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Torque-Based Balancing for a Humanoid Robot
Performing High-Force Interaction Tasks

Firas Abi-Farraj1, Bernd Henze2, Christian Ott2, Paolo Robuffo Giordano1, and Máximo A. Roa2

Abstract—Balancing is a critical feature for a robot interacting
with an unstructured environment. The balancing control should
account for unknown perturbation forces that might destabilize
the robot when performing the intended tasks. In the case of
humanoid robots this challenge is higher due to the inherent
difficulties of balancing a robot on two legs, resulting in a
rather small footprint. Approaches for enabling a good balancing
behavior on humanoid robots traditionally rely on whole-body
balancing approaches. This paper extends a passivity-based
whole-body balancing framework to guarantee the equilibrium
of a humanoid robot while performing different interaction tasks
where the (high) task forces acting on the robot are difficult to
foresee. Instead of controlling the center of mass, the proposed
controller directly uses information from the Gravito-Inertial
Wrench Cone to guarantee the feasibility of the balancing forces.
The performance of the approach is validated in a number of
successful experimental tests.

Index Terms—Humanoid Robots, Force Control

I. INTRODUCTION

HUMANOID robots offer an embodiment that could allow
them to enter environments made for humans and utilize

standard tools and devices, in order to support and replace
humans in dangerous and physically demanding tasks. One
example of such expectations on humanoid robots was staged
during the DARPA Robotics Challenge (DRC), where robots
were required to perform simple tasks in disaster-like scenarios
such as driving a car, opening doors, walking on rough terrains,
and using simple tools. However, real-life disaster scenarios
are even more demanding; one would expect the robot to be ca-
pable of moving heavy objects (rocks, debris), operating heavy
machinery, and employing tools and devices that require both
skill and strength, such as hydraulic rescue tools. Performing
such tasks requires suitable control frameworks for dealing
with the interaction forces generated during the execution of
the task, while still accounting for the balance of the robotic
platform.

Accounting for interaction forces of the robot with the
environment can be achieved mainly in two different ways.
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Fig. 1. TORO pushing a table with a weight of 50 kg on top.

A straightforward approach is to separate interaction and
balancing tasks, which usually translates into considering two
independent controllers for the lower and upper body of the
robot [1], [2]. Forces coming from interactions with the envi-
ronment using the upper body are considered as a disturbance
input by the underlying balancing control, which guarantees
the robot balance using only the joints in the lower body. The
consideration of force distribution between lower and upper
body at the same time can also be achieved through whole-
body control frameworks, which exploit the capabilities of
redundant robots to deal with multiple tasks [3]–[7]. Different
whole-body balancing controllers have been proposed based
mainly on two approaches: solving the inverse kinematics or
dynamics of the robot [3], [8]–[10], or using passivity-based
approaches [5], [11], [12]. A subset of the whole-body control
frameworks feature a hierarchical architecture that allows for
multiple control objectives [3], [6], [13]. In [7], a hierarchical
approach was used to balance on contacts scattered over the
whole body of the robot.

When it is foreseen that high forces could arise in the
interaction of the robot with the environment, the robot can
plan in advance the best posture and force distribution required
to deal with the task [14]. The planning has to consider several
factors such as kinematic limitations, actuator constraints, or
characteristics of the supporting contacts. A recent method to
account for the contact properties is based on the computation
of the so-called Gravito-Inertial Wrench Cone (GIWC), which
provides the maximum perturbations that the robot can resist
at a given configuration, and/or the maximum interaction force
that the robot can generate at a given posture [15]–[18].
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However, this polyhedron has been so far used for (offline)
planning and not for instantaneous control of the robot posture.
In this context, the main goal of this paper is to leverage the
concept of the GIWC and apply it to instantaneous control of
the robot posture. A whole-body controller usually requires an
explicit goal provided for the center of mass (CoM) trajectory.
This paper does not specify an explicit location for the CoM;
instead, the CoM is moved such that the contact wrenches
required for balancing the interaction force are feasible for
each contact configuration. In that way, the polyhedron of
feasible balancing wrenches or GIWC is used to ensure the
online stability of the humanoid (with respect to the contact
properties) while interacting with an unknown environment.

II. PRELIMINARIES AND BACKGROUND

A. Dynamic Model

In the field of legged humanoid robotics it is common to
use dynamic models with a free-floating base, as they provide
a higher flexibility regarding contact changes compared to
dynamic models with a fixed base. In general, a central body
within the kinematic structure of the robot is chosen as base
link, e.g. the hip or the trunk. Some works also employ the
center of mass (CoM) as base, since it represents an essential
point for balancing. Here, we will follow [5] by defining a
CoM frame C, which is located at the CoM and has the same
orientation of the hip. Let xc ∈ R3 and Rc ∈ SO(3) denote
the position and orientation of the frame C with respect to the
world frameW . The corresponding translational and rotational
velocities are given by ẋc and ωc, respectively. Considering
the n joint angles q ∈ Rn and vc = (ẋTc ,ω

T
c )T , the dynamics

of the humanoid robot is given by

M

(
v̇c
q̈

)
︸ ︷︷ ︸
ν̇

+C

(
vc
q̇

)
︸ ︷︷ ︸
ν

+

(
mg0

0

)
︸ ︷︷ ︸
g

=

(
0
τ

)
+ τ ext. (1)

Herein, M ∈ R(6+n)×(6+n) and C ∈ R(6+n)×(6+n) represent
the inertia and Coriolis/centrifugal matrix, respectively. The
gravitational torques are given by g ∈ R6+n, with m denoting
the total mass of the robot and g0 ∈ R6 the gravitational
acceleration1. The joint torques are denoted by τ ∈ Rn. The
influence of external wrenches acting on the robot is taken
into account by the generalized torque vector τ ext ∈ R6+n.

Let us divide the Ψ end-effectors into two subgroups as
in [5]: the first group is referred to as “balancing end-effectors”
(bal) and contains the ψ end-effectors that are used by the
robot to support itself (usually the feet). The remaining end-
effectors are called “interaction end-effectors” (int), because
they can still be used for a manipulation or interaction task
(usually the hands). With this distinction, the Cartesian veloc-
ities of the end-effectors v ∈ R6Ψ are given by

v =

(
vbal
vint

)
=

[
Jbal
J int

]
ν = Jν (2)

with the Jacobian matrix J ∈ R6Ψ×(6+n) and vbal ∈ R6ψ ,
vint ∈ R6(Ψ−ψ), Jbal ∈ R6ψ×(6+n), J int ∈ R6(Ψ−ψ)×(6+n). If

1Note that g0 is a six-dimensional vector, containing three translational and
three rotational DoFs of the CoM frame C.

all external disturbances act solely at the end-effectors, τ ext
simplifies to

τ ext = JTF ext. (3)

B. Overview of the Compliant Balancing Controller

This section provides a brief summary of our balancing
controller, presented in detail in [5]. The controller stabi-
lizes the CoM by a Cartesian compliance, which generates
a wrench F c ∈ R6 at the CoM frame C. Each one of the
interaction end-effectors is stabilized by another Cartesian
compliance, with the resulting wrenches stacked into F int ∈
R6(Ψ−ψ). In order to support the robot, the control algorithm
computes a suitable set of balancing wrenches F opt

bal ∈ R6Ψ by
minimizing the following quadratic optimization problem

F opt
bal = argmin

F bal

(
F bal − F def

bal

)T
Q
(
F bal − F def

bal

)
(4)

with respect to

AdTbal F bal +AdTint F int = mg0 − F c (5)

and

fk,z ≥ fmin
k,z ,

δmin
k,x/y ≤ δk,x/y ≤ δ

max
k,x/y ,∣∣fk,x/y∣∣ ≤ µ̃kfk,z .

(6)

The cost function (4) minimizes the deviation of F bal from a
default wrench distribution2 F def

bal based on the positive definite
weighting matrix Q ∈ R6ψ×6ψ . The equality constraint (5)
represents the underactuation of the base by demanding that
the influence of all commanded end-effector wrenches (F bal,
F int) on the CoM must sum up to the compliance wrench F c
plus gravity. For this, the Jacobian matrices Jbal = [Adbal J̄bal ]
and J int = [Adint J̄ int ] are divided into Adbal ∈ R6ψ×6,
Adint ∈ R6(Ψ−ψ)×6, J̄bal ∈ R6ψ×n, and J̄ int ∈ R6(Ψ−ψ)×n.
The first two are the stacked adjoint matrices of each end-
effector, which relate a motion of the CoM frame C with
a motion of the end-effectors. The matrices J̄bal and J̄ int
map a motion of the joints to a motion of the end-effectors.
The inequality constraints (6) describe the contact model to
which F bal is subjected to in order to account for unilaterality,
location of the Center of Pressure (CoP), and friction of the
balancing contacts. For each end-effector wrench within F bal,
the force perpendicular to the contact surface has a lower
bound given as a minimum contact force fmin

k,z in order to
prevent the end-effector from lifting off3. Slippage is prevented
by constraining the tangential forces fk,x/y to the friction cone
given by µ̃k. The CoP δk is constrained to the interior of the
contact surface via δmin/max

k,x/y to prevent the end-effector from
tilting.

After computing a suitable wrench distribution F opt
bal , the

end-effector wrenches are mapped to joint space via

τ = −
[
J̄
T
bal J̄

T
int

](
F opt

bal
F int

)
. (7)

2The default distribution F def
bal is a tunable parameter, which can be set for

instance to 50% of the weight of the robot per foot if the posture is symmetric.
3For the conducted experiments (section IV), fmin

k,z was set to 50N in order
to account for the effect of joint friction.
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III. CONTROLLER DESIGN

In the architecture described in [5], a Cartesian compliance
defines the wrench F c to be applied at the CoM in order to
stabilize it at a desired configuration. This approach proved
efficient for balancing, and showed significant robustness to
noise and external disturbances. However, the amount of force
and torque the robot can apply with the interaction end-
effectors is limited because the balancing contacts must pro-
vide an appropriate counter-force constrained by the contact
model (6). With that in mind, a new approach for control-
ling the wrench F c on the CoM while accounting for the
interaction forces between the robot and the environment is
proposed in this paper. The proposed architecture is based
on the controller presented in [5] and aims at ensuring the
feasibility of the needed balancing wrenches as a function
of the contact configuration of the balancing end-effectors by
moving the CoM accordingly. The control is based on the
polyhedron of feasible balancing wrenches calculated from the
current contact configuration, with no need for calculating the
support polygon. The actuator limitations are not considered
in the described controller, but their inclusion is an interesting
direction for future exploration.

A. Force Polyhedron and Support Polygon

The support polygon of a humanoid robot is the region in
which the vertical projection of the CoM must lie so that the
balancing end-effectors can carry statically the robot’s weight.
In case that the humanoid is moving on a horizontal plane, the
support polygon S is the convex hull of the contact areas with
the ground, mainly corresponding to the feet of the humanoid
(Fig. 2). However, in a multi-contact scenario where other
parts of the humanoid’s body are used for balancing (e.g.
the hands), the calculation of the support polygon gets more
complicated [19]. The same holds in the case of non-horizontal
or non-planar contact surfaces (e.g. rough terrain).

x Center of the 
Support Polygon

Support 
Polygon

Pose of 
the COM 

Robot's feet

Fig. 2. Illustration of the support polygon for a robot standing on horizontal
ground.

The support polygon can be calculated from the GIWC,
which is the set of wrenches that the balancing end-effectors
can apply at a particular contact configuration. The contact
configuration, referred to hereafter by Υ, is the pose of the
end-effectors used for balancing in the world frame. It is
dependent on the contact configuration itself and the contact
model (see eq. (6)) specifying the maximum load that each
end-effector can carry. The contact model can be re-written
into a polyhedron ξi = {F bal,i : AiF bal,i ≤ bi} representing

the set of feasible wrenches for each balancing end-effector,
where F bal,i ∈ R6 (see [16] for details). The GIWC can
be calculated via the Minkowski-Sum of ξi, resulting in the
wrench polyhedron ξ defined as

ξ = {wF bal,t : AwF bal,t ≤ b} (8)

where A = [A1 ... An ]
T ∈ Rm×6 is a constant matrix and

b = ( b1 ... bm )
T ∈ Rm a constant vector. The total wrench

wF bal,t ∈ R6 is defined in the world frame W and is related
to F bal,i via wF bal,t = AdTc Ad

T
bal F bal. The adjoint matrix

Adc maps the total wrench from the CoM frame to the world
frame. Note that the resulting matrix wAdbal = AdbalAdc is
constant, as the balancing contacts are stationary with respect
to the world frame W . Any wrench wF satisfying (8) is
feasible and can be applied by the balancing end-effectors in
the current contact configuration Υ. If Υ changes, ξ can be
re-computed accordingly. We refer the reader to [16] for more
details on the calculation of the GIWC.

𝑤
𝑭𝑏𝑎𝑙,𝑡

𝑨 𝑤𝑭𝑏𝑎𝑙,𝒕 ≤ 𝒃

Fig. 3. TORO balancing with its right hand and left foot while interacting
with the environment using its right foot. The two balancing end-effectors can
exert a set of forces estimated by the polyhedron AwF bal,t ≤ b.

The support polygon is calculated at a particular pre-defined
point by projecting ξ on a certain plane of interest [17]. For
instance, in the case of a robot standing on horizontal ground,
ξ is projected on the horizontal plane at a point located on
the ground to retrieve the support polygon. This solution is,
however, clearly suboptimal since ξ corresponds to a whole
polyhedron (8), and is not just restricted to a planar projection.
Therefore in this paper we propose to define a control law at
the level of the balancing wrench itself, without the need of
calculating the support polygon.

B. Proposed Controller

Assuming a quasi-static scenario (Fc ≈ 0) and that all
external forces/torques act only at the end-effectors, eq. (5)
describing the forces at the CoM and defined at the origin of
the world frame W can then be written as

wF bal,t + wAdTint F int + wAdTc mg0 = 0. (9)
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Fig. 4. Overview of the control architecture.

Note that F int represents the commanded wrenches of the
compliances arising from the interaction task. The adjoint
matrices wAdc and wAdint are a function of the CoM location
xc and of the position xint,i of each interaction end-effector,
respectively. From the definition of ξ in (8), the balancing
wrenches are feasible if

AwF bal,t ≤ b, (10)

as detailed in [16].
Assuming that the robot starts from a feasible configuration,

we define a “distance” measure di from the current balancing
wrench wF bal,t to the ith face of the polyhedron ξ given by
{F bal,i : AiF bal,i = bi}, such that

di(
wF bal,t) =

bi −Ai
wF bal,t

||Ai||
. (11)

While there are infinite ways of expressing the GIWC, the
measure di is unique and scale invariant. We however assume
that there are no duplicate surfaces in (10).

On the other hand, from (9) we know that
wF bal,t = −wAdTint F int − wAdTc mg0

= −wAdTint F int −
[
I3×3 03×3

[xc]x I3×3

]
mg0

= −wAdTint F int −
[
mg0,x

03×3

]
+

[
03×3

[mg0,x]x

]
xc

= −wAdTint F int −
[
mg0,x

03×3

]
+mg


03×2[

0 −1
1 0

]
01×3

[xcyc
]
,

(12)
where [·]x denotes the skew-symmetric operator, and
g0,x ∈ R3 is the linear component of g0 = ( gT0,x 03 )

T ,
with gT0,x = [0 0 − g]T . As no previous knowledge of
the environment is assumed, F int in the above equation is
unknown, which leaves xc and yc as the only controllable
variables.

The balancing end-effectors can apply the required balanc-
ing wrench wF bal,t if and only if di > 0 ∀i. We then define a
potential H to encode the proximity of the balancing wrench to

the limits of ξ. H needs to be a monotone function that grows
infinite as d→ 0, in order to reflect the loss of balance in such
a case. Among the many ways to design such a potential, we
empirically choose H to be

H(xc, yc) =
∑
i

1

di(xc, yc)
. (13)

To simplify the notation, H(xc, yc) and di(xc, yc) are respec-
tively referred to by H and di in the rest of the paper.

Since ξ is convex, the balance of the humanoid robot can
be ensured by defining a gradient-descent control law on H
(Fig. 4). The gradient of H with respect to [xc, yc]

T can be
written as

∂H

∂[xc, yc]T
= mg

(∑
i

Ai

d2
i ||Ai||

)
03×2[

0 −1
1 0

]
01×3

 (14)

As the only CoM parameters impacting H are xc and yc,
the control wrench F c to be applied at the CoM (eq. (5))
can be divided into two parts F c = [F c,b F c,i]

T , where
F c,b = [Fc,x Fc,y]T ∈ R2 ensures the balance of the
robot by acting on the x and y components of xc, while
F c,i = [Fc,z F c,ω]T ∈ R4 commands the z component of xc
and the orientation Rc of the CoM frame C. Consequently, we
define F c,b as

F c,b = −kb
(

∂H

∂[xc yc]T

)T
−Dc,b

[
ẋc
ẏc

]
, (15)

where Dc,b ∈ R2×2 is a damping matrix, and kb is a
control gain. Note that while the interaction forces, F int,
cannot be predicted, they are accounted for in the term
1/d2

i in ∂H/∂[xc yc]
T . It is also important to indicate that

F int actually corresponds to the commanded forces on the
interacting end-effectors (which are controlled in compliance),
and it is not retrieved from the measured torques. On the other
hand, F c,i is defined as an impedance-based control task to
allow the control of zc and Rc as described in section II-B.

C. Contact Switching

While a humanoid can balance on its feet, different contact
configurations may be required in cases where, for example,
the ground is not planar or where the robot needs to use its feet
to interact with the environment. Switching from a particular
contact configuration to another one requires shifting the sup-
porting forces from some end-effectors to others, depending
on the given contact configuration. In this section, we describe
an autonomous contact-switching algorithm that handles this
“weight shifting” process in the wrench space when the end-
effectors are already in position. A typical situation happens
when the two feet of the robot are on the ground and one
hand is in contact with a wall. The robot can switch contacts
to balance using any possible combination of the three end-
effectors, i.e. the two feet, the two feet and the hand, or one
foot and the hand. The three end-effectors are assumed to be
static during the switching process. In order to handle cases
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where the balancing end-effectors should be moved (e.g. for
stepping), this algorithm needs to be topped with a suitable
planner.

Assume the robot is balancing on a particular contact
configuration Υ1, with ψ1 end-effectors, and needs to switch
to a different contact configuration Υ2, with ψ2 end-effectors.
Two GIWC, ξ1 and ξ2, can be defined corresponding to
contact configurations Υ1 and Υ2 respectively. The goal of
the contact switch is to ‘move’ wF bal,t from polyhedron ξ1

to polyhedron ξ2. To this end, we retrieve the optimal CoM
position, [xc, yc]opt,x, corresponding to each polyhedron ξx by
solving

min
[xc,yc]

Hξx , (16)

where Hξx is the potential in (13) calculated for the GIWC
ξx. [xc, yc]opt,x can then be substituted in (12) to retrieve
the optimal balancing wrench wF opt,x corresponding to ξx.
Note that when the robot is in contact configuration ξx, the
gradient descent controller defined in section II-B maintains
wF bal,t at wF opt,x, which ensures a smooth back and forth
switch between the two controllers.

The contact-switching controller aims then to drive wF bal,t
from wF opt,1 to wF opt,2 (i.e. from polyhedron ξ1 to polyhedron
ξ2). To this end, we define a quadratic contact-switch potential
Hcs as

Hcs = (wF bal,d(t)−wF bal)
T (wF bal,d(t)−wF bal) (17)

where wF bal,d = (1 − α) wF opt,1 + α wF opt,2 is the desired
balancing wrench that shifts smoothly from wF opt,1 to wF opt,2
as α : 0→ 1. Since the contacts corresponding to both ξ1 and
ξ2 are established during the switch, and as all the computed
wrench polyhedrons are convex, wF bal,d necessarily lies within
the Minkowski-Sum of ξ1 and ξ2, which ensures its feasibility.

Finally, and similarly to section II-B, the wrench F c,cs to
be applied at the CoM is defined as

F c,cs = −kcs
(

∂Hcs

∂[xc yc]T

)T
−Dc,b

[
ẋc
ẏc

]
, (18)

where kcs is a control gain. The resulting overall algorithm is
detailed in Alg. 1. For this algorithm, εα and εHcs are control
variables to be tuned.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

The proposed approach was implemented on TORO, the
torque-controlled humanoid robot developed at DLR [20]. The
robot has 27 DoF (plus 12 DoF at the hands), a total height of
1.74 m and a weight of 76.4 kg. 25 of the joints, located
at the arms, legs and hip, are based on the DLR-KUKA
LBR (Lightweight robot arm), and allow for both position and
torque control modes. Besides position and torque sensing at
the LBR-based joints, TORO has an IMU at the trunk and a
6-DoF Force-Torque sensor at each foot.

Algorithm 1 Contact-Switching algorithm.
1: wF bal,d = wF opt,1
2: Switch from controller (15) to controller (18) (F c =
F c,cs)

3: while Hcs > εHcs
do

4: F c = F c,cs(
wF bal,d)

5: end while
6: α = 0
7: while α < 1 do
8: wF bal,d = (1− α) wF opt,1 + α wF opt,2
9: F c = F c,cs(

wF bal,d)
10: α = α+ εα
11: end while
12: wF bal,d = wF opt,2
13: while Hcs > εHcs

do
14: F c = F c,cs(

wF bal,d)
15: end while
16: Switch back from controller (18) to controller (15) (F c =

F c,b)

B. Experimental results

Several experiments were performed to validate the pro-
posed approach. They are demonstrated in the attached video
(available also at https://youtu.be/TBl49-XvnRE). In this sec-
tion, we discuss four experiments that demonstrate the ap-
plicability of the proposed architecture for balancing while
interacting with the environment, and for automatic contact
switching.

1) Experiment 1. Carrying a heavy box: The experiment
consists of a person passing to the robot a box weighing 25 kg
(nearly one third of the robot’s weight), and then taking it back.
The hands of the robot are controlled in impedance mode and
are subject to the Cartesian end-effector compliance described
in section II-B. No feed-forward forces were fed to the arms
to counteract the weight of the box, which is totally unknown
to the controller. Figure 5 shows the results of the experiment.
The two dashed lines denote the instances when the robot takes
the box from the human (t=6.5 s) and when it gives it back
(t=19.5 s). Figures 5a and 5b show the commanded linear
compliance forces on the right and left hand respectively,
which reach a maximum of 142 N on the right and 134 N on
the left hand. Figure 5c shows the x and y coordinates of the
CoM, which is autonomously shifted backwards due to (15) to
compensate for the weight of the box. This is also reflected in
Fig. 5d where the ZMP, measured from sensors on the feet of
the robot, is rapidly stabilized after the disruptions during the
application and the release of the weight. The sensors used for
measuring the ZMP position are relatively noisy, and this is
visible in the initial (t < 3 s) and final (t > 20 s) stages of the
experiment. The estimation of the CoM position (calculated
from joint encoders as in [5]) is, on the other hand, more
smooth and accurate. The trajectories of both ZMP and CoM
throughout the experiment are visualized in Fig. 5e over the
support polygon. Note that the ZMP remains in the support
area throughout the whole experiment. Despite the disruptions
during the box handover, the ZMP remains almost stationary
while the CoM is shifted to the back in order to compensate
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Fig. 5. Results for experiment 1: lifting a box of 25 kg. (a) Force on the
right hand. (b) Force on the left hand. (c) CoM position. (d) ZMP position.
(e) CoM and ZMP over the support polygon. (f) Experimental setup.

for the weight of the box. It is worth noting here that the
maximum weight of the box was limited by the maximum
torques that the joints can deliver (in particular, the limit of
40 Nm at the elbow was critical). In the attached video, it
is visible that the elbows were stretched when carrying the
whole mass of 25 kg.

2) Experiment 2. Table Pushing: In the second experiment,
the robot is placed in front of a table and is required to push
it forward. The weight of the table and the friction parameters
with the ground are unknown (as it is usually the case in
such situations), the push-forward motion is planned as a
forward Cartesian trajectory for the two hands with no feed-
forward forces. Figures 6a and 6b show the commanded linear
compliance forces, which reach an overall magnitude of 79.5 N
and 60.8 N on the right and left hands, respectively. Figure 6c
shows the x and y coordinates of the CoM, which shifts
significantly forward to compensate for the forces applied
by the interacting end-effectors. In fact, the CoM leaves the
ground support area toward the front, which would result in an
immediate fall without the interaction forces. This is reflected
in Fig. 6d and Fig. 6e, which depict the trajectory of the ZMP.
Note that the contact configuration, and therefore the ZMP
support area, is different with respect to the first experiment.
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Fig. 6. Results for experiment 2: pushing a table weighing 50 kg. (a) Force on
the right hand. (b) Force on the left hand. (c) CoM position. (d) ZMP position.
(e) CoM and ZMP over the support polygon. (f) Experimental setup.

Figure 6e shows that the ZMP is significantly far from the
boundaries of its support area throughout the experiment. It
is slightly shifted from the center due to noisy measurements
and minor uncertainties in the model of the robot.

3) Experiment 3. Interacting with the Right Foot: The robot
in this experiment is balancing using its left foot and right
hand, while the right foot and the left hand are free end-
effectors available for interaction. The robot uses its right
foot to push an object (a fire extinguisher of mass 19.8 kg).
Again, the environment and its properties are unknown to
the controller, and the motion of the foot is simply planned
in Cartesian space. Figure 7 describes the results of the
performed experiments. Figure 7a shows the commanded com-
pliance forces on the right foot, which increase in magnitude
up to 70.3 N. The different phases of the experiment are clearly
distinguishable on the graph as the foot establishes contact
with the object (force starts to increase), starts pushing it (the
force is at its maximum) and finally retreats back to its initial
position (the force goes back to zero). Figure 7b shows the
forces applied by the right hand, which is used for balancing.
Note that the applied force maintains a stable behavior as the
right foot pushes and releases the object. The threshold for the
maximum balancing forces to be applied on the right hand is
100N; this threshold is never reached during the experiment.
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Fig. 7. Results for experiment 3: using the right foot to move a heavy fire
extinguisher (19.8 kg). (a) Force on the right hand. (b) Force on the left hand.
(c) CoM position. (d) ZMP position. (e) CoM over the support area (orange)
and ZMP of the left foot. (f) Experimental setup.

The motion of the CoM as it counteracts the force applied
on the foot by moving slightly to the right is depicted in
Fig. 7c and Fig. 7e. The latter shows the trajectory of the CoM
over the support area, which is calculated from the contact
configuration of the balancing end-effectors (the left foot and
the right hand in this case). The left foot, which maintains
contact with the ground, is shown in gray. As there is no
information about the forces applied on the right hand (no
force/pressure sensors available), the ZMP trajectory plotted in
Fig. 7e corresponds to the ZMP of the left foot only (measured
with the force-torque sensor in the foot). The mentioned ZMP
keeps a relatively constant position throughout the experiment,
regardless of the forces applied by the right foot.

4) Experiment 4. Automatic Contact Switching: The fourth
experiment aims at validating the automatic contact switching
algorithm described in section III-C. Before the beginning of
the experiment, the robot (standing on its feet) establishes
contact with the structure using its right hand. All three end-
effectors (the right hand and both feet) remain in contact
throughout the experiment (Fig. 8). At t=0 s, the robot balances
on its two feet with no load on its right hand. It then
incorporates its right hand as a balancing end-effector and
shifts its weight to balance on its feet and its right hand
(t=7 s). Finally, it shifts its weight again to balance on its
right hand and its left foot, with no load on its right foot
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Fig. 8. Results for experiment 4: The robot shifts its balance autonomously
between the three end-effectors that are in contact. It switches between
contact configuration Υff (only the two feet used for balancing), contact
configuration Υffh (the two feet and the right hand all used for balancing),
and contact configuration Υfh (only the left foot and the right hand used for
balancing). Figure (a) shows the change in position for the CoM. Figures (b-
d) show the cost function H corresponding to contact configurations Υff ,
Υffh and Υfh respectively. A lower value of H reflects a better balance
of the robot.

(t=15 s). Figure 8a shows the change in the CoM position as
the robot shifts from one balancing configuration to another
one. The three contact configurations are respectively referred
to by Υff for balancing on two feet, Υffh for balancing
on both feet and the right hand, and Υfh for balancing on
the left foot and the right hand. Since a different GIWC
exists for each contact configuration, the value of the cost
function H , depicting the stability of the robot, is different
depending on which GIWC is considered, even if the state of
the robot did not change. For example, the robot would be
more stable when using all three end-effectors for balancing
rather than using only two (with the third being in contact but
carrying no weight). This is reflected in Fig. 8b-8d, where the
evolution of the potential H for each configuration is shown.
The three figures depict H for contact configurations Υff ,
Υffh and Υfh respectively. Note that a lower H reflects a
better stability. The regions shaded in gray represent the phases
during which the balance switch takes place. During the first
phase (t=1→4.4 s) the robot, which was balancing on its two
feet with no load on its right hand, incorporates that hand as
an additional balancing end-effector. During the second phase
(t=7.3→12 s) the robot shifts from balancing on its two feet
and its right hand to balancing on its left foot and its right
hand, removing all load from the right foot (which can now
be lifted if needed).

The results of the experiment showed several interesting
characteristics of the architecture and of the proposed potential
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function H . First, note that the average value of H is lowest
for contact configuration Υffh at ≈ 3.8e-3 (Fig. 8b). It is
higher for contact configuration Υff , where it ranges between
4.8e-3 and 5.5e-3 (Fig. 8a), and it is highest for contact
configuration Υfh, where H reaches a maximum of 7.8e-3
(Fig. 8c). Recalling from the definition of H in eq. (13) that
the lower the potential the better the balance, the results go in-
line with the intuition that the robot is best balanced using all
three end-effectors, and least balanced when balancing on one
foot and a hand only. On the other hand, the contact switch is
reflected as the robot shifts from configuration Υff to Υffh,
where the potential corresponding to Υff increases while
that of Υffh decreases to its minimum. A similar behavior
is observed when switching from Υffh to Υfh, where the
potential corresponding to the former increases while that
of the latter decreases to its minimum. On the other hand,
the degree of variation of each potential reflects as well the
robustness of each balancing configuration. We notice that
balancing on one foot and one hand is quite sensitive to
changes in the posture of the robot, whereas balancing on both
feet and the hand is altogether a much more robust posture.

V. CONCLUSIONS

In this paper, we have presented a controller for maintaining
the balance of torque-controlled humanoid robots in the pres-
ence of unknown (and high) external forces. The controller
acts at the wrench level to ensure that the needed balancing
forces lie within the Gravito-Inertial Wrench Cone (GIWC).
The same approach is applied to allow for automatic switching
between different contact configurations by acting on the
GIWC itself. The efficiency and robustness of the approach
was demonstrated by several experiments that tested the robot
hardware with forces up to the order of 250 N (≈ 1/3 of the
robot’s weight). The robot interacted with and manipulated the
environment using one hand, both hands and even one foot,
while the controller was handling the different force directions
and contact configurations.

An extension of the present work is the consideration of the
tracking case in order to ensure balance of the robot in highly
dynamic scenarios. Actuator limits could be included into the
GIWC following the ideas in [21]. Moreover, it is interesting
to couple the controller with a higher-level planner to allow for
complicated tasks like opening spring-loaded doors. A more
exhaustive analysis of passivity and stability of the proposed
architecture is a future work.
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