at best for a given model that we decide to employ.

This notion of best representation obviously raises a question of best-�tting criterion

choice, we simply consider here that the real parameters are the ones minimizing the

difference between the observed real behavior and the modeled one for the sake of

simplicity 2.

Based on the resolution of the previous equation (analytically or numerically), one

can estimate the value of the state sensitivity matrix. Note that the values of the input

over time are required as well as the state and parameters, in order to do so. As said,

although the parameters p appearing in this equation are ones of the real system, they

are unknown. However, the known control parameters, which are the estimation of the

real parameters, denoted by pc in the following developments, can be used to evaluate

it in practice. The discrepancy between those is supposed to be small for two reasons,

1) because pc is a good approximation of p by de�nition, and 2) because the trajectory

over which eq. (4.12) will be integrated will be constructed with the goal of minimizing

the sensitivity, meaning that by construction the effect of the difference between pc and

p will be reduced to the minimum possible.

2. This is part of the future work that we plan to achieve concerning the sensitivity notion and appli-
cability.

87

Part II, Chapter 4 – Trajectory generation for minimum state sensitivity

Given that one can compute a good estimate of the state sensitivity matrix, gener-

ating a `minimum-sensitive' trajectory translates into minimizing a particular cost. For

example, a trajectory that is computed such that some norm of the �nal state sensi-

tivity jj � (t f)jj is minimized should ensure that the effect of the discrepancy between

estimated parameters pc and real parameters p on the precision of the reached state

q(t f) is reduced at best.

This idea has been proposed �rst in [5] where it has been used to generate feed-

forward trajectories for a simple vehicule which are, as sought, minimally insensitive to

parametric model uncertainty. Moreover, as discussed before, we have also used it in

Chap. 2, Sec. 2.2.2 for planning the aerial locomotion trajectories of the MonkeyRotor.

4.3 Closed-loop sensitivity

As we have seen, it is possible to compute the value of the matrix � (t) in the general

case given the trajectories of the state and input vectors over time (q(T); u(T)), where

T � R+ is the considered time interval. We will now put this result in perspective and

propose an extension to it.

4.3.1 Motivation

As the careful reader may have noticed, considering the input u(t) as an indepen-

dent variable from the state q(t) is actually a strong hypothesis, since it is equivalent

to neglecting the controller of the robot. Indeed, the input is usually a function of the

state q(t) and a target state to be reached q � (t), which enables the system to correct

perturbations and stabilize itself. In other words, the quantity computed in eq. (4.12)

evaluates how sensitive to the parameters the state is, given a predetermined input

trajectory u(T) that would not be adapted if the state deviates from the target. For this

reason, we chose to call it the open-loop state sensitivity.

Note that in a replanning context such as MPC, the input is actually adapted over

time since the initial state at each planning iteration re�ects the real behavior of the

system. Still, this manner of closing the loop is outside the trajectory generation scope

and it lies in the external algorithm exploiting the successive planed trajectories at each

timestep. Therefore, we keep this denomination of open-loop state sensitivity even for

88

4.3. Closed-loop sensitivity

replanning, as this quantity is used with the goal of generating one single trajectory at

a time.

Based on this consideration, the direct extension we seek is to try to integrate the

controller behavior in the computation of the state sensitivity in order to derive a closed-

loop sensitivity. By doing this, we aim at making the generation of trajectories based

on closed-loop sensitivity minimization aware of the particular adopted control strategy,

such that the way it affects the dynamics is taken into account at the planning stage.

We call this method control-aware trajectory generation. Note that this is different from

what was done in [5], as the effect of the control policy is taken into account in the

trajectory generation, prior to execution.

4.3.2 Derivation

To begin with, we de�ne the desired output trajectory y � (t) to be tracked by the

system. As our goal is to compute a trajectory of this quantity over the time interval T,

let a 2 Rna be a �nite vector of coef�cients parametrizing the trajectory such that, as in

Chapter 1,

y � (t) = (a; t) (4.13)

with the chosen representation function, which can be polynomials for example, as

used before in Part I. Note that the vector of coef�cients a being of �nite dimension im-

plies that the possible represented trajectories are only a subset of all possible trajec-

tories (Rny)T, e.g., the continuously derivable ones. However, in our case the trajectory

of the state is already enforced to be regular because of the differential equation (4.1)

it follows. Moreover, polynomials are known to be able to �t with arbitrary precision

any continuous function of the time. This allows us to use polynomials or an equivalent

representation function without loss of generality.

Now let the input u(t) be any differentiable function of the state and of the desired

target output y � (t). The goal of such control function is, obviously, to achieve y(t) !

y � (t), i.e., to make the output of the system converge towards the desired one. In order

to remain general, let it also be a function of an internal state � (t) of the controller. This

internal state vector may represent, e.g., an integral action, estimation of parameters

89

Part II, Chapter 4 – Trajectory generation for minimum state sensitivity

for adaptive control, and so on. We de�ne the control laws as

8
>>>><

>>>>:

� (0) = � 0

_� (t) = g(q(t); � (t); a; t; pc)

u(t) = h(q(t); � (t); a; t; pc)

(4.14)

where the whole desired trajectory y � (T) is given to the controller through the vec-

tor a. Indeed, in some cases the sole current target state y � (t) may be suf�cient to

the controller, e.g., if it implements a simple proportional feedback law, or if the target

is constant (in a regulation setup). But generally several derivatives are also required

depending on the complexity of the dynamics and of the chosen control law. With this

formulation the possibly necessary derivatives of order o can computed inside the con-

troller functions g and h by means of the representation function ,

doy �

dto
(t) =

do (a; t)
dto

: (4.15)

Now if we consider (4.1) and take the derivative of it w.r.t. the parameters, we obtain

a new equation which is different from eq. (4.12) because it integrates the full closed-

loop dynamics including the controller. To do so we de�ne the quantity

� (t) =
@u(t)

@p
2 Rnu � np (4.16)

which we will be calling the input sensitivity from now on.

The sensitivity differential equation becomes

8
>><

>>:

� (0) = 0

_� (t) =
@f
@q

� � (t) +
@f
@u

� � (t) +
@f
@p

(4.17)

where the evaluation arguments (q(t); u(t); p) of the jacobian matrices have been omit-

ted for the sake of clarity.

This equation has only one more term than before, however integrating it is not

obvious because � (t) is not known a priori. It is in fact possible to compute it through

90

4.3. Closed-loop sensitivity

eq. (4.14) which we can rewrite

� (t) =
@h
@q

� � (t) +
@h
@�

�
@�
@p

(t) (4.18)

after derivation w.r.t. p, where the evaluation arguments (q(t); � (t); a; t; pc) of the two

jacobian matrices have been omitted here again.

Unfortunately there is still one unknown term here, the internal state sensitivity

which we denote as

� � (t) =
@� (t)
@p

: (4.19)

This issue is resolved by applying the same procedure as before to the �rst con-

troller equation (4.14), namely taking the derivative w.r.t. the parameters directly of

the differential equation. This leads to a new differential relation on the internal state

sensitivity 8
>><

>>:

� � (0) = 0

_� � (t) =
@g
@q

� � (t) +
@g
@�

� � � (t)
(4.20)

which can be forward integrated to compute the effective value of this matrix. Here

again the initial value of � � is considered to be null.

To synthesize, it is possible to compute the closed-loop state sensitivity by inte-

grating a set of differential equations. For the sake of readability, we introduce the

notation x ;y in order to refer to the jacobian of a vector function x w.r.t. one of its vector

arguments y. With this shorthand, the set of differential equations becomes

8
>>>>>>>>>>><

>>>>>>>>>>>:

� (0) = 0

� � (0) = 0

_� (t) = f ;q � � (t) + f ;u � � (t) + f ;p

_� � (t) = g;q � � (t) + g;� � � � (t)

� (t) = h ;q � � (t) + h ;� � � � (t)

: (4.21)

Note that, of course, the true parameters of the system p are not known. Hence, this

set of differential equations cannot be integrated for evaluating the sensitivity of the true

system w.r.t. its parameters. However, as evoked before, one can evaluate the values

of the necessary jacobians at the control parameters pc instead. The consequence is

91

Part II, Chapter 4 – Trajectory generation for minimum state sensitivity

that the resulting computed sensitivity corresponds to the one of a virtual system that

would have the parameters pc. Although this may not seem to be the sought value, the

difference is actually supposed to have negligible impact on the results, because by

nature the control parameters are a good approximation of the true parameters even if

tainted with small errors, i.e., pc � p. Hence, the difference between � (p) and � (pc)

is of second order and can be neglected 3.

4.4 Application to robotic trajectory generation

In this section we will describe how one can exploit the previous closed-loop state

sensitivity computations for generating `minimum-sensitive' trajectories for two repre-

sentative robots. The method will be applied to a unicycle robot, which is considered to

be a good case study in order to test the applicability of the theory. Indeed, it is simple

and still presents interesting properties such as the differential �atness, and a (planar)

quadrotor which is also a �at system while having a more complex and challenging

dynamics and control. We �rst derive the dynamics and controller of the two robots.

4.4.1 Unicycle dynamics and control

Let q = [x y �]> 2 R3 be the unicycle state in a world frame FW = f OW ; xW ; yW g,

with (x; y) being the planar position in FW and � the unicycle heading, see Fig. 4.3. Let

also (v; !) be the unicycle linear and angular velocities and (! R ; ! L) the right and left

wheel spinning velocities. As it is well-known, these velocities are related by

2

4
v

!

3

5 =

2

6
6
4

r
2

r
2

r
2b

�
r
2b

3

7
7
5

2

4
! R

! L

3

5 = S

2

4
! R

! L

3

5 (4.22)

where r is the wheel radius and b the distance between the wheels, and where the

introduced matrix S is constant for the robot. The differential drive con�guration is re-

tained in our case, which means that the actual inputs of the unicycle are the wheel

velocities (! R ; ! L). We thus set u = [! R ! L]T as the unicycle control inputs. Because

of this choice, any uncertainty in the calibration parameters r and b directly affects the

3. Further justi�cations will be given in the next chapter.

92

4.4. Application to robotic trajectory generation

! L

! R

�

!

vxB

r

xB

yB

OW xW

yW

Figure 4.3 – Illustration of the main quantities characterizing the unicycle model

system dynamics. Therefore, we take p = [r b]T as the vector of system parameters

w.r.t. which the closed-loop state sensitivity will be evaluated.

With these settings, the unicycle dynamics has the expression

_q =

2

6
6
6
4

cos� 0

sin� 0

0 1

3

7
7
7
5

S(p)u = f (q; u; p): (4.23)

The chosen control task is that of letting the output r = [x y]T 2 R2, which is the uni-

cycle planar position, tracking a reference trajectory r d(t) 2 R2. We solve this tracking

control task by implementing a dynamic feedback linearization (DFL) controller with an

integral action, with the aim of guaranteeing the best possible tracking performance in

the nominal case where pc = p, see, e.g., [51].

This control strategy can be summarized as follows: let � = [� v � x � y]T 2 R3 be

the controller states, where � v represents the dynamic extension of the unicycle linear

velocity v, and (� x ; � y) are the two states of the integral action. Let also the matrix

A (q; �) 2 R2� 2 be de�ned as

A (q; �) =

2

4
cos(�) � � v sin(�)

sin(�) � v cos(�)

3

5 : (4.24)

93

Part II, Chapter 4 – Trajectory generation for minimum state sensitivity

Differentiating twice the unicycle position r (q) w.r.t. time yields

•r =

2

4
cos(�) � � v sin(�)

sin(�) � v cos(�)

3

5

2

4
_v

!

3

5 = A (q; �)

2

4
_v

!

3

5 (4.25)

Now de�ne the following vectors

8
>>><

>>>:

_r � = [cos(�)� v sin(�)� v]T

� xy = [� x � y]T

� = •r d + kv(_r d � _r �) + kp(r d � r) + ki � xy

(4.26)

where kv > 0, kp > 0 and ki > 0 are suitable control gains. As detailed in [51], the

dynamics of the control states � can then be written as

_� =

2

4

h
1 0

i
A � 1�

r d � r

3

5 = g(� ; q; r d(t)) (4.27)

and the unicycle control inputs as

u = S� 1
c

2

4
� vh

0 1
i

A � 1�

3

5 = h(� ; q; r d(t); pc): (4.28)

Note that in eq. (4.28) the calibration matrix Sc is supposed to be correctly evaluated

on the nominal control parameters pc.

4.4.2 Planar quadrotor dynamics and control

Let FW = f OW ; xW ; zW g be a world frame and FB = f OB ; xB ; zB g the body frame

attached to the quadrotor center of mass, with zB aligned with the thrust direction,

see Fig. 4.4. In the planar quadrotor case, the state consists of the quadrotor position

r = (x; z) and linear velocity v = (vx ; vz) in FW , and of the quadrotor body orientation

� and angular velocity ! with, thus, q = [r T vT � !]T 2 R6. Similarly to the previous

unicycle case, we can distinguish the `effective' inputs (f; �) which are the total thrust

and torque, and the actual system inputs (wR ; wL) which are the right and left propeller

94

4.4. Application to robotic trajectory generation

f zB

�

�

!
v

xW

zW

OW

r

xBzB

Figure 4.4 – Illustration of the main quantities characterizing the quadrotor model.

speeds. These four values are related by

2

4
f

�

3

5 =

2

4
kf kf

k� � k�

3

5

2

4
wR

wL

3

5 = T

2

4
wR

wL

3

5 ; (4.29)

where kf and k� are, in �rst approximation, calibration parameters depending on the

propeller characteristics, see, e.g., [38]. Throughout the following developments, we

will then take u = [wR wL]T as the quadrotor control inputs.

The quadrotor dynamical model considered here is

8
>>>>>>>>>><

>>>>>>>>>>:

_r = v

_v =

2

4
0

� g

3

5 +
f
m

2

4
� sin(�)

cos(�)

3

5 � B (�)v

_� = !

_! =
�
I

(4.30)

with m and I being the quadrotor mass and inertia, and g the gravity acceleration

magnitude. Note that the control inputs u = [wR wL]T enter in (4.30) via (4.29). This

then induces a dependency on the propeller characteristics (kf ; k�). Furthermore, the

term B(�)v is meant to model a body-frame air drag with possible different magnitudes

95

Part II, Chapter 4 – Trajectory generation for minimum state sensitivity

along the horizontal and vertical quadrotor axes xB and zB . Letting R (�) 2 SO(2) be

the 2D rotation matrix from FW to FB , matrix B (�) is de�ned as

B(�) = R (�)

2

4
bx 0

0 bz

3

5 R T (�) (4.31)

where bx � 0 and bz � 0 are the body-frame drag coef�cients along xB and zB , respec-

tively. Finally, the system parameter vector considered for the closed-loop sensitivity

optimization is taken as

p =

"
kf

m
k�

I
bx bz

#T

2 R4:

Indeed, as clear from (4.29–4.30), the quadrotor dynamics is only affected by the ratios

kf =m and k� =I and not by the individual values of these parameters.

The control task is, as before, the one of tracking of a reference trajectory r d(t)

for the quadrotor position r . Analogously to the unicycle case, we implement a DFL

controller with an integral term for obtaining the best possible tracking performance

of r d(t) in the nominal case where pc = p, see, e.g., [48]. In the quadrotor case, the

controller states are � = [� f � df � x � z] 2 R4, where � f and � df represent the two dynamic

extensions of the thrust input f , and (� x ; � z) are again the internal states of the integral

action.

We construct the controller by differentiating four times the quadrotor position r

w.r.t. time,
....r = A (q; � ; pc)

2

4
•f

�

3

5 + b(q; � ; pc) (4.32)

where the detailed expressions of A (q; � ; pc) 2 R2� 2 and b(q; � ; pc) 2 R2 can be

found in [48]. Let now

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

•r � =

2

4
0

� gc

3

5 +
� f

mc

2

4
� sin(�)

cos(�)

3

5 � B (�)v

...r � =
� df

mc

2

4
� sin(�)

cos(�)

3

5 �
� f

mc

2

4
cos(�)

sin(�)

3

5 ! � _Bv � B•r �

� xz = [� x � z]T

� =
....r d + kj (

...r d �
...r �) + ka(•r d � •r �) + kv(_r d � v)+

+ kp(r d � r) + ki � xz

(4.33)

96

4.4. Application to robotic trajectory generation

where kj > 0, ka > 0, kv > 0, kd > 0, kp > 0 and ki > 0 are suitable control gains. The

dynamics of the control states can then be written as

2

6
6
6
6
4

_� f

_� df

_� xz

3

7
7
7
7
5

=

2

6
6
6
6
4

� df
h

1 0
i

A � 1(� � b)

r d � r

3

7
7
7
7
5

= g(� ; q; r d(t); pc) (4.34)

and the quadrotor control inputs are given by

u = T � 1
c

2

4
� fh

0 1
i

A � 1(� � b)

3

5 = h(� ; q; r d(t); pc): (4.35)

4.4.3 Trajectory generation

Now that the system dynamics and control strategies have been de�ned, we have

closed form expressions for the required vector functions f , g and h. This allows us to

compute the necessary terms in eq. (4.21), namely the three jacobians of the dynamics

f ;q , f ;u , f ;p , the two jacobians of the control dynamics g;q , g;� , and the two jacobians of

the control law h ;q , and h ;� . The differential system (4.21) can then be solved along

a particular trajectory a that is submitted to the system, yielding the sought sensitivity

matrix � .

This allows us to set up a trajectory optimization problem that aims at reducing

this sensitivity, as announced at the beginning of this chapter. Given the system dy-

namics (4.23), a reference trajectory r d(t) = (a; t) de�ned over a given time interval

t 2 T = [t0; t f], and the tracking controller (4.27–4.28) or (4.34–4.35), we consider two

possible optimization problems of interest, both seeking the optimal trajectory vector

aopt, namely:

� aopt = arg min
a2A

k� (t f)k2 , or (4.36)

� aopt = arg min
a2A

Z t f

t0

k� (�)k2d� (4.37)

where k � k is a suitable norm for the state sensitivity matrix � , and A is the set of

possible values for the optimization variables a. The �rst problem (4.36) focuses on

optimizing the perturbed tracking performance of r d(t) at the �nal time t f . This is the

97

Part II, Chapter 4 – Trajectory generation for minimum state sensitivity

most common robotic task, which is relevant when needing to reach a speci�c location

— or, more generally, desired output — or for instance grasp an object at the �nal time

t f with high accuracy. On the other hand, the second problem aims at optimizing the

average perturbed tracking performance of r d(t) during the whole trajectory duration.

This is more relevant when one wants to minimize deviations from the desired trajectory

in the whole time interval t 2 T. It may be required for instance when needing to avoid

collisions throughout the trajectory.

Problems (4.36–4.37) are constrained minimization problems that can be addressed

with any suitable off-the-shelf solver. Note that among all the possible solving methods,

the fastest ones require an analytical expression for the gradient of the cost w.r.t. the

optimization variable a. Heretofore, this gradient expression have not yet been derived.

Though it would be possible to implement a solving method that does not use the gra-

dient such as, e.g., simulated annealing [33], we remark that it is in fact possible to

compute this gradient for the sensitivity cost, as we will detail in the next section.

In our case, a simple gradient descent algorithm with linear constraints will be used.

To this end, we consider a scenario in which initial and �nal values are given for r d(t)

and a number of its time derivatives, e.g., given initial and �nal positions, velocities, ac-

celerations, and so on. These constraints, de�ning the admissible set A , can be written

in a linear form as Ma = d, where the vector d is the given set of initial and �nal val-

ues for r d(t), and the matrix M depends on the choice of the trajectory representation

function .

The polynomial trajectories that we use in this Thesis are as described in Chap. 1,

eq. (1.22).

Vector a can then be optimized with a null-space approach by starting from an initial

guess satisfying the constraint, e.g.,

a0 = M yd; (4.38)

and implementing the update law

an+1 = an + k1M y(d � Ma n) + k2(I � M yM)� ; 8n > 0 (4.39)

with the vector � 2 Rna being the negative gradient of the cost functions in (4.36–4.37),

and k1 > 0, k2 > 0 suitable gains. The update mechanism can be stopped whenever

98

4.4. Application to robotic trajectory generation

the gradient norm becomes small enough. Note that since problems (4.36) and (4.37)

are in general non-convex in a, the update law (4.39) can only guarantee convergence

towards a local minimum.

As for the choice of an appropriate matrix norm k � k, many possibilities exist, e.g.,

determinant, trace, condition number and so on. In this chapter we chose to use the

Frobenius matrix norm, i.e., for a matrix M 2 Rn� m ,

kM k2 =
X

i;j

m2
i;j : (4.40)

For a matrix M (x) function of a vector x 2 Rnx , this norm de�nition leads to the follow-

ing derivative
@kM (x)k2

@x
= 2kM (x)k �

@kM (x)k
@M (x)

�
@M (x)

@x

= 2kM (x)k �
M (x)

kM (x)k
�

@M (x)
@x

= 2M (x) �
@M (x)

@x

: (4.41)

Note that in this expression, @M (x)
@x = T is a tensor of dimensions (n; m; nx) and

thus, the product M (x) � @M (x)
@x 2 R1� nx is a matrix-tensor product which obeys the rule

(M � T)1;k =
nX

i =1

mX

j =1

mi;j t i;j;k ; 8k � nx : (4.42)

De�ning the tensor � ;a = @�
@a 2 Rnq � np � na , this results in the gradient expression

� = �
@k� (t f)k2

@a
= � 2� (t f) � � ;a(t f) (4.43)

for Problem (4.36), and

� = �
@

Rt f
t0

k� (�)k2d�
@a

= �
Z t f

t0

@k� (�)k2

@a

!

d� =

= � 2
Z t f

t0

� (�) � � ;a(�)d�

for Problem (4.37).

99

Part II, Chapter 4 – Trajectory generation for minimum state sensitivity

4.4.4 Gradient derivation

In the previous algorithm the required gradient � ;a may be estimated by numeri-

cal methods such as �nite difference or complex step differentiation, see [59], however

the dimension of the considered gradient is quite high, which makes such numeri-

cal computations too slow in practice. For example, in the case of the unicycle with

trajectory polynomials of dimension 10, we have a gradient of dimension 3 � 2 � 10,

which means that a numerical approximation via �nite differences may need approxi-

matively 61 evaluations of the sensitivity at each step of the update law (4.39), which

can be computationally heavy (and, of course, the situation can only get worse with

more complex dynamics, parameters or �ner trajectory parametrizations). Instead, we

propose to derive a formal expression for the gradient of the sensitivity cost based on

the analytical expressions of eq. (4.17).

As discussed before, @� =@a is a tensor quantity in Rnq � np � na . For simplifying the

derivations we then work out the expression for the gradient @� =@ai w.r.t. each individ-

ual i -th component of the trajectory vector a.

Let then

� ;ai (t) =
@� (t)

@ai

�
�
�
�
�
p= p c

2 Rnq � np (4.44)

be the sought matrix gradient of the system state sensitivity w.r.t. the optimization vari-

able ai , and let also

� � ;a i
(t) =

@� � (t)
@ai

�
�
�
�
�
p= p c

2 Rn � � np (4.45)

be the matrix gradient of the controller state sensitivity w.r.t. ai . The matrix � � ;a i
repre-

sents the gradient of the control state sensitivity w.r.t. the optimization variable ai , and

will be needed for evaluating � ;ai .

100

4.4. Application to robotic trajectory generation

Taking the raw time derivative of eq. (4.21), we obtain that

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

_� ;ai =

"
@f ;q

@q
�

@q
@ai

+
@f ;q

@u
�

@u
@ai

#

� � + f ;q � � ;ai +
"

@f ;u

@q
�

@q
@ai

+
@f ;u

@u
�

@u
@ai

#

� � + f ;u � � ;ai +
"

@f ;p

@q
�

@q
@ai

+
@f ;p

@u
�

@u
@ai

#

_� � ;a i
=

"
@g;�

@�
�

@�
@ai

+
@g;�

@q
�

@q
@ai

+
@g;�

@ai

#

� � � + g;� � � � ;a i
+

"
@g;q

@�
�

@�
@ai

+
@g;q

@q
�

@q
@ai

+
@g;q

@ai

#

� � + g;q � � ;ai

� ;ai =

"
@h ;�

@�
�

@�
@ai

+
@h ;�

@q
�

@q
@ai

+
@h ;�

@ai

#

� � � + h ;� � � � ;a i
+

"
@h ;q

@�
�

@�
@ai

+
@h ;q

@q
�

@q
@ai

+
@h ;q

@ai

#

� � + h ;q � � ;ai

; (4.46)

with the hypothesis that some partial derivatives are null, namely

� @a
@p = 0, the trajectory vector does not depend on the real system parameters,

� @a
@p c

= 0, the trajectory vector does not depend on the control system parameters

(the measured or estimated ones),

� @a
@t = 0, the trajectory vector is constant over time (as opposed to the desired

position to be tracked rd(t) = (a; t) for example),

� @p
@t = 0, the real system parameters do not vary over time, and

� @p c
@p = 0, the control parameters are constant w.r.t. variations in the true param-

eters.

Note that concerning the last one, it may not be true in practice if a parameter esti-

mation is implemented on the system, in which case the internal states would include

some parameters. In that case the gradient of the control parameters w.r.t. the real

parameters should be a decreasing quantity over time, depending on the estimator

performance. We do not consider such possible estimation scheme in this Thesis and

thus keep the relation @p c
@p = 0.

In these equations, several tensors intervene such as @f ;q=@q 2 Rnq � nq � nq . As a

consequence the product @f ;q

@q � @q
@ai

, as well as other similar ones, are tensor-vector

products. Let T 2 Rn1 � n2 � n3 be a tensor and x 2 Rn3 be a vector, we de�ne this

101

Part II, Chapter 4 – Trajectory generation for minimum state sensitivity

tensor-vector product rule as

(T � x) i;j =
n3X

k=1

t i;j;k xk ; 8i � n1; j � n2: (4.47)

Moreover, we de�ne the following quantities

� i (t) =
@q(t)
@ai

�
�
�
�
�
p= p c

2 Rnq (4.48)

� � i
(t) =

@� (t)
@ai

�
�
�
�
�
p= p c

2 Rn � (4.49)

as the gradients of the system and control states w.r.t. changes in the optimization

variable ai . These quantities are also needed for evaluating the tensor � ;a. As it was

the case for � and the other quantities introduced so far, both � i and � � i do not admit,

in general, an explicit expression. By adopting the same reasoning than the one leading

to (4.21), one can show that the dynamics of � i and � � i along the system trajectories

take the expressions

8
>>>><

>>>>:

_� i =
@f
@q

� i +
@f
@u

@h
@q

� i +
@h
@�

� � i +
@h
@ai

!

; � i (t0) = 0

_� � i =
@g
@q

� i +
@g
@�

� � i +
@g
@ai

; � � i (t0) = 0

; (4.50)

which allows evaluating � i (t) and � � i (t) by forward integration analogously to � (t) and

� � (t) in (4.21).

We also iterate again the notation f ;u ;q to refer to the derivative @f ;u =@q in the follow-

ing, and we introduce the notation f ;;q to refer to the derivative @f ;q=@q. With all these

settings, we can reformulate eq. (4.46) in a more compact way that only involves known

102

4.4. Application to robotic trajectory generation

or computable quantities, i.e.,

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

_� ;ai = [f ;;q � � i + f ;q ;u � u ;ai] � � + f ;q � � ;ai +

[f ;u ;q � � i + f ;;u � u ;ai] � � + f ;u � � ;ai +

[f ;p ;q � � i + f ;p ;u � u ;ai]

_� � ;a i
=

h
g;;� � � � i

+ g;� ;q � � i + g;� ;ai

i
� � � + g;� � � � ;a i

+
h
g;q ;� � � � i

+ g;;q � � i + g;q ;ai

i
� � + g;q � � ;ai

� ;ai =
h
h ;;� � � � i

+ h ;� ;q � � i + h ;� ;ai

i
� � � + h ;� � � � ;a i

+
h
h ;q ;� � � � i

+ h ;;q � � i + h ;q ;ai

i
� � + h ;q � � ;ai

(4.51)

with the initial conditions � ;ai (t0) = 0 and � � ;a i
(t0) = 0.

Summarizing, in order to optimize some function of the state sensitivity matrix � ,

it is possible to bene�t from an expression of its gradient � ;ai w.r.t. the optimization

variables ai . This gradient can be obtained by forward integrating (4.51) together with

system (4.50) for obtaining � i and � � i
, and system (4.21) for obtaining � and � � . Note

that, as explained before, one also needs to propagate the gradient of the controller

state sensitivity � � ;a i
in order to evaluate the terms � ;ai and thus the complete gradient

� ;a.

This allows us to implement a complete trajectory optimization algorithm that ad-

dresses problems (4.36) and (4.37) for any robot. In the following we will do it for the

unicycle and the planar quadrotor, and discuss the obtained results.

4.4.5 Simulations

The described optimization scheme was implemented in MATLAB Simulink, where

a Simulink model serves the purpose of integrating the model dynamics and sensitiv-

ity dynamics, and an `outer loop` is implemented in Matlab that realizes the gradient

descent algorithm. A set of simulations of the unicycle and quadrotor dynamics (and

control) over the optimized trajectories was done. We used the robot simulator V-REP

to visualize the resulting tracking of optimized and non-optimized trajectories.

The numerical errors that may occur due to numerical integration of the dynamics

are measured by comparing the obtained values of the sensitivity matrix and its gradi-

ent with the corresponding �nite differences computed from the variations of the state

between two simulations run with in�nitesimally close parameters. As a result our setup

103

Part II, Chapter 4 – Trajectory generation for minimum state sensitivity

Figure 4.5 – Screenshots of the realized simulations for the unicycle robot and the
quadrotor. The top line shows the trajectories that were submitted (red) and realized
(blue) by the unicycle and the quadrotor with perturbed parameters. On the bottom
line, one can see the detail of the end of the trajectories: the target positions (red) are
reached with a better precision in the optimized cases (2nd and 4th columns) than in
the initial guesses (1st and 3rd columns).

led to numerical errors smaller than 10� 6 on each component of the sensitivity and its

gradient.

A video was made which illustrates two simulations made for the unicycle and for the

quadrotor 4. The corresponding cases are the ones of Fig. 4.5, were one can see how

the tracking of optimized trajectories (second and fourth columns) resulted in better

precision at the �nal time than when tracking non-optimized trajectories (�rst and third

columns).

Moreover, we show in Fig. 4.6 the tracking performance (dash lines) of the simu-

lated unicycle when tracking trajectories that are optimized w.r.t. the state sensitivity or

not. To illustrate well the behavior of the system, we considered a control law without

integral action (two cases on the left), and with integral action (two cases on the right).

After generating two optimal trajectories for these conditions (black lines on second and

fourth plots), we made a simulated unicycle track them with a set of seven perturbed

parameter vectors submitted to the controller, ranging from 80% to 120% of their nom-

inal values. As a comparison, the same set of unicycle simulated dynamics was run

on non-optimized trajectory with the same initial and �nal conditions (the initial guess),

which resulted in the �rst and third plots. The error ellipsoids were computed from the

4. video at https://proxy.ens-rennes.fr/owncloud/index.php/s/nxFbMCRzD7wCzQp

104

4.5. Validation through extended statistical analysis

Figure 4.6 – Tracking of optimized vs. non-optimized trajectories by a unicycle with
perturbed parameters. On the right, the control law includes an integral action whereas
it does not on the left.

standard deviations of the obtained set of �nal tracking errors, and are displayed at the

target �nal position (blue): we clearly see that the tracking of the optimized trajectories

ended up in smaller errors in average than the initial guess, as wished. Note that the

case with integral action in the control law seems to feature less improvement, which

makes sense as the integral action already recovers part of the tracking error induced

by the parametric uncertainty.

4.5 Validation through extended statistical analysis

In order to test the effectiveness of the previously described method, we conducted

a statistical analysis whose goal is to check whether the application of our optimiza-

tion scheme actually improves the performance of a tracking task or not, when the

parameters are imprecisely known. To do so, the two system dynamics — unicycle

and quadrotor — were simulated a large number of times with randomly perturbed pa-

rameters, each time following or not an optimized trajectory that had been previously

generated with our method, as explained before. During this process, the evaluation

of a sensitivity matrix of dimension 70 and the associated gradient of dimension 350

evaluated over 150 time samples could be computed in about 30 ms on an Intel Core

i7-6600U at 2.60 GHz with 16 GB memory.

We now discuss this analysis, in which we considered four possible state sensitivi-

ties:

1. Unicycle — sensitivity of the state q w.r.t. the two wheel parameters (r; b);

105

Part II, Chapter 4 – Trajectory generation for minimum state sensitivity

2. Quadrotor — sensitivity of the state q w.r.t. the two drag parameters (bx ; by);

3. Quadrotor — sensitivity of the state q w.r.t. the `mass' parameter kf =m;

4. Quadrotor — sensitivity of the state q w.r.t. the `inertia' parameter k� =I .

Other combinations are clearly possible, e.g., state sensitivity w.r.t. all the parameters

p at the same time. For each of these cases we further considered four subcases,

i.e., DFL controller with or without integral action, which we denote as I and NI, and

optimization of the `�nal' problem (4.36) or of the `integral' problem (4.37), which we

denote as TF and TI. As a consequence there is a total of 16 test cases. For the ease

of exposition we will then refer to an individual subcase with the code i -A-B, where

i = 1 : : : 4 refers to the four considered state sensitivities, A2{I, NI} to the presence or

absence of the integral term in the DFL controller, and B2{TF, TI} to the optimization

problem (4.36) or (4.37). Therefore, as illustration, 3-I-TF will denote the quadrotor state

sensitivity w.r.t. kf =m evaluated for the DFL controller with integral action and optmized

at t f as described in (4.36).

Each of the sixteen combinations i -A-B was tested by running N = 1000 simu-

lations in which the system under consideration, i.e., unicycle or quadrotor, was ei-

ther tracking a non-optimal reference trajectory r d(t) = (an_opt; t), or the optimal one

r d(t) = (aopt; t). The non-optimized trajectory an_opt was simply taken as the initial

guess of the optimization algorithm (4.39), i.e., an_opt = M yd, which only satis�es the

linear constraints for the initial and �nal con�guration. On the other hand, the optimized

trajectory is obtained by solving the problem (4.36) or (4.37), depending on the con-

sidered subcase. In all cases, the trajectory representation function r d(t) = (a; t) was

chosen as a polynomial of order 15 in the variable t for each of the two components

xd(t) and yd(t) of the desired position to be tracked r d(t).

In each run, the model parameter(s) under consideration were generated by ran-

domly perturbing the true system values. In particular, all nominal parameters, except

the drag coef�cients, were drawn from a uniform distribution with range 80% to 120%

of the true system values. The drag parameters were instead drawn from a uniform

distribution with range [0 0:2].

The non-optimal reference trajectory r d(t) = (an_opt; t) was always the same across

all subcases i -A-B. It was chosen as a rest-to-rest motion with the initial and �nal veloc-

ities, accelerations, jerks and snaps being null — the latter two only making sense for

the quadrotor case —, and lasting 5 [s]. The optimized trajectory r d(t) = (aopt; t) was,

instead, different for each subcase i -A-B because of the different conditions tested,

106

4.5. Validation through extended statistical analysis

but it was obviously the same across the 1000runs of each subcase. Finally, the DFL

control gains were the same across all subcases, i.e., one set for the I condition with

ki > 0, and another set for the NI condition with ki = 0, and chosen so as to obtain real

and negative closed-loop poles.

Consider now a particular subcase i -A-B tested over the N runs and let:

— qn_opt
nom (t) represents the closed-loop state evolution in the nominal case where

pc = p when tracking the non-optimal reference trajectory r d(t) = (an_opt; t),

with qn_opt
nom (t) being the same for all the N runs;

— qn_opt
pert; k (t) represents the closed-loop state evolution in the k-th perturbed run

where pc 6= p, 8k � N , when again tracking the non-optimal reference trajectory

r d(t) = (an_opt; t);

— qopt
nom (t) represents the closed-loop state evolution in the nominal case where

pc = p, when tracking the optimal reference trajectory r d(t) = (aopt; t), with

qopt
nom (t) being the same for all the N runs;

— qopt
pert; k (t) represents the closed-loop state evolution in the k-th perturbed run

where pc 6= p, 8k � N , when again tracking the optimal reference trajectory

r d(t) = (aopt; t).

Finally, we de�ne the state evolution errors en_opt
k (t) = qn_opt

nom (t) � qn_opt
pert; k (t) in the non-

optimal case and eopt
k (t) = qopt

nom (t) � qopt
pert; k (t) in the optimal case, and consider the

quantities 8
>>>>>>><

>>>>>>>:

E n_opt
T F; k = ken_opt

k (t f)k

E n_opt
T I; k =

Rt f
t0

ken_opt
k (�)kd�

E opt
T F; k = keopt

k (t f)k

E opt
T I; k =

Rt f
t0

keopt
k (�)kd�

(4.52)

Let us focus on problem (4.36), the other one being equivalent. If tracking the op-

timized trajectory r d(t) = (aopt; t) obtained from (4.36) results in a smaller value for

k� (t f)k2 at the �nal time t f as claimed, and thus in a smaller sensitivity norm k� (t f)k,

then one should expect the non-optimal state error norm E n_opt
T F; k to be `statistically larger'

than the optimal E opt
T F; k over the N runs. In other words, the perturbed state evolution

should consistently deviate less at t f from the nominal one when following the opti-

mal reference trajectory r d(t) = (aopt; t). Analogous considerations clearly hold for

problem (4.37) and the quantities E n_opt
T I; k , E opt

T I; k as well.

Figs. 4.7–4.10 illustrate the results of this statistical analysis for all the considered

107

Part II, Chapter 4 – Trajectory generation for minimum state sensitivity

Figure 4.7 – Case 1: unicycle – sensitivity of q w.r.t. (r; b). Top row: E opt
T F; k (blue his-

togram) vs. E n_opt
T F; k (orange histogram) for the cases 1-NI-TF (left) and 1-I-TF (right).

Bottom row: E opt
T I; k (blue histogram) vs. E n_opt

T I; k (orange histogram) for the cases 1-NI-TI
(left) and 1-I-TI (right).

subcases across the N runs. In particular, Fig. 4.7 reports the normalized histograms

of E opt
T F; k in blue vs. E n_opt

T F; k in orange, for the cases 1-NI-TF (top left) and 1-I-TF (top

right), and of E opt
T I; k in blue vs. E n_opt

T I; k in orange, for the cases 1-NI-TI (bottom left) and

1-I-TI (bottom right). The following Figs. 4.8–4.10 follow exactly the same pattern for the

remaining cases 2, 3, 4. These histograms are normalized so that the height of each

bin represents the probability of having a tracking error norm that falls within the bin

bounds. As a consequence, these histograms can be seen as an approximation of the

probability distribution of the tracking error norms resulting from the parameters being

drawn from a uniform distribution as described before. Furthermore, Table 4.1 reports

for all tested conditions the mean and standard deviation (� opt; � opt) and (� n_opt; � n_opt)

of the various histograms shown in Figs. 4.7–4.10, together with the relative improve-

ments in the optimal vs. non-optimal cases.

We can then note the following facts: the tracking state error norms in the optimal

cases always resulted in smaller values w.r.t. the non-optimal cases, both in terms of

mean and of variance, in all the tested conditions. Therefore, the proposed optimization

108

4.5. Validation through extended statistical analysis

Figure 4.8 – Case 2: quadrotor – sensitivity of q w.r.t. (bx ; by). Top row: E opt
T F; k (blue

histogram) vs. E n_opt
T F; k (orange histogram) for the cases 2-NI-TF (left) and 2-I-TF (right).

Bottom row: Ei opt
T I; k (blue histogram) vs. E n_opt

T I; k (orange histogram) for the cases 2-NI-TI
(left) and 2-I-TI (right).

of the reference trajectory r d(t) = (a; t) was able to reduce the average tracking

error at t f and over the whole trajectory — depending on the considered cases. It also

made the tracking error more predictable by reducing its variance over the parameters

control discrepancies. Note that this is true not only for all conditions NI, i.e., without

integral term in the controller, as one could have expected, but also for all conditions I,

i.e., with the integral term. Hence, despite the bene�cial action of an integral term

in compensating for parametric uncertainties, the proposed optimization is still able

to further improve the overall tracking performance. Furthermore, one can also note

how the improvements in the tracking error performance, both mean and variance, are

always larger in the TF conditions than in the TI conditions. This can be explained as

follows: in the TF conditions, the optimization has the possibility to generate a suitable

`maneuver' for eventually recovering the tracking error norm at the �nal time t f , while

possibly accepting an increased tracking error before t f . On the other hand, the TI

conditions weight the tracking error norm over the whole trajectory, thus leaving less

room for the optimization to improve the tracking performance, e.g., contrarily to the TF

109

Part II, Chapter 4 – Trajectory generation for minimum state sensitivity

Figure 4.9 – Case 3: quadrotor – sensitivity of q w.r.t. kf =m. Top row: E opt
T F; k (blue

histogram) vs. E n_opt
T F; k (orange histogram) for the cases 3-NI-TF (left) and 3-I-TF (right).

Bottom row: E opt
T I; k (blue histogram) vs. E n_opt

T I; k (orange histogram) for the cases 3-NI-TI
(left) and 3-I-TI (right).

cases, a maneuver that temporarily increases the tracking error would result in a poor

�nal performance.

Coming to the individual cases, we can note that in cases 1, 2 and 4 the sensitiv-

ity optimization is quite consistently able to produce a signi�cant improvement in the

tracking error norm performance in all conditions with higher or lower improvements de-

pending on the speci�c cases as discussed. The same is not true, however, for case 3:

here, only the I-TF condition resulted in a signi�cant improvement of the tracking error

norm, i.e., 119%in mean and 87%in variance, while the other conditions had negligible

improvements. This result can be explained by considering that case 3 involved the

quadrotor state sensitivity w.r.t. the `mass' parameter kf =m, and variations in this pa-

rameter directly affect the possibility for compensating for the gravitational acceleration

[0 g]T in (4.30) which is a constant drift term. In the NI conditions the DFL controller

cannot compensate for [0 g]T whatever the shape of the reference trajectory. On the

other hand, in the I-TF condition the optimization has the possibility to produce a `ma-

neuver' that suitably slows down the quadrotor before reaching the �nal pose at t f .

110

4.6. Conclusion

Figure 4.10 – Case 4: quadrotor – sensitivity of q w.r.t. k� =I . Top row: E opt
T F; k (blue

histogram) vs. E n_opt
T F; k (orange histogram) for the cases 4-NI-TF (left) and 4-I-TF (right).

Bottom row: E opt
T I; k (blue histogram) vs. E n_opt

T I; k (orange histogram) for the cases 4-NI-TI
(left) and 4-I-TI (right).

Such a maneuver grants enough time to the integral term for compensating from the

wrong kf =m and, thus, allows to subsequently reach the correct pose at t f . Indeed,

note that in case 4, i.e., sensitivity w.r.t. the `inertia' parameter k� =I , the optimization

could signi�cantly improve the performance in all conditions since, in this case, no drift

term is present in the states that is directly affected by k� =I .

4.6 Conclusion

We believe that the reported results provide a solid and successful validation of the

proposed closed-loop sensitivity minimization for the sake of making a given system

with its controller as insensitive as possible to parametric uncertainties. The most obvi-

ous improvement that can be foreseen from there is to consider optimization problems

more complex than (4.36–4.37) by, e.g., taking also into account limited actuation or

other concurrent objectives, e.g., minimize energy or time.

111

Case 1 � opt � n_opt % � opt � n_opt %
1-NI-TF 0:011 0:162 1373:8% 0:008 0:1065 1237:3%
1-I-TF 0:0077 0:097 1150:2% 0:0053 0:053 910%
1-NI-TI 0:119 0:138 16% 0:064 0:078 21:5%
1-I-TI 0:049 0:075 54:1% 0:026 0:044 66:1%

Case 2 � opt � n_opt % � opt � n_opt %
2-NI-TF 0:035 0:138 290:6% 0:016 0:048 192:4%
2-I-TF 0:022 0:086 292% 0:011 0:034 209:4%
2-NI-TI 0:40 0:462 15:2% 0:155 0:176 13:6%
2-I-TI 0:192 0:264 37:2% 0:0759 0:102 34%

Case 3 � opt � n_opt % � opt � n_opt %
3-NI-TF 1:286 1:332 3:4% 0:752 0:781 3:7%
3-I-TF 0:046 0:103 119:5% 0:032 0:06 87:9%
3-NI-TI 4:96 5 0:91% 2:97 3 0:98%
3-I-TI 1:572 1:575 0:18% 0:941 0:942 0:17%

Case 4 � opt � n_opt % � opt � n_opt %
4-NI-TF 0:001 0:007 523:8% 0:0007 0:0045 515:8%
4-I-TF 0:0013 0:007 449:3% 0:0008 0:004 396%
4-NI-TI 0:0193 0:029 49:8% 0:0113 0:017 49:6%
4-I-TI 0:012 0:017 41% 0:0065 0:001 53%

Table 4.1 – Mean/standard deviations (� opt; � opt) and (� n_opt; � n_opt) of the various his-
tograms shown in Figs. 4.7–4.10 together with the relative improvements in the optimal
vs. non-optimal cases.

CHAPTER 5

IMPROVEMENTS AND GENERALIZATION

OF THE SENSITIVITY MINIMIZATION

FRAMEWORK

5.1 Introduction

In this chapter, we propose a more general formalization of the sensitivity frame-

work introduced before. Indeed, we have successfully applied the theory to a statistical

analysis campaign with satisfying results, showing that the use of the closed-loop state

sensitivity as metric to minimize the tracking error due to imperfections in the measured

or estimated control parameters is a good choice. Despite the success of this �rst anal-

ysis, we propose to extend the theory with a rigorous approach which better justi�es

the choice of the sensitivity matrix. We will see that this approach allows us to extend

the covered robotic applications to a new kind of situations that have not yet been taken

into account, namely the cases where the controller of the system is not able to track

the desired trajectory perfectly, even in the ideal case where the parameters are per-

fectly known, i.e., pc = p. For instance, a system with stacked servoing loops, or with

any actuation limitation (thus almost all controlled systems) cannot reach the desired

trajectory without a lag in general.

Hence, the minimization of the sensitivity may not be suf�cient in general to over-

come the tracking error, because the parametric uncertainty is not the sole responsible

for it. In this respect, in this chapter we propose an extension of the algorithm which

takes into account as much as possible the performance of the controller instead of

considering it perfect.

As stated in Chapter 4, this approach also falls within the spirit of robust control

with an improved planning strategy. However, note that robust control tends to push

113

Part II, Chapter 5 – Improvements and generalization of the sensitivity minimization framework

the trade-off between stability and performance or precision towards stability, while

the method we develop in this Thesis elaborates a layer of robustness in planning.

Therefore, this allows to head the choice of a controller towards high performance,

while bene�ting from intrinsic robustness thanks to the properties of the feedforward

term generated before.

As explained, though, the choice of the controller in our framework remains free and

thus it is possible to implement robust control strategy inside the minimum-sensitivity

trajectory generation.

5.2 Generalization to arbitrary outputs

As we have seen throughout this Thesis, in a realistic scenario we are not inter-

ested in controlling the state of the robot directly, but some output function of it. In

the developments of Chapter 4, the output was always a subset of the state. Hence,

the computation of the state sensitivity matrix was intrinsically suf�cient for the aim of

minimizing the tracking error. However, the relation between the output and the state

may not be as simple in general. For instance an output of interest for a unicycle robot

could the con�guration of an on-board component, like a sensor or an actuator, which

is attached to the robot with an offset in the body-frame. Such an output would typically

consist in the world position and orientation of that component, as one can see from

the illustration of Fig. 5.1. De�ning the body-frame positioning offset vector � q and the

��

� q

y

�

r

xB
yB

OW xW

yW

Figure 5.1 – Unicycle with a special output vector adjusted on an on-board component.

114

5.2. Generalization to arbitrary outputs

body-frame angle �� , the output would have the form

y(t) =

2

6
6
6
6
4

2

4
qx

qy

3

5 + R (q�) � � q

q� + ��

3

7
7
7
7
5

: (5.1)

This is of course one possibility among a lot of others. Interestingly, we see here that

trigonometric functions of the state angle appear in the output expression (rotation

matrix R), which impacts the derivation of the sensitivity minimization technique as we

will see next.

The second element we will focus on in this development is the possible poor track-

ing of the desired trajectory plugged in the controller, i.e., y � (t) = (a; t), in particular

the mismatch at the �nal time. Indeed, let y �
f be the target �nal output, and let y(t f) be

the real output reached by the system at the �nal time t f . In general, it may happen

that y �
f 6= y(t f) since the controller may not be able to track the desired trajectory y � (t)

because of either an inherent structural lag in some cases or because of an internal

loop in other cases (or even a combination of both), but also possibly because of ac-

tuation limits. It is important to note that this new distinction was not relevant for the

previous study because for the two considered systems, i.e., unicycle and quadrotor,

the employed DFL controllers with `in�nite' control authority were actually able to com-

pensate perfectly the dynamics in order to track any possible desired trajectory (in the

case where the parameters were correctly known, pc = p). In other words, the DFL

controllers do not present any tracking lag when well calibrated, i.e., when pc = p,

and when not subject to input constraints, a fact that guarantees that the only source

of tracking error can only come from the discrepancy in the parameters. However, in

the general case the controller may not be able to track perfectly the desired trajectory

because of, e.g, the use of a linear feedback on a non-linear system or, because of the

presence of a low-level internal loop that servoes an underlying quantity, or any control

saturation. For example, in the unicycle case that we are interested in, the robot input

is usually considered to be the two spinning wheel velocities — as we have been doing

throughout this Thesis — but in practice this is achieved through a low-level servoing

loop that controls the electrical currents in the motors such that the desired speeds are

reached as fast and precisely as possible. As a consequence, it may also happen that

the �nal output submitted to the controller y � (t f) differs from the target output y �
f which

115

Part II, Chapter 5 – Improvements and generalization of the sensitivity minimization framework

we actually want the robot to reach. Indeed, since it is known that the controller cannot

bring the real closed-loop output to this submitted �nal output in general, there is no

reason to try to guarantee that the �nal submitted output reaches the target y �
f at the

planning stage. Instead, the planner can do whatever is considered relevant with the

�nal submitted output in order to maximize the precision, as we will see.

Coming back to the general problem, the obvious goal we seek here as a standard

robotic application is to make the real output reach the desired one, i.e., to guarantee

that y(t f) = y �
f . As discussed in Chapter 4, Sec. 4.2, two kind of perturbations may

in general lead to discrepancies between the desired output and real one apart from

the controller limitations discussed before (due to lag or actuation limits). The �rst kind

consists in all the unmodeled phenomena — it cannot be dealt with at the planning

stage by de�nition. The second kind consists in the small but unavoidable errors in the

measured parameters of the model. In fact, the model parameters are generally mea-

sured and/or estimated in a preliminary stage of the robotic application, see, e.g., [35,

68, 18].

From here, our problem of interest can be formalized as the following general opti-

mization problem
min

a
J (a)

s.t. c(a) = 0
(5.2)

where the function c(a) is a vector of constraints to be respected along the trajectory,

such as actuation limits or/and initial and �nal values of the output/states. Following the

sought goal of reaching a target output at the end of the trajectory, we de�ne the scalar

cost J as the function

J (a) = jjycl(t f ; p) � y �
f jj 2 (5.3)

where the subscript cl denotes the fact that we consider, as usual, the output for the

closed-loop system (robot+controller). Finding a trajectory a that minimizes this cost

would then mean that the robot behaves in a way that guarantees the error to be as

small as possible at the �nal time t f also in presence of parametric uncertainties. Said

differently, this optimization problem is the one of maximizing the precision of the robot

for the task of reaching the target output y �
f , as wished.

Note that as in Chapter 4, one may be interested in an alternative task that consists

in optimizing the performance of the robot along the whole trajectory. This could be

translated into the objective of minimizing the integral of the error between the realized

116

5.2. Generalization to arbitrary outputs

output and the target one along the trajectory. However, for simplicity, we only consider

the minimization problem at t f , since the integral case can be treated in an analogous

way.

Looking back at the minimization problem set in eq. (5.2), some elements can be

commented. First, the real parameters p of the robot are obviously not known, which

makes it impossible to directly solve this problem by trajectory planning. Second, how-

ever, the closed-loop output of the real system y(p) is supposed to be close to the one

of the modeled system y(pc). More precisely, as soon as the output is a regular enough

function of the parameters, which we assume to be the case, the small error between

the real and estimated parameters � p = p � pc induces a variation of the closed-loop

output which is quanti�able through the following Taylor development:

y(pc + � p) = y(pc) +
@y(pc)

@p
� � p + o(jj � pjj): (5.4)

We recognize the term @y (p c)
@p which is the sensitivity of the closed-loop output

w.r.t. the parameters, evaluated at the control parameters pc. This closed-loop output

sensitivity will be denoted � y (pc) = @y (p c)
@p in the following developments.

This expression allows us to inject the closed-loop output evaluated at the known

parameters pc in the initial optimization problem. The cost function to be minimized can

then be rewritten as

J (a) = jjycl(t f ; pc) � y �
f + � y (pc) � � p + o(jj � pjj)jj 2: (5.5)

In this expression, the term o(jj � pjj) is assumed to be small enough to be neglected

in the following because of the assumed small parameter estimation error � p. In fact,

for illustration, this can be checked on a simple unicycle case: let ef = ycl(t f ; pc) � y �
f

be the modeled �nal control error that is due to incapacity of the controller to perfectly

track the desired trajectory in the general case, as discussed before. Let a unicycle with

a DFL controller track a desired trajectory y � (t), as done in Chapter 4. However, con-

sider now that the input (! �
R ; ! �

L) of the unicycle is processed by a low-level `hardware'

control loop that manages the actual wheel spinning speeds (! R ; ! L) by controlling

the applied torques via the electrical current passing through the motors. This low-level

servoing loop affects the dynamics of the unicycle, by limiting the bandwidth of the ac-

tual spinning velocities — w.r.t. the ideal control input. Now let us simulate the behavior

117

Part II, Chapter 5 – Improvements and generalization of the sensitivity minimization framework

of such a unicycle dynamics with limited bandwidth several times, across a set of pa-

rameter values ranging from 80%to 120%of the true system parameters. To do so we

consider a bandwidth of 5 [rd/s] — which corresponds to the measured behavior of our

real unicycle robot used for experiments. This bandwidth limitation is implemented in

the simulation by inserting a �rst order low-pass �lter of cutting frequency 5 [rd/s] in the

dynamics, as a pre-processing of the two submitted wheel spinning velocities. Doing so

results in the tracking performance depicted on Fig. 5.2. Note that the two parameters

r and b, i.e., radius of the wheels and distance between them, were changed together

with the same perturbation rate.

� @x
@p

� @y
@p

ef

Figure 5.2 – On the left, the reference trajectory for a simulated unicycle with limited
input bandwidth in black, and the resulting tracking trajectories with perturbed param-
eters in colors. On the right, the corresponding pro�les of �nal tracking error compo-
nents x (blue) and y (red) as functions of the parameter perturbation rate.

On this �gure, one can see on the left the resulting trajectories for each parameter

set in colors, and the desired trajectory fed into the DFL controller in black. We clearly

see that the tracking performance is affected both by the wrong value for the control

parameters, which results in the variations of the tracking error shape among the colors,

and by the hardware limited input bandwidth, resulting in the lag one can observe for all

the colored trajectories compared to the desired black one. The plot on the right shows

the tracking error at the �nal time t f , i.e., y(t f) � y �
f , decomposed in the two spatial

components x in blue and y in red. Two important facts can be observed from these

plots:

1. the tracking error is not zero even when employing the right parameter values p,

because of the modeled control lag. This can be seen in the right plot by looking

at the y-intercept of the tracking error values, which are non-zero;

118

5.2. Generalization to arbitrary outputs

2. the tracking error components evolve in an almost linear way around the point

pc = p.

This illustrates well the necessity of taking into account the previously de�ned con-

trol error ef in the de�nition of a suitable sensitivity minimization framework. Secondly,

this shows that in this case, the sensitivity gives a good hint of how the tracking error

varies with the parameters, i.e., in the af�ne way that is described by the truncated

Taylor development of eq. (5.4). Indeed, the curvature of the error pro�le seems in this

case low enough to justify the approximation of neglecting the remainder of the Taylor

development in (5.4). Obviously, this should be checked with a thorough study for more

complex robots as well. One way to assess whether this holds in general would be

to give an explicit characterization of the second order and higher terms in the Taylor

expansion for ensuring that they remain low in some range � p of parametric varia-

tion 1. However, we assume in this Thesis the hypothesis that the curvature remains

low enough for us to ignore the effect of the higher order terms in the Taylor develop-

ment, as a generalization of our observations concerning the unicycle case.

Thereafter, putting all the pieces together and by taking o(jj � pjj) � 0 allows us to

rewrite the cost (5.5) in a slightly approximated version

J (a) � ~J (a) = jjef + � y (pc) � � pjj 2: (5.6)

In this norm to be minimized, only one term that depends on the unknown real

parameters p remains, namely the parameter error � p, while all the rest is related

to known or computable quantities. Ideally, we seek a method that would be able to

completely cancel the cost ~J (a), i.e., �nding a trajectory a such that ~J (a) = 0 . This

would be done by ensuring that the �nal control error ef exactly compensates the �rst

order term � y (pc) � � p with the relation ef = � � y (pc) � � p. Of course, as the �rst order

term is not completely known because of the true system parameters p being involved,

it is not possible to directly ensure this relation.

A possible workaround consists in making sure that both of these terms are close to

zero. Indeed, ensuring that both ef = 0 and � y (pc) � � p = 0 would solve the minimiza-

tion problem (5.2) — it is simply a particular case of the equality ef = � � y (pc) � � p.

1. At the moment, we consider that this is a dif�cult problem with the current formalization introduced
in this Thesis, because of the high dimensionality of the involved quantities, and because of the com-
plexity of the successive derivatives. As a future work, we plan to study the possibility of leveraging
model simpli�cation techniques to make these assumptions more testable, as well as to improve the
computational performance of our trajectory optimization scheme in general.

119

Part II, Chapter 5 – Improvements and generalization of the sensitivity minimization framework

The difference is that this reformulation allows us to get rid of the unknown term � p,

thanks to the implication

[� y (pc) = 0]) [� y (pc) � � p = 0] (5.7)

Thus, a way to solve our general problem can be to ensure that ef = 0 and

� y (pc) = 0. Note, however, that `around' zero, i.e., when � y 6= 0,

arg min
a

jj � y (pc) � � pjj 2 6= arg min
a

jj � y (pc)jj 2;

even though � p does not depend on the trajectory vector a. Indeed, the arbitrary values

in � p weight the elements of the matrix � y (pc) such that the cost jj � y (pc)jj does not

capture the same information than (5.6). This means that in the case where the matrix

� y cannot be completely cancelled, it is not possible to optimally solve the general

problem (5.2) as wanted.

Incidentally, there are few chances in practice that a trajectory a guaranteeing both

ef = 0 and � y = 0 exists, because it is quite constraining to keep such equalities

respected while at the same time complying with the inevitable actuation limits of the

system. Moreover, it may not even be possible to reach these conditions for a given

arbitrary dynamics with actuation saturations and for a trajectory that is limited in du-

ration as we do consider here. However, in most robotic applications the actuation

limits will still let enough room in the trajectory space for the �rst equality ef = 0 to be

reached through an optimization of the trajectory vector a. The other sensitivity term,

� y (pc), may not be completely cancelled, but can still be reduced to the minimum pos-

sible via optimization. Though not optimal as discussed, we think that this approach is

good compromise for formulating a solvable problem that is as close as possible to the

desired general problem (5.2).

Summarizing, we propose a suboptimal approach to the optimization problem (5.2),

which consists in solving the alternative optimization problem

min
a

jj � y (pc)jj 2

s.t. ef = 0

s.t. c(a) = 0

; (5.8)

where the constraint function c(a) does not include any imposed value for the submitted

120

5.2. Generalization to arbitrary outputs

�nal output y � (t f) to be tracked by the controller, contrarily to Chapter 4 where we had

the constraint y � (t f) � y �
f = 0. Indeed, as discussed, the task of dealing with the �nal

output of the closed-loop system is now handled by the other constraint, i.e., ef = 0.

Resulting from the foregoing construction, this alternative problem features some

interesting properties:

(i) in the ideal best case where the sensitivity norm jj � y (pc)jj 2 can be exactly can-

celled to zero, the solutions of this problem are solutions of the general prob-

lem (5.2);

(ii) as explained before, problem (5.8) is constructed such that its solutions in the

other general cases, i.e., when k� y (pc)k2 > 0, are the closest possible to the

ones of the general problem (5.2);

(iii) as in Chapter 4, addressing this problem allows to reduce at best the error due

to parameter imprecision, even though the real parameters pc are not known;

(iv) unlike problem (5.2), it is addressable because all the quantities appearing in it

are either known or computable.

Concerning this last point, we note that the �nal control error ef is evaluated at the

control parameters pc. Of course, it can be computed if and only if the control loop

is modeled in depth with enough precision, i.e., if the effects of the potential internal

control loops, and the potential closed-loop lag due to any inherent controller imper-

fection, are all known. The closed-loop output sensitivity � y is also evaluated at the

control parameters pc, which makes it computable based on the previously derived

state sensitivity as we will see next.

One can notice that problem (5.8), though it may seem similar to the problem (4.36)

that was constructed from intuition and asserted in Chapter 4, is meaningfully improved

in terms of scope. Indeed, this problem allows to consider any output of the considered

dynamical system, which makes its processing closer to the task perspective. Finally, it

re�nes the accuracy of the theory by considering the control error ef in the construction

of the cost function to be minimized. In addition, this problem allows, as problem (4.36),

to keep a control-aware approach that integrates at best the effect of the control loop

together with the dynamics into the planning stage.

Let P � Rnp be a neighbourhood of pc in the parameters space, that also contains

the true parameters p. Fig. 5.3 shows a formal representation of the effect of our opti-

mization problem on the error pro�le. In this plot, a unidimensional case is considered,

121

Part II, Chapter 5 – Improvements and generalization of the sensitivity minimization framework

which means that the �nal output tracking error ef is represented as a scalar quantity in

R, as well as the true parameter p and the control parameter pc, which makes it easier

to understand the concept. However, all these quantities clearly behave in the same

way in higher dimensions. The abscissa of the graph corresponds to the parameter

value, centred on the control parameter pc which is known. The real parameter p is

represented somewhere around pc, though it is not known in practice. On the ordinate

we �nd the �nal output tracking values.

� y (pc)janopt

� y (pc)jaopt

ef (pc)janopt

ef (p)janopt

ef (p)jaopt

ppc

0

ef (P)janopt

ef (P)jaopt

Figure 5.3 – Graphical representation of the effect of solving problem (5.8) in a unidi-
mensional case. The two vertical red arrows show the effect of the optimization on the
control error ef (pc) and on the real error ef (p). In this plot, p is shown indicatively but
is not known in practice. Still, the resulting optimized pro�le guarantees that whatever
the value of p, the error ef (p)jaopt

remains small.

One can see that the curve representing the �nal error ef as a function of the

parameters for the initial trajectory vector anopt showcases a certain y-intercept value,

which corresponds to the control error ef (pc) that can be completely predicted from

the models of the system dynamics and controller. This is the quantity that is denoted

by ef and that we seek to cancel in the optimization problem formulation (5.8). If a

solution aopt can be found, solving this problem makes that control error null, because

it is one of the constraints of the optimization. This is graphically translated into the

red arrow that vertically brings the control error ef (pc) to zero. Jointly, the pro�le of

122

5.2. Generalization to arbitrary outputs

the output tracking error is changed from ef (P)janopt
in gray to ef (P)janopt

in orange.

This change happens because the new considered trajectory vector aopt is different,

and thus makes the tracking performance — especially at the ending time t f of the

trajectory — differently affected by a perturbation of the control parameter.

At this stage the real output error ef (p) might already be reduced in certain cases.

Nevertheless, the most important change in the error pro�le is the second one, i.e., the

reduction of the slope of the tangent at pc (the dashed blue lines), which is guaran-

teed by the minimization of the closed-loop output sensitivity � y (pc). This minimization

makes the new error pro�le the most �at possible around pc, as one can see from the

illustration of the orange curve. As derived theoretically just before, we see here that

the combination of both 1) the minimization of the sensitivity norm, and 2) the cancella-

tion of the control error, makes the real error ef (p)jaopt
in the optimized case lower than

the initial one ef (p)janopt
, and actually the lowest possible. Even better, this is all done

without knowing the value of the real parameter p, and still it holds whatever value it

has, by construction of the optimization problem.

5.2.1 Solving procedure in the general case

In this section we propose a general method for solving the optimization prob-

lem (5.8) set up previously. Unlike in Sec. 4.3.2 of Chapter 4, we now make a distinction

between the submitted target output y � (t) that the controller of the robot will try to track

over the time interval T, and the desired �nal output y �
f that we really want the robot to

arrive at. Indeed, as discussed before, the controller imperfection might induce a small

but non-negligible tracking lag in the general case. In particular, we may thus have that

y � (t f) 6= y �
f , i.e., the trajectory that is submitted to the controller may optimized in such

a way that it does not end at the target in order to compensate the effect of the lag of

the controller.

Still considering the generic dynamics of eq. (4.1), let the upgraded control laws be

8
>>>>>>><

>>>>>>>:

� (0) = � 0

_� (t) = g(q(t); � (t); a; t; pc)

u(t) = h(q(t); � (t); a; t; pc)

y(t) = z(q(t); pc)

(5.9)

with the output being a function of the control parameters pc rather than the real pa-

123

Part II, Chapter 5 – Improvements and generalization of the sensitivity minimization framework

rameters p, in order to take into account the fact that the output is usually estimated

over time by leveraging some model of the system, which can thus only be function of

the control parameters pc. Note that here, the trajectory a determines the target output

y � (t) through the representation function y � (t) = (a; t), instead of some desired state

or part of it as it was the case in eq. (4.14). Clearly, it would be the same if y was

actually a subset of the state q, but in the general case it may be more complex as

mentioned in Sec. 5.2.

As seen before, we seek at minimizing the cost function of problem (5.8), de�ned

as some norm of the closed-loop output sensitivity, i.e., jj � y (pc)jj 2. To do so, we �rst

need to compute this quantity, which will be detailed now. Furthermore, the gradient of

this cost w.r.t. the optimization vector a is of paramount importance in the optimization

process and will thus be computed afterwards. Note that the choice of the norm does

not affect the way the sensitivity is computed, though it does intervene in the gradient

derivation. As in Chapter 4, we use the Frobenius matrix norm, which can basically be

described as the square root of the sum of the squared components of the matrix, by

extension of the Euclidean norm on the matrix space Rny � np .

The closed-loop output sensitivity can be derived from eq. (5.9) by simply taking the

derivative of the output function w.r.t. the parameters which yields

� y (pc) =
@y
@p

(pc) =
@z
@q

(pc) �
@q
@p

(pc)

= z;q (pc) � � (pc)
: (5.10)

In this condensed form that makes use of the notation z;q = @z
@q again for the differ-

entiation, we clearly see the closed-loop state sensitivity �(pc) evaluated at the control

parameters pc emerging. Note that the time variable t does not appear in the argu-

ments of the output function z, and so the Jacobian z;q is not a function of the time

directly, though it is a function of the state q which may vary with t. Also, note that the

output function z do not depend on the true parameters p but on the control parame-

ters pc, which is why there is no term z;p in this expression. Indeed, as before we have
@p c
@p = 0.

As a consequence, the evaluation of the closed-loop output sensitivity can be done

by leveraging the differential system (4.21) that has been set up in Chapter 4. As seen

before, solving this system enables us to numerically compute the values of the com-

ponents of the state sensitivity � (t), which can then be injected in eq. (5.10) to get the

124

5.2. Generalization to arbitrary outputs

desired output sensitivity � y (t).

If we go back to the simple unicycle case where the output y just consists in the

position of the robot (qx ; qy), we get the simple Jacobian matrix

z;q =

2

4
1 0 0

0 1 0

3

5 (5.11)

which is a constant matrix. It then affects very slightly the computations as they were

done before. Note also that pre-multiplying the state sensitivity � by this matrix is

roughly equivalent to selecting only certain elements of the sensitivity matrix in the

norm to be minimized, as we did in our statistical analysis of Sec. 4.5.

As a comparison, when considering the alternative three-dimensional output exam-

ple of eq. (5.1), we get a richer expression for this Jacobian. First note that in this case

the body-frame offset position and orientation of the on-board component, are geomet-

rical properties of the system that need to be measured or estimated in practice, and

thus they are parameters of our model. We then have to extend the parameter vector

from (r; b) to (r; b; �qx ; �qy; ��). As a consequence, our Jacobian of interest writes

z;q =

2

6
6
6
4

1 0 � sin(q�)�qxc � cos(q�)�qyc

0 1 cos(q�)�qxc � sin(q�)�qyc

0 0 1

3

7
7
7
5

: (5.12)

In this case, there is a dependency of the Jacobian to the state q and to the param-

eters pc. Note however that, as explained, the parameters that intervene here are the

control parameters and not the real parameters p.

The second important change that occurs when switching from the �rst formulation

of Chapter 4 to the new one of problem (5.8), is the gradient derivation. Indeed, this

optimization problem under non-linear constraints requires us to provide both the gra-

dient of the cost to be minimized, and of the non-linear constraint ef = 0. This is of

course possible, because we have constructed this problem while carefully checking

the feasibility of all the involved computations, see Sec. 5.2.

Let � y ;a = @� y

@a 2 Rny � np � na be the tensor gradient of the output sensitivity w.r.t. the

125

Part II, Chapter 5 – Improvements and generalization of the sensitivity minimization framework

trajectory vector a. The gradient of the cost function w.r.t. a then writes

@k� y k2

@a
= 2� y � � y ;a: (5.13)

which is naturally similar to the expression we had for the state sensitivity. However, the

complete derivation of the expression for the gradient � y ;a is a bit more complicated.

In detail, we have that

� y ;a =
@z;q

@a
�

@q
@p

+ z;q �
@�
@a

=

@z;q

@q
�

@q
@a

!

� � + z;q � � ;a

= z;;q � � � � + z;q � � ;a

(5.14)

where we recall that the matrix quantity � = @q
@a can be computed by integrating the

differential system (4.50). On the last line, on can see that the products between the

involved elements are either tensor-matrix, or matrix-tensor products. These are such

that the following matrix equality holds for each component of the trajectory vector a

� y ;ai = (z;;q � � i) � � + z;q � � ;ai ; 8i � na (5.15)

where the symbol � denotes the same tensor-vector product as de�ned and used

lately in this Thesis. As wished, all the quantities in eqs. (5.10–5.15) are known or

computable, and thus the cost minimization (without the non-linear constraint) is imple-

mentable.

Concerning the non-linear constraint ef = 0, note that the scalar formulation kef k2 =

0 is equivalent, thanks to the separation property of the Euclidean vector norm over Rny .

Adopting this formulation allows to reduce the constraint to a unidimensional space,

which makes more sense w.r.t. the task we actually seek, i.e., cancelling the distance

between the �nal output y(t f) and the target y �
f . In the same way that the gradient of

the cost function was required, it is also the case for the gradient of the constraint func-

tion. Indeed, the solver, e.g., an interior-point algorithm, will use this gradient to guar-

antee that the solution respects the constraint. Recalling that the control error equals

126

5.2. Generalization to arbitrary outputs

ef = y(t f) � y �
f , the differentiation of this norm yields the expression

k@ef k2

@a
=2e>

f �
@ef

@a
=2e>

f � z;q � �
: (5.16)

Again, we see that all the terms involved in this expression are either known or

computable through integration of the differential systems established so far. Thus,

one can compute the value of this gradient matrix given a certain trajectory vector a to

be tracked by the system.

5.2.2 Final error compensation case study

As a benchmark of our previous theoretical derivations, we applied the sole control

error compensation idea to a simple case, when there is no parameter perturbation,

i.e., pc = p. Here, we consider again a simple unicycle with limited input bandwidth,

in order to simulate a control lag that corresponds to some hardware handling of the

wheel spinning velocities, as usual in this chapter. Then, to implement the control error

compensation, we set a simple optimization problem that consists in minimizing the

control error kef k2, instead of using it as a constraint with the sensitivity norm cost.

Hence, we treat the optimization problem

min
a

kef k2

s.t. c(a) = 0
; (5.17)

where the constraint function c(a) only imposes the initial con�guration of the robot,

without integrating the �nal position as discussed before.

After implementing the cost function and gradient as described in eq. (5.17) and

eq. (5.16), we solve this problem by means of the wide spread solver fmincon within

MATLAB. Fig. 5.4 shows the result of this optimization. The blue trajectory corresponds

to the tracking of a non-optimized desired trajectory, which ends at the target point y �
f .

We clearly see that the control lag results in the robot not being able to bring itself to

the target (circled cross). In contrast, one can see that the generated trajectory (the

dash line) does not end at the target y �
f , as expected. This allows the robot to realize

the red trajectory, which is able to reach that target because the control lag has been

127

Part II, Chapter 5 – Improvements and generalization of the sensitivity minimization framework

anticipated perfectly by the optimizer, and results in a deviation of the tracking that is

completely mastered. Note that the solver was actually able to reach the minimal cost

value of zero, which con�rms in this case our sayings that this control error can be

completely cancelled.

Figure 5.4 – Illustration of the concept of tracking error pre-compensation. The dash
line is the trajectory that was generated thanks to the knowledge of the controller's
bandwidth, which ends up in the red trajectory when submitted to the controlled unicy-
cle. As opposed to the initial guess tracking, in blue, the �nal target is reached.

5.3 Other sensitivity metrics

Heretofore, we have been interested in the closed-loop output sensitivity, because

this metric allows us to quantify the variations induced by the discrepancy between the

control parameters pc and the true system parameters p, as demonstrated in Sec. 5.2.

However, it can be noticed that in practice the realization of the tracking task with a high

accuracy in the output may not be the sole objective roboticists are interested in. In-

deed, among others, the guarantee that the system internal states remains controlled,

as well as the repeatability of the task, are often essential for development, economic

and security reasons. In practice, these considerations are completely bound to the

behavior of the inputs that are submitted to the system dynamics. Therefore, we inter-

ested ourselves in the dynamics of the input u(t) along the trajectories that are realized

in our work.

128

5.3. Other sensitivity metrics

One way to control that the inputs do what they are expected to do, i.e., remain

in their bounds, and more generally remain predictable despite the presence of para-

metric uncertainty, is to look at the values of a different quantity that we call here the

closed-loop input sensitivity

� =
@u
@p

:

Indeed, the elements of this matrix represent the amount of variations that would occur

on the inputs, consequentially to a perturbation of the parameters. In other words, the

closed-loop input sensitivity is able to quantify how much the inputs are affected by

the discrepancy between the control parameters pc and the true ones p. It is the input

counterpart of the previously derived output sensitivity � y .

The main difference with the output sensitivity, though, is that the inputs are gen-

erally not meant to reach a certain pre-determined target. They are in contrast meant

to be predictable and feasible. Hence, it does not make sense to apply the exact same

reasoning that we developed in Sec. 5.2 for the construction of a resembling optimiza-

tion problem that would be adapted to the input. Nevertheless, what makes sense

w.r.t. the elements we just discussed in this section, is to ensure that the inputs be-

have in a way that is in some sense `similar' to what is expected at the planning stage

by exploiting the closed-loop input sensitivity. Making so would henceforth guarantee,

or at least increase the probability, that the hardware is operated in the conditions it

was designed for. Furthermore, we observed that in practice the behavior of the input

when tracking an output-optimized trajectory (following the algorithm described before)

is susceptible of great variations against parameter deviations. Actual measures of this

effect will be shown in the analysis of the next section.

Encouraged by this re�ection, we propose another use of the sensitivity framework,

that is completely different in terms of goal and results. More speci�cally, we propose

to address the matter exposed just before by setting up a new optimization problem,

min
a

J� (a)

s.t. c(a) = 0
(5.18)

that is independent from the one of eq. (5.8), and where the cost function J� is con-

structed with the input sensitivity. The constraint function c(a) is, however, similar to the

one of Chapter 4, i.e., it de�nes the initial and �nal con�gurations of the trajectory, and

possibly the input bounds.

129

Part II, Chapter 5 – Improvements and generalization of the sensitivity minimization framework

Considering the task of making the input globally predictable, as wished here, we

construct the following cost function that we think captures well the envisioned task

J� (a) =
Z t f

t0

k� (�; a)k2
W d� (5.19)

where the norm k�kW is a special weighted norm. Given a weighting matrix W 2 Rnu � np

and the matrix � 2 Rnu � np which we want to evaluate the norm of, we de�ne this

weighted norm with the rule

k� kW =
s X

i;j

m2
i;j wi;j (5.20)

which is the same as the one used in Chapter 2 for the open-loop state sensitivity.

This choice for the cost function allows to take into account the inputs along the

whole trajectory equally in time, via the integral, and by means of the weighting ma-

trix W to freely chose to put more attention on a particular input than on the others,

which may be useful for complex systems where the inputs do not all have the same

importance. Thanks to the relation between � and the other sensitivities � and � �

that is given by eq. (4.21), the cost J� is completely computable by the same way than

the state and output sensitivities, i.e., by integrating the differential systems that we

provided.

Before going further with problem (5.18), note that one can apply the cost J� to

any of the trajectories that were previously studied. In particular, this enables us to

evaluate the impact of changing a trajectory from an initial guess to another one that

is optimized w.r.t. some criterion that is not the one of problem (5.18). Doing so on

the initial trajectory and optimized one of Fig. (4.6)-left, and with a unitary weighting,

i.e., wi;j = 1; 8i; j , we obtain that respectively J� (anopt) = 65 and J� (aopt) = 4090

(rad2m� 2s� 1). This means that in that particular case, the optimization of the trajec-

tory w.r.t. the state sensitivity cost function was detrimental for the closed-loop input

sensitivity norm, and thus for the input predictability. Note that the fact it varies in this

direction is completely incidental, because the value the input sensitivity was not con-

trolled during that optimization process.

With this in mind, let us now derive the gradient of the cost function J� . Similarly to

130

5.4. Statistical analysis

the previous cases, we have that

@k� k2
W

@a
=

@
@a

2

4
X

i;j

wi;j � (a)2
i;j

3

5

=2
X

i;j

wi;j � (a) i;j
@�(a) i;j

@a

=2(W ? �) � � ;a

(5.21)

where ? is the Hadamard product, i.e., element-wise, and where � is the matrix-tensor

product de�ned before. In this expression one can recognize the raw input sensitivity

gradient � ;a that was already introduced and computed in eq. (4.51).

We now have all the required elements to produce an optimal trajectory in the sense

of problem (5.18).

5.4 Statistical analysis

In this section we present a new statistical analysis of larger scale that aims at

testing the soundness of the optimization problems (5.8) and (5.18) when applied to

various trajectory global shapes. In particular we wish to verify that the minimization of

the costs that were obtained from the sensitivity quantities actually result in improve-

ments of the performances at the task level, i.e., for problem (5.8) a reduction of the

output tracking error in case of perturbed parameters and for problem (5.18) a global

reduction of the discrepancy between the expected input (along the submitted trajec-

tory) and the realized input (along the actual trajectory). Given the number of possible

test cases, we chose to focus on the unicycle case, which already generates a lot of

cases as we will see. The application of the same analysis to others robots is part of

our future work, although we can notice that we do not expect signi�cant differences in

the behavior of our framework against a quadrotor for example, which features a close

dynamics and control overall.

The concept of this analysis is to 1) generate a bunch of N traj non-optimized tra-

jectories and corresponding optimized trajectories on which we would like to test the

framework, and 2) to evaluate the resulting performance for each trajectory case, by

means of statistical analysis of the dynamical behavior against N parameter perturba-

tions. Thus, after having selected meta parameters that we think are relevant for these

131

Part II, Chapter 5 – Improvements and generalization of the sensitivity minimization framework

tests, we conducted a trajectory generation phase followed by an evaluation campaign

of each conditions against a set of randomly perturbed parameters. In order to be gen-

eral and thus more realistic in the testing conditions, we wanted to test the effectiveness

of the framework against variations in the trajectory limit conditions. Changing both the

initial and �nal position is equivalent to changing only the �nal position and moving

the whole trajectory. Hence, only the �nal position is varied. Similarly, the orientation

of the initial tangent (given by the initial velocity) is constantly set to zero (aligned with

the x axis) while the �nal position and orientation are varied relatively, without loss

of generality. As there is a spatial symmetry in the behavior of the unicycle dynamics

w.r.t. the initial orientation, we also consider only �nal positions that are in the top half

disk above the initial position. Finally, the initial guesses are also randomized to avoid,

or at least to limit, any bias that would be induced by the speci�cities of the polynomial

representation function that is used. This is done by adding a random vector in the

nullspace of the initial and �nal linear constraint,

anopt = M y � d + (I � M y � M)� (5.22)

where � 2 Rna is a random vector, which makes the polynomial coef�cients arbitrary

while still making the trajectory respect the initial and �nal conditions.

Note that in these simulations, the control lag was not simulated, because it would

have complexi�ed the computations a lot while not changing signi�cantly the results.

Thus, in the coming analysis, there was no �nal error constraint ef in the simulations

because as shown before, the DFL controller already guarantees that ef (pc) = 0, so

there is no need to compensate.

Concretely, the �rst phase of generating trajectory conditions is done by picking a

target y �
f = � (cos(�); sin(�)) with 0 � � � � and � � 0:5 [m]. The initial orientation is

set to zero, while the �nal one is chosen randomly by picking an angle value from � �

to � .

Then in the optimization constraints c(a), we add the restriction that the speed v(t)

of the unicycle has to remain strictly above zero along the trajectory. This condition

originates from the structure of the DFL controller, which requires in its computations

to divide by the internal state � v that represents the velocity norm. As a consequence

we seek trajectories that won't excite this intrinsic singularity with, e.g., a sharp change

of moving direction. The constraint of keeping the inputs bellow some saturations is

132

5.4. Statistical analysis

also added, i.e., j! R(t)j � ! max and j! L (t)j � ! max , because it is absolutely necessary

in practice and thus makes the study closer to the reality of the application of the theory.

Then, for each initial trajectory that is generated according to these rules, we �rst

test the output sensitivity minimization of problem (5.8). To do so, we �rst solve the

optimization problem for these speci�c conditions, i.e., with the initial guess and con-

straints that were produced as we described. Afterwards, we run N simulations of the

unicycle tracking 1) the initial guess and 2) the optimized trajectory, while randomly

varying each time the parameters p in range from 80% to 120%of their nominal val-

ues. Once these 2N simulations are run, we measure the corresponding �nal errors

kef k2 for the initial guess and for the optimized trajectory. Then, on each of these two

resulting sets of error values, we measure the mean value and the standard devia-

tion. As a synthesis, starting from a single initial guess trajectory we end up with four

numbers, namely the means and standard deviations of the �nal tracking errors for the

randomized non-optimized trajectory and for the optimized trajectory.

Finally, we aggregate these numbers over the whole set of N traj trajectories that

were generated in phase 1, by computing the boxplot characteristics of these means

and standard deviations. In other words, for every initial trajectory, we compute the

median, the �rst and third quartiles, and the �rst and last centiles of the N traj error

means. The same is also done for the standard deviations on the initial guesses, as

well as for error means and standard deviations of the optimized trajectories.

Fig. 5.5-left shows the resulting boxplots, with the error means boxplots on the top

plot, and the error standard deviations boxplots on the bottom plot. For this statistical

analysis we took N traj = 100 trajectory conditions, and N = 100 simulations for each

case. On these graphs, it appears that the repartition of the error means is clearly re-

duced both in terms of height and of spreading, for the optimized trajectories compared

to the initial ones. The direct conclusion we can formulate is that the errors are indeed

reduced when applying our optimization process, and they are also made more pre-

dictable. This �rmly demonstrates the effectiveness of the proposed method, at least

in the conditions we described.

The second test we conducted consists in the evaluation of the input sensitivity.

More precisely, for each of the trajectories described above, i.e., optimized and non-

optimized with different �nal conditions, we evaluated the quantity

Eu =
Z t f

t0

ku(pc) � u(p)k2; d� (5.23)

133

Part II, Chapter 5 – Improvements and generalization of the sensitivity minimization framework

Figure 5.5 – Boxplots of the evaluated performances for the conducted statistical cam-
paign. On the left, repartition of the tracking error means (top) and standard deviations
(bottom) for the non-optimized and optimized trajectories w.r.t. problem (5.8). On the
right, repartition of the integral input errors (top) and standard deviations (bottom) for
the non-optimized and optimized trajectories w.r.t. problem (5.8).

which measures the discrepancy between the inputs that are planned based on the

model parameters pc, and the realized inputs that occur when applying the control

laws on the real system with parameters p. This input error metric is suitable to check

the effectiveness of problem (5.18). That being said, we found interesting to wonder

how this metric is affected by the solving of the other problem (5.8). For this purpose,

we measured the values of the input error Eu on the same set of non-optimized and

optimized trajectories that were generated for the evaluation of the output tracking per-

formance just before. From this data we generated new boxplots depicting the input

errors characteristics. Fig. 5.5-right shows these new boxplots, with the two boxplots

of the means of Eu on the top plot, and the two boxplots of the standard deviations of

Eu on the bottom plot. What can be seen here, is that this time the optimized case is

worse than the non-optimized case, i.e., the input errors were higher in the optimized

case than in the non-optimized case, and more spread. This means that the generation

of trajectories that minimize the output tracking error (problem (5.8)) has the side effect

of statistically making the input less predictable, and more subject to variations due to

parameters error.

134

5.4. Statistical analysis

Therefore, this justi�es even more the investigation of problem (5.18). The same

method is thus applied to this problem, i.e., for the same set of N traj initial trajecto-

ries, 1) optimize them w.r.t. problem (5.18), and 2) run N simulations with perturbed

parameters. Fig. 5.6-right shows the results of this second statistical analysis. We can

Figure 5.6 – Boxplots of the evaluated performances for the second statistical analy-
sis. On the left, repartition of the tracking error means (top) and standard deviations
(bottom) for the non-optimized and optimized trajectories w.r.t. problem (5.18). On the
right, repartition of the integral input errors (top) and standard deviations (bottom) for
the non-optimized and optimized trajectories w.r.t. problem (5.18).

observe that, as wished, the inputs are made less subject to perturbations in the pa-

rameters and more predictable by the optimization. This validates the effectiveness of

our method for input sensitivity reduction. Then, Fig. 5.6-left shows the boxplots of the

output tracking errors for the same trajectories. This time, we see that the optimization

of the input almost did not affect the characteristics of the output, and just barely wors-

ened them. This means that the output errors are not made more predictable by this

optimization method.

Consequently, we observe that when optimizing the output errors, the input behaves

in a more unpredictable way, and conversely when optimizing the input, the output

errors are (slightly) deteriorated. The objectives of problem (5.8) and (5.18) thus seem

con�icting. As a �rst approach to treat this issue, we propose, among other possibilities

like Pareto front, to design a cost function to be minimized that integrates both the

135

Part II, Chapter 5 – Improvements and generalization of the sensitivity minimization framework

information of the output and input problems.

To do so, we de�ne the new cost function

Jw = � k� y (t f)k2 + �
Z t f

t0

k� (�)k2
W d� (5.24)

where � 2 R and � 2 R are weights that determine the relative importance of each

component. These weights are chosen as follows: for a given set of trajectory condi-

tions (�nal position and so on), �rst solve the optimization problem (5.8). The resulting

optimal trajectory vector a� results in a cost J1 = k� y (a� ; t f)k2 which is supposedly

minimal. We then use this minimal cost value as a reference to de�ne the cost weight

� = 1=J1. Doing the same for the other problem of the input optimization, we get an

optimal trajectory vector a� associated with a minimal cost value J2 = J� (a�), which

results in the second weight value � = 1=J2. These choices for the weights allow to

somehow normalize the importance of both contributions. As an example to show the

interest of such weights, if the solutions to both problem were the same, i.e., a� = a� ,

we would have the weighted cost Jw = 2. Then if a slight difference exists between

the solutions, the cost resembles Jw(a�) = 1 + � 1 on the optimal trajectory vector a� of

problem (5.8), and Jw(a�) = � 2+1 on the optimal trajectory vector a� of problem (5.18).

Thus, there should exist a trajectory vector `between' those solutions that minimizes the

weighted cost.

The solving of this method resulted in the boxplots of Fig. 5.7. On this third boxplot

graph, we see that, as expected, both the input and output errors were reduced along

the optimized trajectories compared to the non-optimized ones. Anyway, we note that

the effectiveness of the input optimization was modest, with only a little reduction of the

median input error over all the N traj considered trajectory conditions. This is of course

highly dependant on the choice of the weights in the weighted cost function (5.24).

From the task perspective, if one wants to give more importance to the predictability of

the input, then the weighted cost can be adjusted by increasing the weight � so that

this component affects more the optimization.

As a side note, one can notice how in all the presented boxplots, the standard

deviations always evolve in the same manner than the means in terms of height and

spreading, i.e., both reduced when the means do so, and conversely. This apparent

correlation can be interpreted as a validation of the fact that the curvature of the error

136

5.5. Experimental validation

Figure 5.7 – Boxplots of the evaluated performances for the third statistical analysis. On
the left, repartition of the tracking error means (top) and standard deviations (bottom)
for the non-optimized and optimized trajectories w.r.t. the weighted cost (5.24). On the
right, repartition of the integral input errors (top) and standard deviations (bottom) for
the non-optimized and optimized trajectories w.r.t. the weighted cost (5.24).

pro�les (led by the second order sensitivity and higher order terms) does not prevent

our methods from working correctly. In fact, the standard deviation reduction tends to

prove that the application of the optimizations effectively makes the error pro�les more

�at, as formally depicted on Fig. 5.3. Note that this holds for the input sensitivity as

well, even if in that case there is only a relative error reduction, and no absolute error

compensation such as ef .

5.5 Experimental validation

After having tested the effectiveness of the theory that was developed in this chapter

through a large statistical analysis (see Sec. 5.4), we now present an experimental

validation that we conducted with a real robot for the sake of application the described

methods in practice. The experiments have been run on a Pioneer 3DX, see Fig. 5.8,

that is standard commercial unicycle robot able to achieve any tracking task. Though

it is capable of estimating its relative position in space and control it by itself with an

137

Part II, Chapter 5 – Improvements and generalization of the sensitivity minimization framework

Figure 5.8 – The pioneer 3DX, a unicycle robot used for our experiments.

integrated servoing command, for this set of experiments we commanded this robot

with low-level wheel velocity inputs (! R ; ! L), which allows us to perfectly master the

behavior of the position control loop. Remaining consistent with the rest of our work,

we implemented the DFL controller that was described and used in simulation so far.

The hardware wheel velocity control is supposed to affect the dynamics as a bandwidth

limitation that can be modeled with a �rst order linear low-pass �lter, as in Sec. 5.2.

Although we could have leveraged the internal odometry, the measure of the posi-

tion and orientation of the robot is done through the Vicon pose estimation system. This

allows absolute positioning in the room frame, and prevents from integration biases that

would affect the tracking performance in a non-modeled way. The DFL controller is im-

plemented in MATLAB Simulink, on a laptop that is put on the robot and connected to

it via USB in order to feed the velocity inputs to the hardware. Data is exchanged over

Wi-Fi between the Vicon ground-station and the centralizing laptop.

The software architecture is based on the middleware genom (see Part I), which

allows to interconnect the multiple programs that are involved for the whole machinery

to operate. To maximize the repeatability of the experiments, the initialization of the

trajectory is automated with a simple servoing that only authorizes the start of a certain

trajectory tracking when both the position and orientation of the robot correspond to

the wished initial con�guration of the trajectory. To do so, we use the DFL controller for

position initialization, followed by a simple differential PI control law for the orientation.

The calibration of the parameters is done by running the robot in open-loop over in-

puts that excite the dynamics enough [19, 10, 62]. We then solve the optimization prob-

138

5.5. Experimental validation

lem that consists in �nding the parameters that ensure the best �tting of the recorded

behavior with a simulation of the dynamics that rely on the same open-loop inputs. Do-

ing so allows us to get the wheel radius r = 0:09 [m], the distance between the wheel

b= 0:39[m], and also the bandwidth of the hardware control loop bw = 5 [rd/s]. We also

take note of the actuation saturations j! L j; j! L j � 15 [rd/s].

The tested cases are the following:

1. minimization of the output sensitivity (as in Chapter 4),

2. minimization of the input sensitivity as de�ned in Sec. 5.3,

3. minimization of the weighted sum,

4. minimization of the output sensitivity with compensation of the �nal control error

as in problem (5.8).

As the theory is based on the idea that the parameters p of the system cannot be

known with a better approximation than pc, we do not have in practice the reference

case to compare the performance when applying the method. What can be measured

instead is the behavior of the robot when tuning its controller with parameters that are

different w.r.t. the best approximate available. In other words, we measure the validity

of our method by checking that the wished reduction of the dependence of the errors

to the parameters, i.e., of the sensitivities, actually happens. To do so, we run the robot

on our trajectory tracking tasks with each time two different con�gurations: the one

where the parameters are set to the best estimation, and another one where we `fake'

the controller with an emulation of perturbed parameters that are 120%of their true

values. Concretely, this is done by emulating a different set of parameters between the

controller and the actual dynamics. This emulation of different parameter sets allows us

to evaluate the behavior of the robot as if we had changed a bit its physical properties

— but still all from a software tuning approach.

Note that for the three �rst experiments, the limitation of the input bandwidth of our

real robot was not taken into account in the model of the dynamics. This allows us to

test separately the method as described in Chapter 4 and the control error compen-

sation envisioned for problem (5.8). As a consequence, the sensitivity equations used

for solving the optimization problems of the three �rst experiments were based on the

simple unicycle dynamics as derived in Sec. 4.4.1. In contrast, the last experiment was

done on a trajectory generated with extended equations for the unicycle, that take into

account the input bandwidth limitation.

139

Part II, Chapter 5 – Improvements and generalization of the sensitivity minimization framework

As said, the �rst experiment consists in tracking a trajectory that is optimized w.r.t. the

norm of the output sensitivity. The �nal position is set to (1; 1) [m] with a trajectory

duration of t f = 5 [s]. We then apply the method described before to generate an opti-

mal trajectory vector a� . Fig. 5.9 shows the corresponding trajectories. The tracking of

these trajectories was realized �ve times in identical conditions, in order to average the

behavior and thus try to limit any circumstancial bias. The corresponding non-optimized

and optimized trajectories where tracked by the real robot, which led to the results of

Table 5.1, �rst and second columns. In this table, the numbers are the averaged error

values over the repeated runs, with the following de�nitions: Ey (p) = ky(t f) � y � k is

the �nal tracking error for the parameters p, and Eu is the input error as de�ned in

eq. (5.23). The units in Table 5.1 are meters for the output error, and rad2m� 2s� 1 for

the input error.

Figure 5.9 – Trajectory that was optimized for the output sensitivity. We see that the
target is circumvented with a round maneuver, which allows the system to compensate
the possible parameter errors by going back and forth.

Initial guess Output-optimized Input-optimized Weighted cost Output-optimized with
-optimized control error compensation

Ey (pc) 0.0452 0.0335 0.0518 0.0647 0.0152
Ey (1:2 pc) 0.1016 0.0481 0.1143 0.0903 0.0396

Eu 10.74 322.6 3.86 10.12 462.1

Table 5.1 – Average errors obtained by making the real robot track various non-optimal
and optimal trajectories. Output errors are in m, and input errors in rad2m� 2s� 1.

One can see that the error when not perturbing the parameters is not null, which as

explained before comes from the fact that the real parameters p of the system remain

140

5.5. Experimental validation

unknown to us. Moreover, the control lag was not modeled in these tests, and thus

result in a tracking error that cannot be cancelled with this method. Obviously, note that

other non-modeled perturbation may occur and participate in the tracking deterioration.

Therefore, even with our best estimate for the control parameters pc, we get a positive

�nal tracking error for any tested trajectory.

The interesting point to be raised, however, is that the �nal error when tracking

the output-optimized trajectory is smaller in the perturbed case (second line) that the

error we get when perturbing identically the parameters but on the tracking of the initial

trajectory. That is, the output-optimized trajectory is such that the increase of the error

when tracking it with wrong parameters is small, i.e., it is less than the one obtained on

the non-optimized trajectory in the same circumstances. This con�rms the soundness

of the output sensitivity minimization technique.

A second point that can be raised, is that the error in the nominal case (not per-

turbed), is also lower for the output-optimized trajectory than for the initial one. This

tends to prove that the error may be partly explicable by an imperfection of the pa-

rameters: reducing the sensitivity of this error w.r.t. the parameters reduced the error

because it partly comes from the parameters.

Finally, one can note that the input error Eu was highly increased by the trajectory

optimization w.r.t. the output problem. As discussed before, this is not a big surprise be-

cause the input behavior is not mastered at all during this optimization process (except

for the saturations). In this particular case, this resulted in a high sensitivity of the input

w.r.t. the parameters, which means that the inputs are highly susceptible of changing

from a parameter set to another even close.

The second experiment consists in the tracking of a trajectory optimized for prob-

lem (5.18). In solving this problem, the weighting matrix is chosen unitary as in the

tests of Sec. 5.3, because the inputs are symmetric and thus do not necessitate any

distinction. The resulting trajectory is showed in Fig. 5.10. We see that this trajectory

do not feature the �nal circumvention of the target, which makes sense because this

maneuver would probably make the input more shaky and thus less predictable. The

quantitative results are reported in the third column of Table 5.1. We see that the output

tracking error Ey were pretty bad in this experiment. As discussed, this is well expected

since the objective of the optimization problem was different from the previous one, and

thus there is no reason for the tracking performance to improve. On the other hand,

141

Part II, Chapter 5 – Improvements and generalization of the sensitivity minimization framework

Figure 5.10 – Trajectory that was optimized for the input.

what we are interested in here is the input behavior: we clearly see that the tracking

of this input-optimized trajectory led to smaller input error Eu , which demonstrates that

the behavior of the input is more predictable in this case, because it less affected by

the parameters.

The third trajectory that we tested is the one generated with the weighted cost de-

scribed before. As explained, we chose to set the two weights to the inverse of the

obtained cost for the two previous optimization. The optimization led to the trajectory of

Fig. 5.11, which again features an interesting rounded maneuver near the target. We

Figure 5.11 – Trajectory that was optimized for the weighted sum.

see that the resulting output error was reduced in the perturbed case compared to the

initial guess. However, we see that the input error is almost unchanged compared to

the initial guess. This is explicable by the fact that the weighted sum technique is not

142

5.6. Conclusion and perspectives

able to correctly tune the importance of each cost, even with a normalization of the

weights as we did. This also tends to prove that the link between the two objectives

of input and output optimization (as treated in this Thesis) is complex and needs more

investigation for us to be able to control them both.

Finally, we conducted a last experiment in which the robot tracked a trajectory that

was optimized with the control error compensation that we described in Sec. 5.2. As

said, we derived to this end the sensitivity equations for the case of the unicycle with

limited input bandwidth. We chose not to implement the weighted sum cost for this

test, in order to evaluate purely the ability of our framework to reduce the output error

without caring for the input behavior. The results of this trial are reported in the last

column of Table 5.1. One can see that in this case, the error is signi�cantly reduced

w.r.t. the others tested cases. The �nal control error compensation actually allowed the

system to reach the target with ore precision, as wished. We also see that the increase

of the error in the perturbed case is quite low, con�rming that the variations in the

parameters do not affect, or at least very slightly, the behavior of the system at the end

of the trajectory.

5.6 Conclusion and perspectives

As a conclusion, in this chapter we have developed the sensitivity framework, yield-

ing a few methods to improve the precision of trajectory tracking tasks. First, we have

shown how the sensitivity metric can emerge from the wish of minimizing the output

tracking error of a robot. This allowed us to set up a �rst optimization problem (5.8), that

captures the idea of optimizing the runtime behavior at the prior planning stage by inte-

grating some information about the controller into the trajectory generation. Moreover,

this problem has been constructed such that it does not require to know the actual sys-

tem parameters p, but yet it ensures that the tracking errors are minimized in a certain

way (see Sec. 5.2 for details of what it means).

Furthermore, a number of simulations have been conducted during and after this

theoretical derivation, which we think justify the formulation and approach that we have

chosen to pursue. This also led us to the construction of a second and third optimization

formulation, derived in problem (5.18) and cost (5.24), that extend the application scope

of our trajectory generation methods. The multiple analysis and tests conducted in

143

Part II, Chapter 5 – Improvements and generalization of the sensitivity minimization framework

simulation made it possible for us to construct, re�ne and validate these methods in

the most relevant way possible. In particular, we have conducted a large statistical

analysis that aims at validating in depth the consistence of our `sensitivity framework'.

The results have shown that using these methods to improve the quality of the robotic

behavior is sound.

Finally, we conducted a series of real experiment on a unicycle robot, that gave

us the opportunity to test the methods for real. The results once again show that the

methods make sense and improve the performances in terms of output tracking error

and input predictability.

Based on this work, the perspectives for future studies are multiple:

1. apply the new closed-loop framework to the generation of trajectories for the

MonkeyRotor (which should improve the tracking performance even more than

the preliminary open-loop framework that was used in Chapter 2),

2. improve the computational speed,

3. apply the framework to other robotic case studies such as tele-operation with

haptics,

4. evaluate the relevance of model simpli�cation/reduction to make the analytical

expressions more tractable.

144

CONCLUSION

In this Thesis we have presented our contributions to the �elds of aerial robotics

and trajectory planning under uncertainty. In particular, we have studied the concept

of aerial locomotion, which consists in developing a special application of aerial navi-

gation assisted by physical contacts with the environment. To do so, we have derived

the case study of the contact-�y-contact problem for the MonkeyRotor, a quadrotor

equipped with an actuated arm. This speci�c problem is the one of �nding a suitable

overall trajectory that brings the MonkeyRotor from an initial con�guration with a phys-

ical contact, to a �nal con�guration with another contact with the environment. After

studying the switching dynamics and the features of this system (including the fact that

the system is underactuated when �ying but overactuated when hooked to the environ-

ment), we have proposed a planning algorithm that is able to provide feasible trajecto-

ries for the whole task of going from the �rst con�guration with contact to the second

one. This trajectory generation algorithm is able to propose near-optimal trajectories for

an objective such as the time minimization, which we applied to numerous simulations.

Thanks to this framework, we studied the effect of having a limited thrust to realize the

locomotion task. Interesting trajectory features emerged from the trajectory generation

that were not imposed by design, such as a back swing at the beginning for helping

the MonkeyRotor to build enough kinetic energy before the �ying phase. We also im-

plemented a special cost that aims at maximizing the precision of the re-hooking event

despite discrepancies in the parameter knowledge, by means of the so-called open-

loop state sensitivity minimization. This cost helps in mitigating the negative effects of

poorly known model parameters in the trajectory tracking performance. We veri�ed in

a number of simulations that this effectively improves the precision of the system when

the controller works with perturbed parameters.

In a second part, we have studied more in details the concept of the sensitivity min-

imization that we think is interesting in general for any robotic trajectory planning un-

der parametric uncertainty. Based on previous works that were conducted in this �eld,

we proposed a new control-aware scheme that is able to integrate some knowledge

concerning the controller at the planning stage (prior to tracking execution). We thus

145

derived a more general theory that aims at constructing a more solid framework for tra-

jectory optimization, and validated it through statistical analysis based on simulations of

two robots (a unicycle and a quadrotor). After checking the validity of the theory when

tested on these systems with perfect controllers, i.e., able to track a trajectory with zero

error when the parameters are exactly known, we extended the theoretical derivation

to the cases were the controller has some limitations, i.e., may not be able to track a

trajectory because of other issues (e.g., limited control authority or unmodeled second

order effects), even with correctly known parameters. We also extended the concept

to other sensitivity metrics such as the input sensitivity, which is an interesting metric

to quantify the ability of a trajectory in minimizing the deviations of the control efforts

also in presence of parameter discrepancies. After setting up implementations of the

required algorithms, we then tested the framework in large-scale statistical analysis,

and in a real experiment with a unicycle robot. The results con�rmed the bene�ts of

using our framework for trajectory generation, with improved precision in the trajectory

tracking as wished.

Future work on these two �elds should include:

1. validation of the developed locomotion concept through experiment with the real

MonkeyRotor prototype,

2. extension of the aerial locomotion trajectory generation framework to more gen-

eral contexts such as multiple branches and 3D space,

3. application of the sensitivity framework to other robots with uncertain parame-

ters,

4. improvements in the solving method for the sensitivity optimization, e.g., based

on model simpli�cation/reduction to speed up the computations.

146

B IBLIOGRAPHY

[1] D. Abeywardena et al., « Improved State Estimation in Quadrotor MAVs: A Novel

Drift-Free Velocity Estimator », in: IEEE Robotics & Automation Magazine 20.4

(2013), pp. 32–39.

[2] AeRoArms, EU Collab. Project ICT-644271, www.aeroarms-project.eu , 2015-

2019.

[3] AEROworks, EU Collab. Project ICT-644128, www.aeroworks2020.eu.

[4] AIRobots, EU Collab. Project ICT-248669, www.airobots.eu , 2010-2013.

[5] Alex Ansari and Todd Murphey, « Minimum Sensitivity Control for Planning with

Parametric and Hybrid Uncertainty », in: Int. J. Rob. Res. 35.7 (June 2016),

pp. 823–839, ISSN: 0278-3649, DOI: 10.1177/0278364915600536, URL: http :

//dx.doi.org/10.1177/0278364915600536 .

[6] G. Antonelli et al., « Adaptive Trajectory Tracking for Quadrotor MAVs in Presence

of Parameter Uncertainties and External Disturbances », in: IEEE Transactions

on Control Systems Technology (2017).

[7] Tomoki Anzai et al., « Aerial Grasping Based on Shape Adaptive Transforma-

tion by HALO: Horizontal Plane Transformable Aerial Robot with Closed-Loop

Multilinks Structure », in: May 2018, pp. 6990–6996, DOI: 10.1109/ICRA.2018.

8460928.

[8] ARCAS, EU Collab. Project ICT-287617, www.arcas-project.eu , 2011-2015.

[9] Uri M. Ascher and Linda R. Petzold, Computer Methods for Ordinary Differen-

tial Equations and Differential-Algebraic Equations, 1st, Philadelphia, PA, USA:

Society for Industrial and Applied Mathematics, 1998, ISBN: 0898714125.

[10] A. Bahloul, S. Tliba, and Y. Chitour, « Dynamic Parameters Identi�cation of an In-

dustrial Robot: A Constrained Nonlinear WLS Approach », in: 2018 26th Mediter-

ranean Conference on Control and Automation (MED), 2018, pp. 1–6, DOI: 10.

1109/MED.2018.8442630.

147

[11] Moses Bangura and Robert Mahony, « Real-time Model Predictive Control for

Quadrotors », in: IFAC Proceedings Volumes 47.3 (2014), 19th IFAC World Congress,

pp. 11773 –11780, ISSN: 1474-6670, DOI: https://doi.org/10.3182/20140824-

6-ZA-1003.00203, URL: http://www.sciencedirect.com/science/article/

pii/S1474667016434890.

[12] A. Becker and T. Bretl, « Approximate Steering of a Unicycle Under Bounded

Model Perturbation Using Ensemble Control », in: TRo 28.13 (2012), pp. 580–

591.

[13] Richard Ernest Bellman, Dynamic Programming, New York, NY, USA: Dover

Publications, Inc., 2003, ISBN: 0486428095.

[14] S. Bouabdallah and R. Siegwart, « Backstepping and sliding-mode techniques

applied to an indoor micro quadrotor », in: 2005 ICRA, 2005, pp. 2247–2252.

[15] O. Bourquardez et al., « Image-Based Visual Servo Control of the Translation

Kinematics of a Quadrotor Aerial Vehicle », in: IEEE Transactions on Robotics

25.3 (2009), pp. 1552–3098.

[16] P. Byrne and M. Burke, « Optimization with trajectory sensitivity considerations »,

in: IEEE Transactions on Automatic Control 21.2 (1976), pp. 282–283, ISSN:

0018-9286, DOI: 10.1109/TAC.1976.1101182.

[17] S. Candido and S. Hutchinson, « Minimum uncertainty robot navigation using

information-guided POMDP planning », in: IEEE Int. Conf. on Robotics and Au-

tomation, 2011, 6102–6108.

[18] A. Censi, L. Marchionni, and G. Oriolo, « Simultaneous maximum-likelihood cal-

ibration of robot and sensor parameters », in: 2008 ICRA, Pasadena, CA, 2008,

pp. 2098–2103.

[19] A. Censi et al., « Simultaneous Maximum-likelihood Calibration of Odometry and

Sensor Parameters », in: IEEE Transactions on Robotics 29.2 (2013), pp. 475–

492.

[20] Piwai N. Chikasha and Chioniso Dube, « Adaptive Model Predictive Control of

a Quadrotor », in: IFAC-PapersOnLine 50.2 (2017), Control Conference Africa

CCA 2017, pp. 157 –162, ISSN: 2405-8963, DOI: https://doi.org/10.1016/j.

ifacol.2017.12.029 , URL: http://www.sciencedirect.com/science/article/

pii/S2405896317335656.

148

[21] Marco Cognetti, Paolo Salaris, and Paolo Robuffo Giordano, « Optimal Active

Sensing with Process and Measurement Noise », in: ICRA 2018 - IEEE Interna-

tional Conference on Robotics and Automation, Brisbane, Australia: IEEE, May

2018, pp. 2118–2125, DOI: 10.1109/ICRA.2018.8460476, URL: https://hal.

inria.fr/hal-01717180 .

[22] I. D. Cowling, J. F. Whidborne, and A. K. Cooke, « Optimal Trajectory Planning

and LQR Control for a Quadrotor UAV », in: ICC, Glasgow, Scotland, 2006.

[23] Davide Falanga et al., « The Foldable Drone: A Morphing Quadrotor That Can

Squeeze and Fly », in: IEEE Robotics and Automation Letters PP (Dec. 2018),

pp. 1–1, DOI: 10.1109/LRA.2018.2885575.

[24] M. Fliess et al., « Flatness and defect of nonlinear systems: Introductory theory

and examples », in: IJC 61.6 (1995), pp. 1327–1361.

[25] J. Ghommam and M. Saad, « Autonomous Landing of a Quadrotor on a Moving

Platform », in: IEEE Transactions on Aerospace and Electronic Systems 53.3

(2017), pp. 1504–1519, DOI: 10.1109/TAES.2017.2671698.

[26] G. Gioioso et al., « A Force-based Bilateral Teleoperation Framework for Aerial

Robots in Contact with the Environment », in: 2015 ICRA, Seattle, WA, 2015,

pp. 318–324.

[27] V. Grabe, H. H. Bülthoff, and P. Robuffo Giordano, « On-board velocity estimation

and closed-loop control of a quadrotor UAV based on optical �ow », in: 2012

ICRA, St. Paul, MN, 2012, pp. 491–497.

[28] K. Hausmana et al., « Observability- aware trajectory optimization for self-calibration

with application to uavs », in: IEEE Robotics and Automation Letters (2017).

[29] Markus Hehn, Robin Ritz, and Raffaello DÕAndrea, « Performance Benchmark-

ing of Quadrotor Systems Using Time-Optimal Control », in: Autonomous Robots

33.1–2 (2012), pp. 69–88.

[30] B. Houska and M. E. Villanueva, « Robust Optimization for MPC », in: Handbook

of Model Predictive Control, Springer, 2018, pp. 415–447.

[31] D. C. Jiles and D. L. Atherton, « Theory of ferromagnetic hysteresis (invited) », in:

Journal of Applied Physics 55.6 (1984), pp. 2115–2120, DOI: 10.1063/1.333582 ,

eprint: https://doi.org/10.1063/1.333582 , URL: https://doi.org/10.1063/

1.333582.

149

[32] M. Jufer, Electromecanique, Traite d'electricite de l'Ecole polytechnique federale

de Lausanne, Presses polytechniques et universitaires romandes, 1995, ISBN:

9782880742850.

[33] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, « Optimization by Simulated An-

nealing », in: Science 220.4598 (1983), pp. 671–680, ISSN: 0036-8075, DOI:

10.1126/science.220.4598.671 , eprint: https://science.sciencemag.org/

content/220/4598/671.full.pdf , URL: https://science.sciencemag.org/

content/220/4598/671 .

[34] E. Kreindler, « Formulation of the minimum trajectory sensitivity problem », in:

IEEE Transactions on Automatic Control 14.2 (1969), pp. 206–207, ISSN: 0018-

9286, DOI: 10.1109/TAC.1969.1099130.

[35] D. Kubus, T. Kroger, and F. M. Wahl, « On-line estimation of inertial parameters

using a recursive total least-squares approach », in: 2008 IROS, Nice, France,

2008, pp. 3845–3852.

[36] T. Lee, M. Leoky, and N. H. McClamroch, « Geometric tracking control of a

quadrotor UAV on SE(3) », in: 49th CDC, Atlanta, GA, 2010, pp. 5420–5425.

[37] R. Mahony, V. Kumar, and P. Corke, « Multirotor Aerial Vehicles: Modeling, Esti-

mation, and Control of Quadrotor », in: IEEE Robotics & Automation Magazine

19.3 (2012), pp. 20–32.

[38] R. Mahony, V. Kumar, and P. Corke, « Multirotor Aerial Vehicles: Modeling, Esti-

mation, and Control of Quadrotor », in: IEEE Robotics & Automation Magazine

19.3 (2012), pp. 20–32.

[39] A. Majumdar and R. Tedrake, « Funnel libraries for real-time robust feedback

motion planning », in: IJRR 36.18 (2017), pp. 947–982.

[40] P. Martin, R. M. Murray, and P. Rouchon, « Flat systems, equivalence and trajec-

tory generation », in: 2003 CDS Technical Report, 2003.

[41] C. Masone et al., « Interactive Planning of Persistent Trajectories for Human-

Assisted Navigation of Mobile Robots », in: 2012 IROS, Vilamoura, Portugal,

2012, pp. 2641–2648.

[42] C. Masone et al., « Semi-autonomous Trajectory Generation for Mobile Robots

with Integral Haptic Shared Control », in: 2014 ICRA, Hong Kong, China, 2014,

pp. 6468–6475.

150

[43] C. Masone et al., « Shared Trajectory Planning for Human-in-the-loop Naviga-

tion of Mobile Robots in Cluttered Environments », in: 5th Int. Work. on Human-

Friendly Robotics, Bruxelles, Belgium, 2012.

[44] D. Mellinger and V. Kumar, « Minimum Snap Trajectory Generation and Control

for Quadrotors », in: 2011 ICRA, Shanghai, China, 2011, pp. 2520–2525.

[45] D. Mellinger et al., « Design, modeling, estimation and control for aerial grasping

and manipulation », in: 2011 IROS, San Francisco, CA, 2011, pp. 2668–2673.

[46] Daniel Mellinger, Michael Shomin, and Raghvendra Kumar, « Control of Quadro-

tors for Robust Perching and Landing », in: 2010.

[47] Brian Vincent Mirtich, « Impulse-based Dynamic Simulation of Rigid Body Sys-

tems », AAI9723116, PhD thesis, 1996, ISBN: 0-591-32089-4.

[48] V. Mistler, A. Benallegue, and N.K. M'Sirdi, « Exact linearization and noninter-

acting control of a 4 rotors helicopter via dynamic feedback », in: Proc. of the

2001 IEEE Int. Worksop on Robot and Human Interactive Communication, 2001,

pp. 586–593.

[49] Marco M. Nicotra, Roberto Naldi, and Emanuele Garone, « Nonlinear control of

a tethered UAV: The taut cable case », in: Automatica 78 (2017), pp. 174–184.

[50] M. J. Van Nieuwstadt and R. M. Murray, « Real-time trajectory generation for

differentially �at systems », in: IJRNC 8 (1998), pp. 995–1020.

[51] G. Oriolo, A. De Luca, and M. Vendittelli, « WMR control via dynamic feedback

linearization: Design, implementation and experimental validation », in: IEEE Trans-

actions on Control Systems Technology 10.6 (2002), pp. 835–852.

[52] Bryan Penin, Paolo Giordano, and François Chaumette, « Vision-Based Reac-

tive Planning for Aggressive Target Tracking while Avoiding Collisions and Occlu-

sions », in: IEEE Robotics and Automation Letters PP (July 2018), DOI: 10.1109/

LRA.2018.2856526.

[53] G. V. Raffo, M. G. Ortega, and F. R. Rubio, « An integral predictive/nonlinear H-

in�nity control structure for a quadrotor helicopter », in: Automatica 46.1 (2010),

pp. 29–39.

[54] M. Ryll et al., « 6D Physical Interaction with a Fully Actuated Aerial Robot », in:

2017 ICRA, Singapore, 2017.

151

[55] Markus Ryll, Davide Bicego, and Antonio Franchi, « A Truly Redundant Aerial

Manipulator exploiting a Multi-directional Thrust Base », in: 12th IFAC Sympo-

sium on Robot Control, Budapest, Hungary, 2018.

[56] I. Sa and P. Corke, « System identi�cation, estimation and control for a cost ef-

fective open-source quadcopter », in: 2012 ICRA, St. Paul, MN, 2012, pp. 2035–

2041.

[57] D. E. Soltero, S. L. Smith, and D. Rus, « Collision Avoidance for Persistent Mon-

itoring in Multi-Robot Systems with Intersecting Trajectories », in: 2011 IROS,

San Francisco, CA, 2011, pp. 3645–3652.

[58] S.Ponda, R.Kolacinski, and E.Frazzoli, « Trajectory Optimization for Target Local-

ization Using Small Unmanned Aerial Vehicles », in: AIAA Guidance, Navigation,

and Control Conference, 2012.

[59] William Squire and George Trapp, « Using Complex Variables to Estimate Deriva-

tives of Real Functions », in: SIAM Review 40 (1998), pp. 110–112.

[60] Nicolas Staub et al., « The Tele-MAGMaS: an Aerial-Ground Co-manipulator

System », in: IEEE Robotics and Automation Magazine 25 (2018), pp. 66–75.

[61] Nicolas Staub et al., « Towards a Flying Assistant Paradigm: the OTHex », in:

2018 IEEE Int. Conf. on Robotics and Automation, Brisbane, Australia, 2018,

pp. 6997–7002.

[62] J. Swevers et al., « EXPERIMENTAL ROBOT IDENTIFICATION USING OPTI-

MISED PERIODIC TRAJECTORIES », in: Mechanical Systems and Signal Pro-

cessing 10.5 (1996), pp. 561 –577, ISSN: 0888-3270, DOI: https://doi.org/

10.1006/mssp.1996.0039, URL: http: / /www.sciencedirect.com/science/

article/pii/S0888327096900394 .

[63] Russ Tedrake and the Drake Development Team, Drake: A planning, control, and

analysis toolbox for nonlinear dynamical systems, 2016, URL: http: / /drake.

mit.edu .

[64] J. Thomas et al., « Toward autonomous avian-inspired grasping for micro aerial

vehicles », in: Bioinspir. Biomim. 9.2 (2014).

[65] M. Tognon and A. Franchi, « Dynamics, Control, and Estimation for Aerial Robots

Tethered by Cables or Bars », in: IEEE Transactions on Robotics 33.4 (2017),

pp. 834–845, ISSN: 1552-3098, DOI: 10.1109/TRO.2017.2677915.

152

[66] M. Tognon et al., « Dynamic Decentralized Control for Protocentric Aerial Manip-

ulators », in: 2017 ICRA, Singapore, 2017.

[67] A. D. Wilson, J. A. Schultz, and T. D. Murphey, « Trajectory Optimization for Well-

Conditioned Parameter Estimation », in: IEEE Transactions on Automation Sci-

ence and Engineering 11.1 (2015), pp. 28–36.

[68] Y. Yong, T. Arima, and S. Tsujio, « Inertia parameter estimation of planar ob-

ject in pushing operation », in: 2005 ICIA, Hong Kong and Macau, China, 2005,

pp. 356–361.

[69] B. Yüksel, N. Staub, and A. Franchi, « Aerial Robots with Rigid/Elastic-joint Arms:

Single-joint Controllability Study and Preliminary Experiments », in: 2016 IROS,

Daejeon, South Korea, 2016, pp. 1667–1672.

[70] B. Yüksel et al., « A Nonlinear Force Observer for Quadrotors and Application

to Physical Interactive Tasks », in: 2014 AIM, Besançon, France, 2014, pp. 433–

440.

[71] K. Zhang et al., « SpiderMAV: Perching and stabilizing micro aerial vehicles with

bio-inspired tensile anchoring systems », in: 2017 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), 2017, pp. 6849–6854, DOI:

10.1109/IROS.2017.8206606.

153

Titre : Algorithmes d'estimation et de commande pour des quadrirotors en interaction physique

avec l'environnement

Mot clés : robotique aérienne, locomotion, plani�cation de trajectoires

Résumé : Le champ de la robotique aérienne
pour l'interaction physique permet aujourd'hui
à un robot aérien d'appliquer un effort maî-
trisé sur un objet ou sur l'environnement alors
qu'il vole. En s'inspirant de l'utilisation des
contacts faite en robotique humanoïde, nous
proposons dans cette thèse de s'appuyer sur
ces approches pour dépasser l'idée que l'envi-
ronnement est une contrainte, en exploitant le
contact physique avec celui-ci dans le but de
réaliser de la locomotion aérienne. Cette idée
est étudiée et démontrée au travers de simula-
tions et expérimentations d'une nouvelle plate-
forme robotique aérienne consistant en un

quadrirotor équipé d'un bras robotique a 1 de-
gré de liberté. D'autre part, nous avons aussi
étudié le problème de la génération de tra-
jectoires dont la sensibilité aux paramètres du
modèle est minimale. Ce problème est géné-
ralisé à n'importe quel robot, et se révèle par-
ticulièrement approprié dans le cas du quadri-
rotor du fait de l'incertitude importante concer-
nant ses paramètres inertiels et d'actionne-
ment. Pour traiter ce problème, nous dé�nis-
sons et utilisons la “sensibilité de l'état aux pa-
ramètres” a�n de générer des trajectoires dont
la sensibilité aux paramètres est minimale, ga-
rantissant une forte robustesse.

Title: Algorithms for estimation and control of quadrotors with physical interaction with their

environnement

Keywords: aerial robotics, locomotion, trajectory planning

Abstract: In recent years, the �eld of aerial
robotics has been improved, allowing the
UAVs to apply a controlled wrench on their en-
vironment or on an object while �ying.Inspired
by the use of contacts in legged robots, in
this Thesis, we propose the idea of exploiting
physical contact with the environment for the
purpose of `locomotion' during �ight, with the
goal of going beyond the common thought that
the surrounding environment is a constraint to
avoid. These ideas are studied and demon-
strated in simulations and experiments on a
novel aerial platform consisting of a quadro-

tor with a 1-dof arm that realizes maneuvers
by leveraging contacts with pivot points. Addi-
tionally, we also study the problem of gener-
ating trajectories that are most insensitive to
variations in the model parameters.This prob-
lem has a general validity for any robot, and
it is particularly relevant for UAVs because of
the high uncertainty in their inertial parameters
and actuation. In order to address these is-
sues, we de�ne and leverage the novel notion
of "closed-loop state sensitivity" for generating
trajectories that are minimally-sensitive to pa-
rameters with high robustness guarantees.

	Introduction
	Context
	Overview of the state of the art
	Aerial robotics
	Trajectory generation
	Thesis contributions
	Thesis structure

	I Part I
	MonkeyRotor concept and analysis
	Introduction
	Dynamical modeling
	Definitions
	Hooked phase
	Free-flying phase
	Impact Model

	Flight control
	Hooked phase
	Free-flying phase

	Validation of the Control Strategy
	Conclusion

	Trajectory planning for the MonkeyRotor
	Introduction
	Planning algorithm
	Optimization procedure
	Cost function

	Results
	Trajectory planning
	Trajectory tracking

	Conclusion

	Conception of the MonkeyRotor prototype
	Introduction
	Design of the hooking system
	General concept
	Choice of the solution
	Magnetic coil design
	Rotating joint design

	Implementation
	Hardware manufacturing
	Software structure

	Conclusion

