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Abstract
Steering and navigation are important components of character animation systems to enable them to autonomously move in
their environment. In this work, we propose a synthetic vision model that uses visual features to steer agents through dynamic
environments. Our agents perceive optical flow resulting from their relative motion with the objects of the environment. The
optical flow is then segmented and processed to extract visual features such as the focus of expansion and time-to-collision. Then,
we establish the relations between these visual features and the agent motion, and use them to design a set of control functions
which allow characters to perform object-dependent tasks, such as following, avoiding and reaching. Control functions are
then combined to let characters perform more complex navigation tasks in dynamic environments, such as reaching a goal
while avoiding multiple obstacles. Agent’s motion is achieved by local minimization of these functions. We demonstrate the
efficiency of our approach through a number of scenarios. Our work sets the basis for building a character animation system
which imitates human sensorimotor actions. It opens new perspectives to achieve realistic simulation of human characters
taking into account perceptual factors, such as the lighting conditions of the environment.

CCS Concepts
• Computing methodologies → Modeling and simulation; Model development and analysis; Model verification and valida-
tion; Animation;

1. Introduction

Autonomous navigation capacities are essential for virtual charac-
ters to find their way in their environment and to move without
colliding static and moving obstacles. Producing visually convinc-
ing animation requires the characters to move along realistic global
navigation trajectories. The problem received a lot of attention and
effort has been put to imitate the way humans form locomotion tra-
jectories. The problem is generally addressed as an online motion
control problem: given a current state (position, velocity), define
the control signal that will lead the character to a desired state (a
distant location), under various constraints (e.g., collision avoid-
ance) allowing the system to form feasible human-like trajectories.

Various approaches were explored; all solutions are based on
geometrical relations between the characters and the environment.
This means that the terms involved in the motion control laws are
relative velocities, positions or orientations, etc. This includes pre-
vious vision-based approaches [OPOD10,DMCN∗17], which have
set the idea of using a virtual retina to acquire all the informa-
tion required for navigation. Information is projected on the virtual
retina according the most basic laws of optics, but the nature of this
information is not related to vision. As for other microscopic ap-
proaches, distance and velocity terms are used, and those terms are
evaluated by directly accessing the simulation database to retrieve
objects features.

In contrast with previous work, our main challenge is to control
characters navigation based on the visual perception of the environ-
ment, and more especially the apparent motion of objects in their
visual field. To this end, we restrict our input control variables to
the optical flow perceived by characters, i.e., the apparent motion
of objects in the 2D image formed on their retina. The information
conveyed by the optical flow is sufficient: to detect moving objects
or groups of objects moving together; to estimate if objects is mov-
ing closer or further; to detect if they are on a collision course.
These estimations are performed based on a limited number of vi-
sual features that serve as input variables for a set of control and
navigation functions for characters. Our approach has several ad-
vantages compared to previous one. By using only visual informa-
tion, and similar visual features than those used by real humans, this
work is a new step forward towards simulating humans locomotion
control based on vision. Also, our navigation technique could apply
to any system equipped with visual perception capabilities, such as
a robot equipped with a camera.

This paper introduces several contributions. The first one is to
establish formal relations between character motion and a set of
visual features (cf. Section 5): how do the visual features change
when the character motion is adjusted? Those relations are required
to design motion control laws based on these visual features, which
is our second contribution. We propose a set of object-related mo-
tion control functions allowing characters to move and adjust their
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locomotion relatively to objects (cf. Section 6): to follow one ob-
ject, to avoid one object or to reach one object. Our third contribu-
tion is a set of higher level navigation controllers, which are built
by composing different control functions (cf. Section 7). For exam-
ple, goal-driven navigation in cluttered environments is achieved
by combining a control function for object reaching and a second
control function to avoid any visible obstacles. All these technical
elements compose a complete navigation simulation framework.

2. Related Work

Steering methods received a lot of attention because of their crucial
role in the animation of virtual characters. They are approached
as an automatic control problem: how to control a character mo-
tion for reaching a desired state such as position in the environment
given the current state of the character and the one of the environ-
ment. The simplest approach is to control character accelerations
based on geometrical variables directly related to motion, such as
distances, angles, relative motion, etc. Reynolds [Rey99] pioneered
this approach by demonstrating how a character can perform most
of navigation tasks in static or dynamic environments by combining
elementary steering behaviors.

The case of highly dynamic environments has been more deeply
explored by microscopic crowd simulators. Simulation agents
move by combining the interactions they have with the environ-
ments as well as with the surrounding agents [MT01]. Plethora of
solutions explore different control laws to propel agents, they how-
ever build on similar principles. Agents, represented with a punc-
tual geometrical model, are moved while maintaining geometrical
and kinematics relation with their environment. Agents may main-
tain distances by repulsing each other [HM95], [EB97], by moving
with "collision-free velocities" [PPD07], [vdBLM08], [MHT11],
by applying navigation rules [ST05], by locally optimizing time-
to-collision [KSG14]. A large literature build on these approaches
and explore the differences in the simulation results [WJGO∗14].
Nevertheless, all these approaches remain quite far from the senso-
rimotor loops by which real humans perform navigation tasks, be-
cause agents dispose of an accurate estimate of all state variables,
and by the nature of the state variables used.

In the seek for higher realism of generated trajectories, more
accurate biomechanics human models were explored. Instead of
a simple punctual model, simulations were based on models of
bipedal locomotion. For example, Bruderlin [BC89] or Boulic
[BR04] provided a procedural approach to the generation of human
locomotion. Singh [SKRF11] used an inverse pendulum to gener-
ate footstep sequences for crowd agents. Locomotion trajectories
can also derive from a concatenation of examples of motion cap-
tured locomotion cycles, opening a large piece of literature about
motion graphs [KGP02] [LCR∗02], how to construct global trajec-
tories on the environment [SH] or how to deal with dynamic en-
vironments [LK]. Reuse of recorded interactions is more specific
however [LCL07], [KGML12], [CC14].

Also seeking for more realism, instead of considering the me-
chanical aspect of human motion, one idea was to consider more
accurately the perceptual system, which is the input of the human
control of locomotion. Several techniques appeared in the litera-
ture to provide solution to perform navigation in an environment

[RTT90], or in a crowd [OPOD10] [DMCN∗17]. Tu and Terzopou-
los [TT, TR95] handle the navigation of other species like fishes.
These vision-based approaches only partly reproduce the role of the
human visual perception. As described by Patla [Pat97], vision pro-
vides the required information about near and far environment that
is required to regulate locomotion both at local and global levels.
In this sense, previous works reproduce correctly the role of vision:
information required to perform navigation (e.g., time, distances or
angle derivatives values) are projected on a sort of virtual retina,
which is the only input to control agents’ motion. The main ad-
vantage of vision-based approaches is to implicitly consider some
effect of perception on motion, such as the visibility of obstacles
and goals or the relative importance of obstacles with respect to
the surface they visually cover. However, none of these approaches
attempt to reproduce the most basic role of the human perceptual
system which is to process the visual input (images perceived by
the human eyes) to extract this information.

The robotics community has explored the use of visual features
in order to develop autonomous robots capable of navigating in var-
ious environments. Braillon et al [BPCL06] proposed an obstacle
detection algorithm based on discrepancies of the theoretical opti-
cal flow map (due to the robot’s own motion) and the actual per-
ceived optical flow. Other approaches attempted to use optical flow
itself in the control laws such as Souhila and Karim [SK07]. They
showed how the focus of expansion and time-to-collision can be
extracted from optical flow maps and used a flow balance strategy
to navigate in an environment. Aerial robots have also used optical
flow such as the model proposed by Zingg et al. [ZSWS10] where
depth was estimated from flow maps. Our work differs from these
in that we do not balance the optical flow and instead use the opti-
cal flow features and its properties in our control law to detect and
avoid obstacles.

In this paper, our objective is to steer agents based on the most
basic visual cues they can acquire from their surroundings. As a
main difference with previous approaches, we fully base our agent
control on the position of objects in the perceived image, as well
as in the dense optical flow generated by the relative motion be-
tween the agent and the environment, whereas previous methods
provided a higher-level information to agents not requiring image
processing steps. The goal of such an approach, at long term, is to
implicitly consider the effect of perception on the character navi-
gation. Nowadays, existing approaches are not able to consider the
effect of lighting condition or salience of obstacles because there is
no effect of luminosity on the virtual perception. In this paper, our
contributions are a clear step in this direction, by showing which
visual features can directly be extracted by the flow of images per-
ceived by the agents, and by showing how they can be used to steer
them in static and dynamic environments.

Our approach introduces the use of optical flow in highly dy-
namic environments. There are a number of approaches for optical
flow computation. Black [BA91] estimated optical flow by impos-
ing constraints to the image motion and solving the problem using
a stochastic approach. There are many benchmarks [BSL∗11] to
test modern optical flow algorithms although it is still an open field
of research. Our approach has a similar objective than active vision
in robotics, the goal of which is to control a robot motion from vi-
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sion sensors (camera). There are many types of problems tackled
through active vision [CLK11], including motion control [CH06].
However, the case of mobile robotics in highly dynamic environ-
ments has not attracted a lot of attention. In this sense, our work
also contributes to the robotics field, as our steering methods are
directly transferable to a robot equipped with a camera, assuming
that an accurate estimate of the optical flow is available.

3. Overview

This section provides a global description of our framework to steer
agents (characters) in dynamic environments.

3.1. Agent Model

In this section, we provide a brief description of the agent.

• Visual Sensors: Agents are equipped with a virtual camera at
the front of their head (simulating eyes). This camera is capable
of recording the optical flow and the depth of the scene perceived
at each update. The camera is always aligned with the direction
of motion of the agent. The optical flow and depth images are the
only information that are provided to our algorithm regarding the
perception of the environment.
• Control Variables: We consider an agent with two degrees of

freedom: forward acceleration ac and turning rate ωcy. Acceler-
ation allows the agent to move faster or slower and turning rate
is the angular velocity of the agent around its vertical axis, which
allows the agent to change its direction of motion. Lateral motion
is not considered in this model.

3.2. Algorithm Overview

Figure 1 shows the main components of the simulation loop by
which each agents’ motion is controlled at each time step:

• Agent Perception: in a first step, agents perceive the environ-
ment through a virtual camera set at the position of their head.
From this point of view, we are interested in the apparent mo-
tion perceived on each pixel caused by the motion of obstacles
relatively to the agent, i.e., the dense optical flow perceived by
agents. We compute the dense optical flow for each agent syn-
thetically, we remove its rotational component (i.e., we compen-
sate for agent’s head rotations). The computation of optical flow
is detailed in Section 4. Additionally, agents record the depth in
the scene corresponding to every pixel in the image.
• Visual Features: the next step is to extract some features from

the perceived optical flow. First, the image is segmented using
the optical flow image. This allows isolating obstacles with dif-
ferent apparent motion (most often corresponding to different
close moving obstacles). As result of the segmentation a set of
objects Oi, i ∈ [0..n] (static or moving obstacles, other agents)
are detected and their corresponding pixels x j, j ∈ [0..N] are ex-
tracted from the background. Then, per object Oi features are
computed such as the position of the center gxi, the Focus of Ex-
pansion (FOE) fi, time to collision τi and depth Zi. The relevance
and computation of these features are detailed in Section 5.

Agent Perception

Visual FeaturesControl Function

Navigation

Function

ℒ𝑔, ℒ𝑣, ℒ𝜏, ℒ𝑎𝑣, ℒ𝑚𝑖𝑛
𝑓𝑥1 𝑓𝑥2 𝑓𝑥3𝑡𝑥

𝑌
𝑋

𝑍

Figure 1: Agent control loop scheme: every frame, each agent fol-
lows these steps to move in dynamic environments.

• Control Functions: the third step is to evaluate a set of con-
trol functions Lk based on visual features and the agent’s speed.
Each control function relates agent’s motion with a visual feature
or its velocity. It is a basic element to build agents’ visual-motor
loops. For example, we define a control function Lt that controls
the projection of geometrical points in the image which is used to
perform goal reaching, this is detailed in Section 6. Other control
functions may control the position of an object’s focus of expan-
sion fi by changing their velocity to adjust the object’s relative
motion. The set of control functions and the set of visual features
agents are able to control is presented in Section 6.

• Navigation Functions: the final step of the simulation loop up-
dates agent velocity so as to locally minimize a navigation func-
tion. A navigation function allows an agent to achieve a high-
level navigation task such as reaching a goal while avoiding all
the obstacles on his way, the value of which reaches zero when
the task is achieved at best. Each navigation function is a combi-
nation of control functions, i.e., a high level task is formulated as
a set of visual features to control. This is achieved by formulat-
ing navigation functions as a combination of control behaviors:
L = ∑αkLk, where αk weights the relative importance of each
control function. This is explained in Section 7.

3.3. Mathematical Notation

In Table 1 the mathematical notations used through the paper are
summarized. Through the paper all magnitudes are expressed in a
coordinate frame with origin in the agent’s camera, the z axis in
the direction of the optical axis, y points towards the ground and x
towards the right of the agent.

The coordinates of 3D and 2D points are noted as X j =
(X j,Y j,Z j) and x j = (x j,y j). Optical flow is noted as u j = (u j,v j).
All image points are expressed in normalized coordinates. Sub-
index c correspond to magnitudes specific to the agent.
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Symbol Description
x j Position of pixel j in the image (2D point)
X j Position of point j in the 3D world relative to the

agent (3D point, m)
u j Optical flow of pixel j (2D vector)
fi Focus of Expansion (FOE) of object i (2D point)
gi Position of the center of object i in the image (2D

point)
t Position of the target (goal) in the image
vi Velocity of obstacle i relative to the agent (m/s)
vc Speed of the agent (m/s)
ac Acceleration of the agent (m/s2)

ωcy Angular velocity of the agent (rad/s)
τi Time-to-Collision with object i (s)
Zi Average depth of object i with respect to the agent (m)

Table 1: Description of symbols.

𝑌
𝑋

𝑍

Optical flow color code

𝑣

𝑢0

0

Figure 2: Agents are equipped with cameras capable of recording
rotationless optical flow at each frame. Color coding of the optical
flow map (u j,v j).

4. Agent Perception

In this section, we show how optical flow is computed. Optical flow
is defined as the apparent motion of objects in the visual field. For
the modeling, we approximate it with the projected motion in the
image plane. A dynamic observer with angular velocity ωcy per-
ceives a point X j of an object i, with relative translational velocity
vi. We neglect optical flow components due to the object’s own
rotation under the assumption that these rotations are small com-
pared the other contributions. The observer will perceive optical
flow [SBC96] according to the following equation,u j =

(
vix− x jviz

)
/Z j−ωcy

(
x2

j +1
)

v j =
(
viy− y jviz

)
/Z j−ωcyx jy j.

(1)

with (x j,y j) = (X j/Z j,Y j/Z j) being the projection of X j in the
image plane.

Equation (1) takes into account the angular velocity of the ob-
server. We need to remove this contribution from the perceived
flow. The reason is twofold: first, humans are able to compensate
rotational component through the Vestibulo-ocular reflex [Ang04],
and second, it allows us to define the FOE and other features de-

rived from it. Then, Equation (1) is reduced to the following ex-
pression,

{
u j =

(
vix− x jviz

)
/Z j,

v j =
(
viy− y jviz

)
/Z j.

(2)

Knowing the angular velocity of the agent, the optical flow map
can be compensated to remove the rotational contribution. Figure 2
illustrates the perception of an agent and the colors of optical flow
maps.

5. Visual Features

𝑓𝑥1 𝑓𝑥2 𝑓𝑥3

𝑡𝑥

𝑔𝑥1, 𝜏1

𝑔𝑥2, 𝜏2

𝑔𝑥3, 𝜏3

𝑥

𝑦

Figure 3: Segmentation of the optical flow image from Figure 2.
(top) Color image perceived by the agent. (down) Visual features
extracted from optical flow. The goal t of the agent corresponds to
the pink point. For every object the visual features extracted are the
FOE fi (blue points), time-to-collision τi, object center gi (orange
points) and optical flow vectors (blue arrows), which exhibit a ra-
dial configuration around the FOE allowing its computation as the
intersection of many lines. The pink object is a representation of
the goal and does not generate any optical flow.

In this section, we expose the relevant features encoded in an op-
tical flow image and show their dependency with the control vari-
ables. The relation between the translational velocity and the con-
trol scheme is given by v̇iz = −ac and v̇ix = −vcωcy. All features
presented in this section are object specific. As explained in Section
3, objects are extracted from the background in the flow image. The
first step is to remove the flow generated by the ground. We assume
a flat ground and knowing the agent’s height h, the depth of the
points belonging to the ground are given by Z(x j,y j) = h/y j and
the flow as (u j,v j) = (x jy j,y2

j)vc/h. Pixels matching this depth or
flow values are removed. Then, we use the OpenCV library to de-
tect discontinuities in the flow map through the Graph Segmenta-
tion algorithm [FH04]. The segmentation results in various objects,
which are treated as rigid bodies. Figure 3 illustrates the various
features contained in the optical flow image. Finally note that, as
the motion of our agents is restricted to the horizontal plane, we fo-
cus on the x component of the features. Following figures displays
visual features at the center of the vertical axis for this reason.
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5.1. Focus of Expansion

The FOE is a per-object feature. It is defined as a point with null
optical flow despite having a non-zero 3D velocity. It corresponds
to a point that moves towards or away from the observer. Therefore,
controlling the FOE allows us to prevent collisions. From (2) and
enforcing u j = 0 and ‖vi‖ 6= 0 the FOE is expressed as,{

fxi = vix/viz,

fyi = viy/viz,
(3)

which is the projection of the relative velocity of the object in the
image.

Optical flow vectors exhibit a radial configuration around this
point, which allows the FOE to be computed as the intersection
of many lines. These lines are defined as supporting point x j and
direction vector u j. Figure 3 illustrates the flow vectors configura-
tion.

Equation (3) can be derived to obtain the time variation of the
FOE with respect to the control variables. This results in the fol-
lowing expression,

ḟxi =

(
vc

viz
− f 2

xi−1
)

ωcy−
fxi

viz
ac. (4)

5.2. Time-to-collision

The time-to-collision is defined as the remaining time until an ob-
ject will cross the plane perpendicular to the direction of motion of
the agent. It is expressed as τi =− Zi

viz
. From the FOE and the optical

flow it is possible to compute the time-to-collision [TGS91] with-
out any 3D geometrical information nor 3D velocity. For each pixel
of the object we define its distance to the FOE as ∆ j ≡ ‖x j − fi‖
and we obtain

τi = ∑
j∈i

∆ j

‖u j‖
. (5)

It should be noted that although ∆ j and u j are pixel dependent val-
ues, τi is not. When noise is present, in order to obtain a robust re-
sult, τi is computed as the average for all pixels of the object as ex-
pressed in (5). Finally, τi allows us to express the relative velocity of
an agent in terms of the known information, vi =−( fxi, fyi,1)τi/Zi.

5.3. Dynamics of Optical Flow

Finally, optical flow is used as a visual feature as well. The temporal
derivative of (2) allows to obtaining the following expression,

u̇ j =
2
τi

u j−
vc

Z j
ωcy +

x j

Z j
ac. (6)

This will be used to perform velocity alignment and following.

6. Control Functions

In this section we present a set of control functions L based on the
visual features presented in the previous section. These functions
are used to perform various tasks that allow an agent to navigate in a
virtual environment. Therefore, we can update the control variables
in order to minimize the value of the control functions.

6.1. Target Reaching

Control of geometrical points is a well-known problem in robotics
[CH06]. It allows us to place a point (the goal) in a specific location
in the image. In our framework, we want the goal tx to be placed at
the center of the image. This will cause the agent to move towards
it. We use the following control function,

Lt =
1
2

t2
x , (7)

The minimum value of this function is for tx = 0 and will prevent
the agent from deviating too much from the goal. The goal is a
known point in space and in the image. The goal corresponds to a
3D point in space, therefore it follows (1) and its variation with the
control variables is,

ṫx = tx/τt − (t2
x +1)ωcy. (8)

In the cases where the goal is a region and not a point, tx is consid-
ered as the closest point of the region to the agent.

6.2. Collision Avoidance

As explained in Section 5.1 the FOE is the key element in prevent-
ing collisions. The geometrical point of an object that coincides
with the FOE moves towards the agent resulting in a future colli-
sion. Therefore, the FOE needs to be displaced away from the ob-
ject to prevent a collision. Additionally we need to take into account
the size of the agent to prevent collision not only with the camera
but also with the rest of the body. The control function needs to
produce high values when the FOE fxi is over the object or close to
gxi. To this end, we propose the following cost function,

Lav =
n

∑
i

I(τi)exp
(
−|∆xi|

σi

)
. (9)

where ∆xi = gxi− fxi, σi =
wi

ln(10) , being wi the width of the object
plus the width of the agent projected to the image, this is illustrated
in Figure 4. I(τi) = aτi + b is a linear function introduced to give
a higher value to objects with lower time-to-collision τi. In our im-
plementation we set a = −2 and b = 10 and the contribution of
objects with τi > 5s is clamped to 0.

Lav takes into account all objects that need to be avoided. The
goal of this function is to separate every FOE from its respective
object to obtain a collision free trajectory.

From Equations (1) and (4), ∆xi has the following dependency
with the control variables,

∆̇xi = (gxi− fxi)/τi +

(
f 2
xi−g2

xi−
τi

Zi
vc

)
ωcy +

τi

Zi
fxiac. (10)

6.3. Velocity Alignment

Velocity alignment consists in matching the direction of motion of
the agent with a certain object. Velocity alignment is modeled as
the minimization of the optical flow,

Lmin =
1

N2

(
∑
j∈i

u j

)2

, (11)
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𝑓𝑥1 𝑓𝑥2 𝑓𝑥3

𝑡𝑥

𝑔𝑥1, 𝜏1

𝑔𝑥2, 𝜏2

𝑔𝑥3, 𝜏3

𝑥

𝑦

ℒ𝑎𝑣

ℒ𝑡

𝑤3

𝑤2

𝑤1

Figure 4: Control Functions. Each control function has a different
purpose. Lav tries to separate the FOE fxi and the center of the
object by more than wi. wi is the size of the object plus the size of
the camera. Lt tries to place the goal tx to the center of the image.

being N the number of pixels of object i.

This function is intended to model a following behavior in con-
junction with (13). The relation of u j with the control variables has
been presented in (6).

6.4. Speed Control

Some control functions may change the speed of the agent without
any limit on their own. To control this behavior a preferred speed
v∗c is defined, that will play the role of the default speed when no
other behavior is active and will limit the range of possible values
it may take. This is modeled by,

Lv =
1
2
(vc− v∗c )

2, (12)

and from the definition of vc, v̇c = ac.

Alternatively, we may want to match the relative speed viz =
Zi
τi

between the camera and an object. This is for example useful to
follow an object. To this end, we will use,

Lτ =
1
2

v2
iz, (13)

with v̇iz =−ac.

7. Navigation Functions

In this section we present how higher-level navigation tasks can
be achieved by combining basic control functions. The key idea is
to blend these functions to generate a navigation function L, which
capture a complex behaviour, such as reaching a target while avoid-
ing collisions with multiple objects, or following a mobile target
while avoiding collision with obstacles. The general expression of
a navigation function is,

L= ∑
k

αkLk, (14)

where Lk is a control function presented in Section 6 and αk is a
parameter that controls the weight of each control function.

Our control variables are the agent’s acceleration ac and angu-
lar velocity ωcy around the vertical axis. At every update step, the
gradient of the navigation function is evaluated and the control vari-
ables are updated by,

ac =−λ
∂L
∂vc

, ωcy =−λ
∂L
∂θ

, (15)

with λ being the gradient descent step size parameter. We have em-
pirically found that a value λ = 1 performs well.

As an example, thanks to (8) using Lt from (7) re-
sults in the control variables taking the following values,
ac = 0, ωcy =−(1+ t2

x )tx.

8. Results

In this section we propose two navigation functions that follow the
scheme presented in Section 7 and present the trajectories gener-
ated by our algorithm when agents face different scenarios. In the
two following sections, we demonstrate that the few visual features
extracted from the perceived optical flow that compose our control
functions are sufficient to steer characters in high level navigation
tasks such as reaching destinations in dynamic environments, or
following moving objects. The extraction of visual features is how-
ever performed at a computational costs, that we evaluate in Section
8.3.

8.1. Collision-free goal reaching navigation

We first demonstrate our technique in the classic situation of a char-
acter reaching a goal while avoiding the obstacles of a given envi-
ronment. To model this behavior we build a navigation function
combining Equations (7), (12) and (9). The navigation function is
as follows,

L= αLt +βLv + γLav, (16)

We want to drive the goal to the center of the image to make sure
we move towards it and the comfort velocity v∗c = 0.15m.s−1. In
the following examples we will use α = 1,β = 0.1,γ = 1 unless
otherwise specified. In collision avoidance tasks the system tends
to apply a very small variation in acceleration therefore the value
of β affects only how fast the speed of the agent reaches the desired
speed v∗c . Empirically β = 0.1 yields good results. We will later
show the effect of the relative weight of α and γ.

The gradient in (15) is computed for (16) using (8) and (10),
leading the control variables to have the following expression,

ac =−λ

[
β(vc− v∗c )+

γ∑
i

I(τi)exp
(
−|∆xi|

σi

)
sign(∆xi)

σi

− fxiτi

Zi

]
,

ωcy =−λ

[
−αtx(t2

x +1)+

γ∑
i

I(τi)exp
(
−|∆xi|

σi

)
sign(∆xi)

σi

(
f 2
xi−g2

xi−
τi

Zi
vc

)]
,

(17)

which will update the simulation closing the control loop in Fig-
ure 1. We demonstrate this navigation function in static and dy-
namic environments.
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8.1.1. Static Environments

In a static environment, the apparent motion of objects is only due
to the agent’s own motion. This causes the FOE to be at the center
of the image at all times

(
∂ fxi
∂θ

= 0, ∂ fxi
∂vc

= 0
)

.

Figure 5 shows a complex room with objects of various sizes and
shapes. Our vision-based algorithm is capable to avoid any object
to cross the room. Each agent takes a different route depending
on its initial position because of the local optimization. As xg3 is
farther away it has a greater τi than other objects and therefore its
contribution toLav is lower. Therefore, the reaction to it takes place
later in the simulation.

𝑡𝑥 𝑓𝑥

𝑔𝑥1

𝑔𝑥2

𝑔𝑥3
𝑔𝑥4 𝑔𝑥5

Figure 5: Agent trajectory with static obstacles. (up) Top view.
Three agents need to cross the room avoiding obstacles. Various
objects of different shapes and sizes are present in this scene.
Agents are placed in different starting position and orientation and
they choose different paths to walk out the room. (middle) Visual
features perceived by one of the agents. (down) Color image per-
ceived corresponding to the visual features.

Figure 6 shows an example of an agent in a city-like environ-
ment. Due to using the entire optical flow image the agent is capa-
ble of avoiding objects with complex geometry like the fence and
of other shapes such as the tree.

8.1.2. Dynamic Environments

Now we let agents face other agents using the same navigation
function. Therefore, the FOE of every object will depend on the
motion of the corresponding agent.

Figure 7 shows a circle scenario. Six agents are arranged in a
circular formation and are tasked to reach the opposite side of the
circle. The symmetry of this scenario causes agents to follow the
same pattern.

Figure 6: Agent trajectory in a city-like environment with urban
obstacles.

𝑡𝑥

𝑓𝑥1

𝑔𝑥1

𝑔𝑥2 𝑔𝑥3

𝑔𝑥4

𝑓𝑥2 𝑓𝑥3 𝑓𝑥4

Figure 7: Circle scenario. (up) Six agents are initially arranged
in circular formation and need to reach opposite side of the cir-
cle. (middle) Visual features perceived by one agent. (down) Color
image corresponding to the same agent.

Figure 8 shows a scene of multiple agents in a street with cars.
Agents can adapt their paths to avoid both types of obstacles (cars
and other agents) and are capable of crossing the street without
collision.

Figure 9 shows two groups of agents tasked to reach the opposite
side of the room. This scenario shows the effect of different values
for γ. When it is too low (b) the agents barely adapt to other agents
and some collisions occur. As γ becomes greater agents with the
same goal form groups and increases the distance between them.

Figure 10 shows how the cost function and goal of an agent
varies over time. The cost of avoidance increases and decreases
very fast as objects enter and leave the field of view. Once all ob-
stacles are cleared goal reaching becomes dominant.

The supplementary video contains additional examples to fur-
ther illustrate our algorithm. We show examples of agents in vari-
ous scenarios avoiding static and dynamic obstacles and walking in
restricted spaces.
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Figure 8: Agent trajectory with complex obstacles in a city-like
environment.

8.2. Following

The second navigation function involves following. We build a nav-
igation function that models an agent following an object or another
agent. Therefore, our navigation function takes into account veloc-
ity alignment and speed matching. The agents need to be able to
avoid obstacles as well. Equations (11), (13) and (9) are thus com-
bined resulting in the following expression,

L= αLmin +βLτ + γLav, (18)

Lmin controls the direction of motion of the agent and Lτ controls
its speed.

Agents are assigned a leader and they are tasked to follow it.
Agents are drawn in blue while leaders are drawn with red color.
The parameters used in this section are α = 1,β = 1,γ = 1. In this
situation β affects how fast a blue agent adapts to the variation of
the speed of a red agent.

Similarly as we did for (17), we derive the expression of the
control variables from the navigation function in (18),

ac =−λ

[
−β

Zred
τred

+

γ∑
i

I(τi)exp
(
−|∆xi|

σi

)
sign(∆xi)

σi

− fxiτi

Zi

]
,

ωcy =−λ
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−α

(
2vc

NZred
∑

j∈red
u j

)
+

γ∑
i

I(τi)exp
(
−|∆xi|

σi

)
sign(∆xi)

σi

(
f 2
xi−g2

xi−
τi

Zi
vc

)]
,

(19)

to update the simulation.

Figure 11 shows an agent following another one. The red agent

goes through a set of way-points. Every time the red agent changes
its direction to reach the next way-point the blue agent adapts its
velocity to align with the one of the red agent. For higher values
of α the adaptation is faster and the trajectory of the blue agent
becomes similar to the trajectory of the red agent. For lower values
of α the adaptation is much slower producing a different trajectory.

Figure 12 shows a situation where obstacles are in the way of
the agents while following another agent. Depending on the initial
conditions the agents choose different paths to perform following
and avoidance.

8.3. Performance

In this section, we give indicative numbers about our approach per-
formance. Simulations ran on a 2.17GHz Intel Core i7 processor,
16 GB of RAM, Nvidia Quadro M2000M using Unreal Engine 4
as the graphics engine.

The performance of our algorithm depends on the chosen reso-
lution of the images. The GPU renders the flow image perceived by
the agent and then they are downloaded to the CPU. The data trans-
fer consumes a lot of time and thus we believe performance could
be greatly improved with a full GPU implementation. We ran most
of the simulations using a high-resolution camera 1024x1024. Un-
der these conditions, every agent takes on average 0.48s to update.
We can lower the resolution to 300x300 increasing performance to
0.03s per agent. Figure 13 shows the same scenarios shown through
the paper with high and low flow resolution. High-resolution flow
results in a quite straight trajectory while low resolution flows pro-
duces trajectories with higher curvature and noise due to the re-
duced precision in object position. In the first comparison, an agent
even takes a very different path.

Figure 14 shows a comparison of trajectories of the scenario
shown in Figure 9 for different resolutions and the computation
time per-agent and per frame. For lower resolutions, collisions oc-
cur more often due to the reduced spatial precision. In addition,
low-resolution images causes the object segmentation to be less ac-
curate.

9. Discussion

The previous section demonstrates our steering approach in action.
It demonstrates that using optical flow features, we are able to steer
agents so that they perform navigation tasks, such as goal-directed
navigation among static and dynamic obstacles. In this section, we
discuss our results as well as the limitations of our approach.

9.1. Level of realism and comparison with previous
approaches

Our objective is to reconsider the nature of inputs used for trajec-
tory control, with the aim of simulating more accurately the low
level processes by which human use vision to navigate. We demon-
strate that few visual features are enough to steer characters in goal-
directed navigation tasks performed in dynamic environments. Be-
cause some crowd simulation algorithms address similar problems,
we compare some of them with our approach.
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(a) Initial position. (b) γ = 0.1 (c) γ = 0.5 (d) γ = 1.0 (e) γ = 1.5

Figure 9: Two rows of agents navigate towards the opposite side of the room avoiding each other. As γ increases, the distance between agent
with different goals increases.

Figure 10: Variation of the cost function (left axis) and goal tx
(right axis) over time. It corresponds to the front agent of the sce-
nario shown in Figure 5.

Beyond the nature of input variables, the principles set by
our control scheme have similarities with previous approaches:
as [KSG14, DMCN∗17] we locally optimize a navigation function
to control instantaneous velocity and acceleration. Also, our nav-
igation functions have similarities with previous approaches. For
example, avoidance is based on the estimation of the risk of fu-
ture collision. In this sense, we are similar to the general principle
of velocity-based approaches [PPD07, vdBLM08] and their many
variants. Therefore, the crucial difference is the nature of variables
to estimate the risk of collision. Velocity based approaches explic-
itly compute the future distance of closest approach. We get this
estimation through the distance-between the visual center of an ob-
ject with the focus of expansion of the flow generated by this object.
Whilst resulting trajectories may exhibit similar properties (e.g.,
anticipated collision avoidance), they will not be strictly identical.
We believe our system could be used to identify human sensori-
motor functions that link vision and locomotion. This comparison
however needs large efforts, which would first consist in acquiring
visuomotor data to describe real human behaviors.

We now provide a qualitative comparison of our algorithm,
and more specifically the collision avoidance function (Eq. 16),
with RVO2 [vdBGLM11] and the model proposed by Dutra et
al [DMCN∗17]. We chose those two approaches because they
are good representative of two categories of approaches: velocity-
based and vision-based approach. These algorithms share many
similarities with ours. All of them evaluate the future risk of col-
lision between the character and surrounding obstacles and adjust
the characters motion accordingly. Their difference resides in the
way this risk is evaluated, and motion is adjusted. Obviously, the

main difference is that our approach relies on the evaluation of vi-
sual features whilst previous approaches exploit geometrical rela-
tions. The following comparison highlights the difference in the
generated trajectories over the example of crossing groups.

Figure 15 shows two groups of agents crossing each other to
reach the opposite side of the room with various initial densities.
We compare our model with the aforementioned ones. RVO2 works
well in low-density scenarios however, the distance between agents
of different groups is just the minimum to prevent collisions. In Du-
tra’s model and our model, the minimum distance between agents
is not fixed but rather it adapts to the density of the crowd. Dutra’s
model also favors many variations of speed for avoidance while in
our algorithm avoidance favors a change in orientation rather than a
change in the speed of an agent due to the nature of the visual fea-
ture. Our model favors following groups of agents with the same
direction while in other approaches agents may follow very differ-
ent paths from one another. RVO2 presents congestion issues when
the initial agent-to-agent spacing is much smaller than the size of
the agents. Dutra’s model and ours allows a continuous rearrange-
ment of the formation over time to minimize the congestion issue.

Figure 16 shows a comparison of the angular velocity of the
agents. Our model favors small progressive adaptations, Dutra’s
model favors sudden adaptations with large angular velocity and
RVO favors large and small adaptations alike.

9.2. Limitations and Future Work

One of the motivations in our work is to consider better the effect
of visual perception on motion control. Currently the optical flow
map does not consider lighting conditions however, objects that
lack contrast with the background or texture, or objects that are not
correctly lighted would not generate optical flow, and this lack of
information would implicitly impact motion control. We still need
to introduce the notion of lack of information in the control loops.
When the absence of optical flow is not due to the absence of near
moving objects, but the impossibility to perceive them, reaction is
different (e.g., humans avoid dark areas or are unable to move nor-
mally in the dark). To solve this problem we propose to change the
way we compute optical flow. A numerical approach would take
into account naturally the lightning conditions in the scene improv-
ing the capabilities of our framework. This poses the challenge of
obtaining high enough quality flow maps since it is usually com-
putationally expensive. We would like to evaluate the benefit of
recent techniques based on deep-learning approaches [IMS∗17] to
obtain the optical flow map. We also would like to remove the need
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(a) α = 1 (b) α = 2 (c) α = 5

Figure 11: Following a leader. The blue agent must follow the red one, which goes through a predefined set of way-points. We show the
resulting trajectory for different values of α.

𝑓𝑥1,2,3,4

𝑔𝑥1 𝑔𝑥2
𝑔𝑥3 𝑔𝑥4

Figure 12: Following scenario. (up) Four agents (blue) follow a
leader (red) while avoiding obstacles. (middle) Visual features per-
ceived by the agents. (down) Color image corresponding to the
middle image.

of depth information as an input to our algorithm. We believe that
some assumptions can be made such as τi

Zi
vc =

1
2 which assumes

that objects are moving at the same velocity as the agent and yet
avoidance would still be robust within a certain range of object ve-
locities.

We have demonstrated how relatively simple navigation function
perform well in different scenes, made of multiple static and dy-
namic obstacles. We have demonstrated that our method can com-
bine following and avoidance behaviors for example. There are
many other kinds of navigation tasks we would however like to
explore, for example multiple target tracking, or object intercep-
tion (catching), which have also been left unexplored by previous
approaches. Our algorithm relies on a cost function optimization.

Figure 13: Variation of trajectories depending on optical flow
resolution. The left column shows the resulting trajectories of a
300x300 flow map resolution and the right column shows the same
scenario with a 1024x1024 resolution.

Depending on the scenario, we may face the problem of local min-
imum. This may cause the agent to collide while trying to avoid
multiple objects if there is not enough room for it go through. This
can be avoided by considering two objects as a single one if they
are too close in the image, or also by playing on parameters value
(e.g., to diminish the importance of goal reaching and let the char-
acter exploring detours). While the meaning and the tuning of our
parameters is straightforward, we need to more deeply explore how
our navigation generalizes and how relative weights α and γ could
be automatically adapted to the visual context.

Beyond the question of behaviors and parameters, we are also in-
terested in applying our approach to simulate the collective motion
of animal species, such as birds or fishes.
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(a) (64x64) 0.003s (b) (128x128) 0.006s (c) (256x256) 0.027s (d) (512x512) 0.111s (e) (1024x1024) 0.48s

Figure 14: Trajectories of the scenario shown in Figure 9 for various resolutions. Computation time is shown for every resolution.

(a) Our model (b) Dutra (c) RVO2

Figure 15: Lane formation. Agents are tasked to reach the oppo-
site side of the room. (top) Agents are initially arranged in a low-
density configuration, agent spacing is larger than agent size. (bot-
tom) Agents are arranged in a high-density configuration, agent
spacing is close to zero.

Our method attempts to simulate some low-level sensorimotor
mechanism of human locomotion. To address more complex sce-
narios, we need to consider the role of other components, such as
for example visual attention, and how more generally use head mo-
tion to perform visual exploration of the environment (which would
address issues due to the limited field of view of agents), or the
coupling with basic motion behaviors with higher level ones such
as planning.

10. Conclusions

We presented a new agent steering approach using synthetic vision.
The main contribution of this paper is to formulate a set of steer-
ing behaviors that are directly expressed with the visual features
related to the optical flow generated by the motion of the agent
and dynamic obstacles. We built a set of navigation functions on
top of these steering behaviors to let agent autonomously perform
complex navigation tasks that combine avoidance of obstacles with
goal reaching. We have demonstrated that we can reproduce some
results obtained by previous approaches, while, in contrast with
them, we do not exploit geometrical relations between characters
and their environment. This is interesting for several reasons, in-
cluding the potential to support future research directions as we dis-
cussed, such as for example the identification of human perception-
action loops. Future work also aim at considering a new range vi-
sual factors which influence human navigation, such the environ-
ment lighting conditions. Also, our approach closes a gap between
Computer Graphics and Robotics. As we base on visual features
only, a robot equipped with a camera and optical flow computation

capabilities could be directly steered by our technique, whereas the
use of previous techniques would need to map the environment so
as to establish the required geometrical relations.
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