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A Direct Dense Visual Servoing Approach
using Photometric Moments

Manikandan Bakthavatchalam, Omar Tahri and François Chaumette

Abstract—In this paper, visual servoing based on photometric

moments is advocated. A direct approach is chosen by which

the extraction of geometric primitives, visual tracking and image

matching steps of a conventional visual servoing pipeline can be

bypassed. A vital challenge in photometric methods is the change

in the image resulting from the appearance and disappearance

of portions of the scene from the camera field of view during the

servo. To tackle this issue, a general model for the photometric

moments enhanced with spatial weighting is proposed. The inter-

action matrix for these spatially weighted photometric moments

is derived in analytical form. The correctness of the modelling,

effectiveness of the proposed strategy in handling the exogenous

regions and improved convergence domain are demonstrated with

a combination of simulation and experimental results.

Index Terms—image moments, photometric moments, dense

visual servoing, intensity-based visual servoing

I. INTRODUCTION

Visual servoing (VS) refers to a wide spectrum of closed-
loop techniques for the control of actuated systems with visual
feedback [3]. A task function is defined from a set of selected
visual features, based on the currently acquired image I(t)
and the reference image I⇤ learnt from the desired robot pose.
In a typical VS pipeline, the image stream is subjected to an
ensemble of measurement processes, including one or more
image processing, image matching and visual tracking steps,
from which the visual features are determined. Based on the
nature of the visual features used in the control law, VS meth-
ods can be broadly classified into geometric and photometric
approaches. The earliest geometric approaches employ as
visual features parameters observed in the image of geometric
primitives (points, straight lines, ellipses, cylinders) [4]. These
approaches are termed Image-based Visual Servoing (IBVS).
In Pose-based Visual Servoing [5], geometric primitives are
used to reconstruct the camera pose which is then used as
input for visual servoing. These approaches are thus dependent
on the reliable detection, extraction and subsequent tracking
of the aforesaid primitives. While PBVS may be affected by
instabilities in pose estimation, IBVS designed from image
points may be subject to local minima, singularity, inadequate
robot trajectory and limited convergence domain, when the
six degrees of freedom are controlled and when the image
error is large and/or when the robot has a large displacement
to achieve to reach the desired pose [3]. This is due to the
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strong non linearities and coupling in the interaction matrix
of image points. To handle these issues, geometric moments
were introduced for VS in [6]–[8], which allowed obtaining
a large convergence domain and adequate robot trajectories,
thanks to the reduction of the non linearities and coupling in
the interaction matrix of adequate combinations of moments.
However, these methods are afflicted by a serious restriction:
their dependency on the availability of well-segmented regions
or a set of tracked and matched points in the image. Breaking
this traditional dependency, the approach proposed in this
paper embraces a more general class, known as dense VS, in
which the extraction, tracking and matching of set of points
or well-segmented regions is not necessary.

In another suite of geometric methods, an homography and a
projective homography are respectively used as visual features
in [9] and [10], [11]. These quantities are estimated by solving
a geometric or photo-geometric image registration problem,
carried out with non-linear iterative methods. However, these
methods require a perfect matching of the template considered
in the initial and desired images, which strongly limits their
practical relevance.

The second type of methods adopted the photometric ap-
proach by avoiding explicit geometric extraction and resorting
instead to use the image intensities. A learning-based approach
was proposed in [12], where the intensities were transformed
using Principal Component Analysis to a reduced dimensional
subspace. But it is prohibitive to scale this approach to multiple
degrees of freedom [13]. The set of intensities in the image
were directly used as visual features in [14] but the high non-
linearity between the feature space and the state space limits
the convergence domain of this method and does not allow
obtaining adequate robot trajectories. This direct approach was
later extended to omnidirectional cameras [15] and to depth
map [16].

In this work, instead of using directly the raw luminance
of all the pixels, we investigate the usage of visual features
based on photometric moments. As it has been shown in
[7] that considering geometric moments (built from a set
of image points) provides a better behavior than considering
directly a set of image points, we will show that considering
photometric moments (built from the luminance of the pixels
in the image) provides a better behavior than considering
directly the luminance of the pixels. These moments are a
specific case of the Kernel-based formulation in [17] which
synthesized controllers only for 3D translations and rotation
around the optic axis. Furthermore, the analytical form of the
interaction matrix of the features proposed in [17] has not
been determined, which makes impossible the theoretical sta-
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bility analysis of the corresponding control scheme. Different
from [17], the interaction matrix is developed in closed-form
in this paper, and most importantly taking into account all the
six degrees of freedom, which is the first main contribution
of this work. It is shown that this is more general as well as
consistent with the current state-of-the-art.

Furthermore, an important practical (and theoretical) issue
that affects photometric methods stem from the changes in
the image due to the appearance of new portions of the
scene or the disappearance of previously viewed portions
from the camera field-of-view (FOV). This means that the
set of measurements varies along the robot trajectory, with
a potential large discrepancy between the initial and desired
images, leading to an inconsistency between the set of lumi-
nances I(t) in the current image and the set I⇤ in the desired
image, and thus also for the photometric moments computed in
the current and desired images. In practice, such unmodelled
disturbances influence the system behaviour and may result
in failure of the control law. Another original contribution of
this work is an effective solution proposed to this challenging
problem by means of a spatial weighting scheme. In particular,
we determine a weighting function so that a closed-form
expression of the interaction matrix can be determined.

The main contributions of this paper lie in the modelling
issues related to considering photometric moments as inputs
of visual servoing and in the study of the improvements it
brings with respect to the pure luminance method. The control
scheme we have used to validate these contributions is a clas-
sical and basic kinematic controller [3]. Let us note that more
advanced control schemes, such as dynamic controllers [18]–
[20], could be designed from these new visual features.

The sequel of the paper is organized as follows: in Sec-
tion II, the modelling aspects of photometric moments and
the associated weighting strategy are discussed in depth. In
Section III, the visual features adopted and the control aspects
are discussed. Sections IV and V are devoted to simulations
and experimental results. Finally, the conclusions drawn are
presented in Section VI.

II. MODELLING

Generalizing the classical definition of image moments, we
define a weighted photometric moment of order (p+ q) as:

mpq =

ZZ

⇡

xpyq w (x) I (x, t) dx dy (1)

where x = (x, y) is a spatial point on the image plane ⇡ where
the intensity I(x, t) is measured at time t and w(x) is a weight
attributed to that measurement. By linking the variations of
these moments to the camera velocity vc, the interaction
matrix of the photometric moments can be obtained.

ṁpq = Lmpq vc (2)

where Lmpq =
⇥
Lvx
mpq L

vy
mpq Lvz

mpq L!x
mpq L

!y
mpq L!z

mpq

⇤
. Each

Lv/!
mpq 2 R is a scalar with the superscripted v denoting

translational velocity and ! the rotational velocity along or
around the axis x, y or z axis of the camera frame.

Taking the derivative of the photometric moments in (1),
we have

ṁpq =

ZZ

⇡

xpyq w(x) İ(x, y) dx dy (3)

The first step is thus to model the variations in the intensity
İ(x, y) that appear in (3). In [14] which aimed to use raw lu-
minance directly as visual feature, the intensity variations were
modelled using the Phong illumination model [21] resulting in
an interaction matrix with parts corresponding to the ambient
and diffuse terms. In practice, use of light reflection models
requires cumbersome measurements for correct instantiation of
the models. Besides, a perfect model should take into account
the type of light source, attenuation model and different
possible configurations between the light sources, the vision
sensor and the target object used in the scene. Since VS is
robust to modelling errors, adding such premature complexity
to the models can be avoided. Instead, this paper adopts a
simpler and more practical approach by using the classical
brightness constancy assumption [22] to model the intensity
variations, as done in [23]. This assumption considers that the
intensity of a moving point x = (x, y) remains unchanged
between successively acquired images. This is encapsulated
in the following well-known equation

I(x+ �x, t+ �t) = I(x, t) (4)

where �x is the infinitesimal displacement undergone by the
image point after an infinitesimal increment in time �t. A first
order Taylor expansion of (4) around x leads to

rI>ẋ+ İ = 0 (5)

known as the classical optic flow constraint equation (OFCE),
where rI> =

h
@I
@x

@I
@y

i
=

⇥
Ix Iy

⇤
is the spatial gradient

at the image point x. Further, the relationship linking the
variations in the coordinates of a point in the image with the
spatial motions of a camera is well established [3]: ẋ = Lxvc

where

Lx =

�1
Z 0 x

Z xy �(1 + x2) y
0 �1

Z
y
Z 1 + y2 �xy �x

�
(6)

In general, the depth of the scene points can be considered
as a polynomial surface expressed as a function of the image
point coordinates [6].

1

Z
=

X

p�0,q�0,p+qn

Apqx
pyq (7)

where n is the degree of the polynomial with n = 1 for
a planar scene. Equation (7) is a general form with the
only assumption that the depth is continuous. In this work
however, for simplifying the analytical forms presented, only
planar scenes have been considered in the modelling1. We will
see in Section V-D that this simplification is not crucial by
considering non planar environments. Therefore, with n = 1,
(7) becomes

1

Z
= Ax+By + C (8)

1Note that the general analytic form of Lmpq could be obtained with n > 1
for non planar scenes, as was done in [6] for the geometric moments



3

where A(= A10), B(= A01), C(= A00) are scalar parameters
that describe the configuration of the plane in the camera
frame. From (5), we can write:

İ(x, y) = �rI>ẋ (9)

By plugging (8) and (6) in (9), we obtain

İ(x, y) = LI vc = �rI>Lx vc (10)

where LI = �rI>Lx is given by:

L>
I =

2

6666664

Ix(Ax+By + C)
Iy(Ax+By + C)

(�xIx � yIy)(Ax+By + C)
�xyIx � (1 + y2)Iy
(1 + x2)Ix + xyIy

�yIx + xIy

3

7777775
(11)

Substituting (10) into (3), we see that

ṁpq =

ZZ

⇡

xpyq w(x)LI vc dx dy (12)

By comparing with (2), we can then identify and write down
the interaction matrix of the photometric moments as

Lmpq =

ZZ

⇡

xpyq w(x)LI dx dy (13)

Direct substitution of (11) into the above equation gives us

Lvx
mpq =

ZZ

⇡

xpyqw(x)Ix(Ax+By + C) dx dy

Lvy
mpq =

ZZ

⇡

xpyqw(x)Iy(Ax+By + C) dx dy

Lvz
mpq =

ZZ

⇡

xpyqw(x)(�xIx � yIy)(Ax+By + C) dx dy

L!x
mpq =

ZZ

⇡

xpyqw(x)(�xyIx � (1 + y2)Iy) dx dy

L!y
mpq =

ZZ

⇡

xpyqw(x)((1 + x2)Ix + xyIy) dx dy

L!z
mpq =

ZZ

⇡

xpyqw(x)(xIy � yIx) dx dy

We see that the interaction matrix consists of a set of integro-
differential equations. For convenience and fluidity in the
ensuing developments, the following compact notation is in-
troduced.

mrx
pq =

ZZ

⇡

xpyq w(x) Ix dx dy (14a)

mry
pq =

ZZ

⇡

xpyq w(x) Iy dx dy (14b)

Each component of the interaction matrix in (13) can be easily
re-arranged and expressed in terms of the above compact
notation as follows:

Lvx
mpq = Amrx

p+1,q +Bmrx
p,q+1 + Cmrx

p,q

Lvy
mpq = Amry

p+1,q +Bmry
p,q+1 + Cmry

p,q

Lvz
mpq = �Amrx

p+2,q �Bmrx
p+1,q+1 � Cmrx

p+1,q

�Amry
p+1,q+1 �Bmry

p,q+2 � Cmry
p,q+1

L!x
mpq = �mrx

p+1,q+1 � mry
p,q � mry

p,q+2

L!y
mpq = mrx

p,q + mrx
p+2,q + mry

p+1,q+1

L!z
mpq = �mrx

p,q+1 + mry
p+1,q

(15)

The terms mrx
pq and mry

pq have to be evaluated to arrive at the
interaction matrix. This in turn would require the computation
of the image gradient terms Ix and Iy , an image processing
step performed using derivative filters, which might introduce
an imprecision in the computed values. In the following, it is
shown that a clever application of the Green’s theorem can
help subvert the image gradients computation.

The Green’s theorem helps to compute the integral of a
function defined over a subdomain ⇡ of R2 by transforming
it into a line (curve/contour) integral over the boundary of ⇡,
denoted here as @⇡:

ZZ

⇡

(
@Q

@x
� @P

@y
)dx dy =

I

@⇡

Pdx+

I

@⇡

Qdy (16)

With suitable choices of functions P and Q, we aim to
transform the terms mrx

pq and mry
pq . To compute mrx

pq , we
let Q = xp yq w(x) I(x) and P = 0. We have @P

@y = 0 and

@Q

@x
= pxp�1yqw(x)I(x)+xpyq

@w

@x
I(x)+xpyqw(x)Ix (17)

Substituting this back into (16), we can write
ZZ

⇡

h
p xp�1 yq w(x)I(x) + xpyq

@w

@x
I(x)

+ xpyq w(x) Ix
i
dxdy =

I

@⇡

xp yq w(x) I(x)dy (18)

Recalling our compact notation in (14a) and rearranging (18),
we obtain

mrx
pq =�

ZZ

⇡

⇣
p xp�1 yq w(x)I(x) + xp yq

@w

@x
I(x)

⌘
dx dy

+

I

@⇡

xpyqw(x)I(x)dy

Applying (1) to the first term in the RHS, we have

mrx
pq = �pmp�1,q �

ZZ

⇡

xp yq
@w

@x
I(x) dx dy

+

I

@⇡

xp yq w(x) I(x) dy
(19)
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In the same manner, the computation of the term mry
pq is

again simplified by employing the Green’s theorem with
P = xp yq w(x) I(x) and Q = 0.

mry
pq = �q mp,q�1 �

ZZ

⇡

xp yq
@w(x, y)

@y
I(x) dx dy

�
I

@⇡

xp yq w(x) I(x) dx
(20)

The results (19) and (20) are generic, meaning there are no
explicit conditions on the weighting except that the function
is differentiable. Clearly, depending on the nature of the
weighting chosen for the measured intensities in (1), different
analytical results can be obtained. In the following, two
variants of the interaction matrix are developed corresponding
to two different choices for the spatial weighting.

A. Uniformly Weighted Photometric Moments (UWPM)
First, the interaction matrix is established by attributing the

same importance to all the measured intensities on the image
plane. These moments are obtained by simply fixing w(x, t) =

1, 8x 2 ⇡ leading to
@w

@x
=

@w

@y
= 0. Subsequently, (19) and

(20) get reduced to
8
<

:

mrx
pq = �pmp�1,q +

H

@⇡

xp yq I(x, y) dy

mry
pq = �q mp,q�1 �

H

@⇡

xp yq I(x, y) dx
(21)

The second terms in mrx
pq and mry

pq are contour integrals along
@⇡. These terms represent the contribution of information
that enter and leave the image due to camera motion. They
could be evaluated directly but for obtaining simple closed-
form expressions, the conditions under which they vanish are
studied. Let us denote I@⇡ =

H

@⇡

xp yq I(x, y) dy.

The limits y = ym and y = yM are introduced at the top and
bottom of the image respectively (see Fig 1a). Since y(= yM )
is constant along C1 and y(= ym) is constant along C3, it is
sufficient to integrate along C2 and C4. Along C2, y varies
from yM to ym while x remains constant at xM . Along C4,
y varies from ym to yM while x remains constant at xm.
Introducing these limits, we get

I@⇡ = xp
M

ymZ

yM

yqI(xM , y)dy + xp
m

yMZ

ym

yqI(xm, y)dy

If I(xM , y) = I(xm, y) = I, 8y, then we have

I@⇡ = (xp
M � xp

m) I

ymZ

yM

yqdy

Since we want I@⇡ = 0, the only solution is to have
I = 0, that is when the acquired image is surrounded by a
uniformly colored black2 background. This assumption, named
information persistence (IP) was already implicitly done in

2or white with the intensity I redefined to Imax � I and the rest of the
developments remain identical.

[17] [24]. It does not need not be strictly enforced. In fact, mild
violations of the IP assumption were deliberately introduced
in experiments (refer IV-B) and this was quite acceptable in
most cases, as evidenced by our results. This assumption gets
naturally eliminated when appropriate weighting functions are
introduced in the moments formulation as shown in II-B.

(a) (b)

Fig. 1. a) Evaluation of contour integrals in the interaction matrix devel-
opments, b) Custom exponential function w(x, y) = exp�650(x2+y2)2 in
the domain �0.4  x  0.4 and �0.3  y  0.3. Gradual reduction in
importance from maximum (dark red) in the centre outwards to minimum
(blue) at the edges

With the same line of reasoning, the contour integral in mry
pq

also vanishes. Then (21) transforms to the following simple
form: ⇢

mrx
pq = �p mp�1,q

mry
pq = �q mp,q�1

(22)

Substituting (22) into (15), we get the final closed form
expression for the interaction matrix.

Lvx
mpq = �A(p+ 1)mpq �Bpmp�1,q+1 � Cpmp�1,q

Lvy
mpq = �Aqmp+1,q�1 �B(q + 1)mp,q � Cqmp,q�1

Lvz
mpq = A (p+ q + 3)mp+1,q

+B(p+ q + 3)mp,q+1 + C(p+ q + 2)mpq

L!x
mpq = q mp,q�1 + (p+ q + 3)mp,q+1

L!y
mpq = �pmp�1,q � (p+ q + 3)mp+1,q

L!z
mpq = pmp�1,q+1 � q mp+1,q�1

(23)

The interaction matrix in (23) has a form which is exactly
identical to those developed earlier for the geometric moments
[6]. A consistency with previously developed results is thus
observed even though the method used for the modelling
developments differ completely from [6]. Consequently, all
the useful results available in the state of the art with regards
to the developments of visual features [7] [8] are applicable
as they are for the proposed photometric moments. Unlike
(15), the image gradients do not appear anymore in the
interaction matrix. Their computation is no longer necessary.
The developments presented have led to the elimination of
this image processing step required by pure luminance-based
visual servoing [14]. The computation of the interaction matrix
is now reduced to a simple and straight-forward computation
of the moments on the image plane. Note also that in order
to calculate Lmpq , only moments of order upto p + q + 1
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are required. In addition, we note that as usual in IBVS, the
interaction matrix components corresponding to the rotational
degrees of freedom are free from 3D parameters.

B. Weighted Photometric Moments (WPM)

In order to remove the IP assumption we do not attribute
anymore an equal contribution to all the measured intensities
(w(x) 6= 1, 8x 2 @⇡), as was done in Sec II-A. Instead, a
lesser importance is attributed to peripheral pixels, on which
the appearance and disappearance effects are pronounced. To
achieve this, the spatial weighting function is made to attribute
maximal importance to the pixels in the area around the image
center and smoothly reducing it radially outwards towards 0
at the image periphery. If w(x, y) = 0, 8x 2 @⇡, this still
ensures I@⇡ = 0 obviating the need to have any explicit IP
assumption anymore.

Weighting scheme: The standard logistic function l(x) =
1

1+e�x smoothly varies between 0 and 1 and has simple deriva-
tives. It is a standard function that is used in machine learning.
However, if used to design w(x), it is straight-forward to check
that the interaction matrix cannot be expressed as functions
of the weighted photometric moments. To achieve this, we
propose to use functions with the general structure:

F(x) = K exp�p(x) (24)

with p(x) = a0+a1x+
1
2a2x

2+ 1
3a3x

3+ ...+ 1
nanx

n. Indeed,
functions of this structure possess the interesting property that
their derivatives can be expressed in terms of the function
itself. It is given by:

F 0(x) = �K exp�p(x) p0(x) = �p0(x)F(x)

with p0(x) = a1 + a2x + a3x2 + ... + anxn�1. In line
with the above arguments, we propose the following custom
exponential function (see Fig 1b)

w(x, y) = K exp�a(x2+y2)2 (25)

where K is the maximum value that w can attain and a can
be used to vary the area which receives maximal and minimal
weights respectively. This choice allows the interaction matrix
to be obtained directly in closed-form as a function of the
weighted moments. Therefore, no additional computational
overheads are introduced since nothing other than weighted
moments upto a specific order are required. In addition, the
symmetric function to which the exponential is raised ensures
that the spatial weighting does not alter the behaviour of
weighted photometric moments to planar rotations.

The spatial derivatives of (25) are as follows:
8
><

>:

@w

@x
= �4ax(x2 + y2)w(x)

@w

@y
= �4ay(x2 + y2)w(x)

(26)

Substituting (26) into (19) and (20), we obtain
⇢

mrx
pq = �p mp�1,q + 4a (mp+3,q +mp+1,q+2)

mry
pq = �q mp,q�1 + 4a (mp,q+3 +mp+2,q+1)

(27)

By combining (27) with the generic form in (15), the inter-
action matrix of photometric moments wLmpq weighted with
the radial function (25) is obtained.

wLmpq =
h
wLvx

mpq
wLvy

mpq
wLvz

mpq
wL!x

mpq
wL!y

mpq
wL!z

mpq

i
(28)

with
wLvx

mpq = Lvx
mpq + 4 aA (mp+4,q +mp+2,q+2)

+ 4 aB (mp+3,q+1 +mp+1,q+3)

+ 4 aC (mp+3,q +mp+1,q+2)
wLvy

mpq = Lvy
mpq + 4 aA (mp+3,q+1 +mp+1,q+3)

+ 4 aB (mp,q+4 +mp+2,q+2)

+ 4 aC (mp,q+3 +mp+2,q+1)
wLvz

mpq = Lvz
mpq � 4 aA (mp+5,q + 2mp+3,q+2 +mp+1,q+4)

� 4 aB (mp+4,q+1 + 2mp+2,q+3 +mp,q+5)

� 4 aC (mp+4,q + 2mp+2,q+2 +mp,q+4)
wL!x

mpq = L!x
1mpq � 4 a(mp+4,q+1 + 2mp+2,q+3 +mp,q+3

+mp+2,q+1 +mp,q+5)
wL!y

mpq = L
!y

1mpq + 4 a(mp+3,q +mp+1,q+2 +mp+5,q

+ 2mp+3,q+2 +mp+1,q+4)
wL!z

mpq = L!z
mpq = pmp�1,q+1 � qmp+1,q�1

We note that the interaction matrix can be expressed as a
matrix sum

wLmpq = Lmpq + 4aLw (29)

where Lmpq has the same form as (23). We note however that
the moments are now computed using the weighting function
in (25). The matrix Lw is tied directly to the weighting
function. Of course if a = 0 which means w(x) = 1, 8x 2 ⇡,
we find wLmpq = Lmpq .

To compute Lmpq , moments of order upto (p+ q + 1) are
required whereas Lw is a function of moments mtu, where
t + u  p + q + 5. This is in fact a resultant of the term
(x2 + y2)2 to which the exponential is raised (see (25)).

On observation of the last component of wLmpq , we see that
it does not contain any new terms when compared to (23). That
is, the weighting function has not induced any extra terms,
thus retaining the invariance of the classical moment invariants
to optic axis rotations. This outcome was of course desired
from the symmetry of the weighting function. On the other
hand, if we consider the other five components, additional
terms are contributed by the weighting function. As a result,
moment polynomials developed from the classical moments
[7] will not be invariant to translational motions when used
with WPM. Thus, there is a need to develop new invariants
for use with WPM such that they would retain their invariance
to translations. This is an open problem that is not dealt with
in this paper. Finally and as usual, the components of the
interaction matrix corresponding to the rotational motions are
still free from any 3D parameters.

Weighted photometric moments allow visual servoing on
scenes prone to appearance and disappearance effects. More-
over, the interaction matrix has been developed in closed-form
in order to facilitate detailed stability and robustness analyses.
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The above developments would be near-identical for other
weighting function choices of the form given by (24) [25].

III. VISUAL FEATURES AND CONTROL SCHEME

The photometric moments are image-based measurements
m(t) = (m00(t),m10(t),m01(t), ...) obtained from the image
I(t). To control n ( 6) degrees of freedom of the robot,
a large set of k (> n) individual photometric moments
could be used as input s to the control scheme: s = m(t).
However, this would lead to redundant features, for which it
is well known that, at best, only the local asymptotic stability
can be demonstrated [3]. That is why we prefer to use the
same strategy as in [6]–[8], that is, from the set of available
measurements m(t), we design a set of n visual features
s = s(m(t)) so that Ls is of full rank n and has nice
decoupling properties. The interaction matrix Ls can easily
be obtained from the matrices Lmpq 2 R1⇥6 modelled in the
previous section. Indeed, we have:

Ls =
@s

@m
Lm (30)

where Lm is the matrix obtained by stacking the matrices
Lmpq . Then, the control scheme with the most basic and
classical form has been selected [3]:

vc = ��cLs
�1

(s� s⇤) (31)

where s⇤ = s(m⇤) and cLs is an estimation or an ap-
proximation of Ls. Such an approximation or estimation is
indeed necessary since, as detailed in the previous section,
the translational components of Lmpq are function of the 3D
parameters Apq describing the depth map of the scene. Clas-
sical choices are cLs = Ls(s(t), bZ(t)) where Z = (A,B,C)
when an estimation of Z is available, cLs = Ls(s(t),cZ⇤),
or even cLs = Ls(s⇤,cZ⇤). Another classical choice is to
use the mean cLs = 1

2

⇣
Ls(s(t), bZ(t)) + Ls(s⇤,cZ⇤)

⌘
or

cLs = 1
2

⇣
Ls(s(t),cZ⇤) + Ls(s⇤,cZ⇤)

⌘
since it was shown to

be efficient for very large camera displacements [26].
With such a control scheme, it is well known that the global

asymptotic stability (GAS) of the system in the Lyapunov
sense is ensured if the following sufficient condition holds [3]:

Ls
cLs

�1
> 0 (32)

Of course, in case cLs = Ls , the system is GAS if Ls is
never singular, and a perfect decoupled exponential decrease
of the error s� s⇤ is obtained. Such a perfect behavior is not
obtained as long as cLs 6= Ls , but the error norm will decrease
and the system will converge if condition (32) is ensured. This
explains the fact that a non planar scene can be considered in
practice (see Section V-D), even if the modelling developed
in the previous section was limited to the planar case.

A. Control of SCARA motions
Photometric moments-based visual features can be used to

control not only the subset of SE(3) motions considered in
[17] but also full 6 dof motions. In the former case, the robot
is configured for SCARA (3T+1R, n = 4) type actuation to

control only the planar translation, translation along the optic
axis and rotation around the optic axis. The camera velocity
is thus reduced to vcr = (vx, vy, vz,!z). Similarly to [7], the
following set of 4 visual features is used to control these 4
dofs.

sr = (xn, yn, an,↵) (33)

where xn = xgan, yn = ygan, an = Z⇤
q

m⇤
00

m00
with

xg = m10/m00 and yg = m01/m00 the centre of grav-
ity coordinates, Z⇤ the desired depth and finally ↵ =
1

2
arctan

⇣ 2µ11

µ20 � µ02

⌘
is made of centred moments given by:

8
><

>:

µ20 = m20 �m00x
2
g

µ02 = m02 �m00y
2
g

µ11 = m11 �m00xgyg

(34)

From the simple relations between sr and mpq, (p + q < 3),
it is quite simple to determine the analytical form of the
interaction matrix Lsr using (30). When the target is parallel
to the image plane (A = B = 0), the following sparse matrix
is obtained for UWPM.

Lsr =

2

664

Lxn

Lyn

Lan

L↵

3

775 =

2

664

�1 0 0 yn
0 �1 0 �xn

0 0 �1 0
0 0 0 �1

3

775 (35)

Let us note that the current value of the depth does not appear
anywhere in Lsr and only the desired value Z⇤ intervenes
indirectly through xn and yn, and thus in Lsr . This nice
property and the sparsity in (35) justify the choice of sr.
Following the line of analysis at the start of this section, we
infer that the control law using dLsr = Lsr (sr(t), Z

⇤) is GAS
since Lsr is always of full rank 4 and Lsr

dLsr

�1
= I4 when

cZ⇤ = Z⇤.
Let us now consider the more general case where cZ⇤ 6= Z⇤.

From (35), it is straight-forward to obtain

Ls
cLs

�1
=

2

664

1 0 0 Y
0 1 0 X
0 0 1 0
0 0 0 1

3

775 (36)

where Y = (
bZ⇤

Z⇤ �1)yn and X = (1� bZ⇤

Z⇤ )xn. The eigen values
of the symmetric part of the above matrix product are given
by � = {1, 1, 1±

p
X2+Y 2

2 }. For (32) to hold, all eigen values
have to be positive, that is,

p
X2+Y 2

2 < 1 , X2 + Y 2 < 4.
Back-substitution of X and Y yields the following bounds for
system stability:

1� 2p
x2
n + y2n

<
bZ⇤

Z
< 1 +

2p
x2
n + y2n

(37)

which are easily ensured in practice since xn and yn are small
(0.01 typically).

Let us now consider the case where cLs = �I4, which is a
coarse approximation. In that case, we obtain

Ls
cLs

�1
=

2

664

1 0 0 �yn
0 1 0 xn

0 0 1 0
0 0 0 1

3

775 (38)
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Then, proceeding as previously leads to the following condi-
tion for GAS

x2
n + y2n < 4 (39)

which, once again, is always ensured in practice. Note that
these satisfactory theoretical results have not been reported
previously and are an original contribution of this work.
Unfortunately, exhibiting similar conditions for the WPM case
is not so easy since the first three columns of Lsr are not as
simple as (35) due to the loss of invariance property of WPM.

B. 6 dof control
To control all the 6 dof, two more features in addition to (33)

are required. In moments-based VS methods, these features are
chosen as ratios of moment polynomials which are invariant to
2D translations, planar rotation and scale. In [7], [8], several
moment invariants-based visual features have been introduced.
In principle, all these previous results could be adopted for
use with the photometric moments proposed in this work.
Certainly, an exhaustive exploration of all these choices is
impractical. Based on several simulations and experimental
convergence trials (see [25]), the following visual feature
introduced in [8] was selected:

r = �1/�2 (40)

with
⇢

�1 = 3µ̃30µ̃12 + µ̃2
30 + 3µ̃03µ̃21 + µ̃2

03

�2 = �µ̃30µ̃12 + µ̃2
21 � µ̃03µ̃21 + µ̃2

12
(41)

where µ̃pq is the shifted moment of order p+ q with respect
to shift point xsh(xsh, ysh) defined by [8]:

µ̃pq =

ZZ
(x� xg + xsh)

p(y � yg + ysh)
qw(x)I(x) dx dy

(42)
where the shift point coordinates (xsh, ysh) are defined by

⇢
xsh =

p
m00 cos ✓

ysh =
p
m00 sin ✓

(43)

Fig. 2. Shift points P1(xg + xsh1) and P2(xg + xsh2) with respect to
which the shifted moments are computed.

As shown in Fig 2, one shift point is selected along the
major orientation (✓ = ↵) and the second point orthogonal
to the previous (✓ = ↵ + ⇡

2 ) such that we have : P1[xg +p
m00 cos(↵), yg+

p
m00 sin(↵)] and P2[xg+

p
m00 cos(↵+

⇡
2 ), yg +

p
m00 sin(↵+ ⇡

2 )]. To sum up, the shifted moments
in (42) are computed with respect to P1 and P2, resulting in
two different sets of shifted moments. Then, the feature in (40)
is computed employing these two sets of moments to derive
two corresponding visual features rP1 and rP2 . Therefore, the

following set of visual features for controlling the 6 dof is
obtained:

s = (xn, yn, an, rP1 , rP2 ,↵) (44)

The interaction matrix developments of rP1 and rP2 are pro-
vided in Appendix A. When UWPM are used, the interaction
matrix Ls exhibits the following sparse structure when the
sensor and target planes are parallel.

L||
s =


I3 D
03 E

�
(45)

with D =

2

64
L!x
xn

L
!y
xn yn

L!x
yn

L
!y
yn �xn

L!x
an

L
!y
an 0

3

75 and E =

2

64

L!x
rP1

L
!y
rP1

0

L!x
rP2

L
!y
rP2

0

0 0 �1

3

75.

The matrix E is non-singular if its left 2 ⇥ 2 submatrix
has a non-zero determinant. When the interaction matrix is
computed with moments from shift points (P1 6= P2) as
described above, this condition is effortlessly ensured. As a
result, the interaction matrix L||

s is non-singular [8]. On the
other hand, when the features are built from WPM, the sparsity
in (45) cannot be achieved anymore. This is because Ls has a
more complex form, except for its last column which remains
exactly the same (since behaviour with respect to optic axis
rotations is not altered). Nevertheless, the obtained results
were quite satisfactory for a variety of scenes and camera
displacements, as shown in the next section.

IV. VALIDATION RESULTS FOR UWPM
A. Modelling Validation and Comparison to Pure Luminance

In this section, simulation results of 6 dof positioning tasks
are presented to demonstrate the correctness of the modelling
of the UWPM proposed in Sec.II-A and to compare their
behavior to pure luminance. The initial and desired images
are shown in Figs.3a and 3b respectively. The background is
empty without appearance or disappearance of scene portions
in the camera view. The initial pose is chosen far away from
the desired one such that the image overlap is small. The
displacements required for convergence are a translation of
t = [1.0m, 1.0m, 1.0m] and a rotation of R = [25�, 10�, 55�].

The control law in (31) is used with cLs = Ls(s(t),Z(t)).
This control law is expected to result in a pure exponential
decrease of the errors to 0. In simulation, the depths Z(t) are
readily available from ground truth and need not be estimated.
A gain of � = 1.0 was used for this experiment.

As seen from Fig 3c, a perfect exponential decrease of the
errors is indeed obtained as expected. Furthermore, the camera
traces a straight-forward path to the goal pose as shown in Fig
3d. This demonstrates the validity of the modelling steps and
the design of the visual features. Let us note that no image
processing (image matching or visual tracking) were used with
the photometric moments in the reported experiments.

Comparison to pure luminance: Then, the same control
law configuration was tested using pure luminance directly
as visual feature, that is using vc = ��cLI

+
(I � I⇤). The

velocity profiles generated are shown in Figure 4c. The pure
luminance experiment is not successful as it results in an
enormous final error e ⇡ 109, as seen from Fig 4a. In direct
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(a) Initial image (b) Desired image

(c) Visual feature errors (d) Camera 3-D trajectory

Fig. 3. Simulation results with UWPM in perfect conditions

(a) Pure luminance: error norm kI�I⇤k (b) UWPM: error norm ks� s⇤k

(c) Pure luminance: camera velocities (d) UWPM: camera velocities

Fig. 4. Comparison of UWPM and pure luminance VS

contrast, the control velocities computed using the photometric
moments (see Fig 4d) ensures a clear monotonous decrease of
the feature error norm, as shown in Fig 4b. This evidence
supports our assertion that the visual features based on the
photometric moments have a larger convergence domain than
the pure luminance features. With photometric moments, we
can appreciate the direct correspondence between each feature
and the degree of freedom it intends to control, a property
highly desired in visual servo control. The camera view and
evolution of the error images in the above cases are shown in
the video supplement.

B. Experimental Results with UWPM

Experiments were performed at video rate on a Viper850
6 dof robot. Unlike in Sec IV-A, mild violations of the IP as-
sumption are deliberately allowed. The photometric moments
are tested first on SCARA-type motions and then with 6 dof.

1) SCARA motions: For this experiment, the features in
(33) are used with their current interaction matrix bLs =
cLs(s(t),cZ⇤), with cZ⇤ = (0, 0, 1/Ẑ⇤), Ẑ⇤ roughly approxi-
mated with depth value at the desired pose. A gain of � = 1.5
was used. The desired image is shown in Figure 5b. The initial
pose is chosen such that the image in 5a is observed by the
camera. The target is placed such that very small portions of
its corners are slightly outside the field of view (see Fig 5a).
Furthermore, the background is not perfectly black, thereby
non-zero.

(a) Initial image (b) Desired image

(c) Visual feature errors (d) Camera velocities

(e) Camera spatial trajectory

Fig. 5. Experimental results in SCARA mode actuation pertaining to
Section IV-B1.

The generated control velocities are shown in Fig 5d. The
decrease of the errors is purely exponential except for the small
blip during the very few initial iterations, as shown in Fig 5c.
This blip is due to the small portions of the target which enter
the image and introduce a small disturbance in those initial
iterations. The overall behavior is satisfactory with the camera



9

(a) Desired image (b) Initial image

(c) Visual feature errors (d) Camera velocities

(e) Camera spatial trajectory

Fig. 6. 6 dof experimental results pertaining to Section IV-B2.

following a straight-forward trajectory to the goal as seen from
Figure 5e.

2) 6 dof positioning tasks: The desired pose of the camera
is fronto-parallel, about 0.5m vertically above the target where
the learnt image is as shown in Fig 6a. For the initial pose,
the robot is steered far from the desired pose. At this initial
pose, the sensor and target planes are not parallel anymore.
The image acquired at this initial pose is shown in Fig
6b. The robot has to undergo a reasonably complex motion
employing all its dof to achieve this task. The translational
displacement is ctc⇤ = [26.0cm, 13.25cm,�8.00cm] and the
rotational displacement is cRc⇤ = [7.0�,�21.16�, 17.10�].
For the control law, the depth was measured once offline
and approximated roughly at cZ⇤ = 0.5m. A constant gain
of � = 0.2 was used. The set of visual features in (44) is
used with the interaction matrix at the desired configuration
bLs = Ls(s⇤, Ẑ⇤) with Ẑ⇤ = (0, 0, 1/Ẑ⇤).

It can be observed from Fig 6c that the decrease in errors is
highly satisfactory while we recall that only the interaction ma-
trix at the desired configuration and approximate depth were
employed. The generated velocity profiles are also smooth
as shown in Fig.6d. Clearly, the camera spatial trajectory is
close to a geodesic as shown in Figure IV-B2. Further, an

accuracy of [�0.56mm,�0.08mm, 0.14mm] in translation
and [�0.01�, 0.04�,�0.03�] in rotation was obtained. The
above experimental results showed results with UWPM where
there are only mild violations of the IP assumption. Next, we
show results on more general scenes with WPM where this
restrictive assumption (black background) has been eliminated.

V. VALIDATION RESULTS FOR WPM
For all the experiments presented in this section, the pa-

rameter K = 1 is fixed, so maximum weight a pixel can have
is 1. Then, a is chosen with a simple heuristic, that 40% of
the image pixels will be assigned a weight greater than 0.5
and around 90% a weight greater than 0.01. This is straight-
forward to compute from the definition of w(x, y). For an
image resolution of 640 ⇥ 480 for example, with K = 1,
a = 650 satisfies the above simple heuristic. The surface
of w(x, y) with these parameters is depicted in Fig. 1b. Let
us note that the tuning of these parameters is not crucial. In
our case, changing a by ±200 does not introduce any drastic
changes in the results.

A. Validation of WPM
In this section, the modelling of WPM is validated using

6 dof positioning tasks in simulation. No specific backgrounds
are considered anymore since the WPM designed in Section
II-B are equipped to handle such scenarios. Comparisons to
both the pure luminance feature and to moments without the
weighting strategy are made.

The image learnt from the desired pose is shown in Fig
7b. In the image acquired from the initial robot pose (see Fig
7a), a large subset of pixels not present in the desired image
have appeared. In fact, there is no clear distinction of which
pixels constitute the background. These scenarios are more
representative of camera-mounted robotic arms interacting
with real world objects. For the control, the set of visual
features (44) is adopted with the current interaction matrix
Ls(s(t),Z(t)). The depths are not estimated but available from
the ground truth data. A gain of � = 1.5 was used for all the
experiments. The resulting behaviour is very satisfactory. The
errors in the visual features decrease exponentially as shown
in Figures 7c and 7d. This confirms the correctness of the
modelling steps used to obtain the interaction matrix of WPM.
Naturally, the successful results also imply the correctness of
the visual features obtained from the weighted moments.

Comparison with UWPM: For the comparison, the same
experiment is repeated with the same control law but without
the weighting strategy. In this case, the errors appear to
decrease initially (see Figs 8a and 8b). However, after about
25 iterations the system diverges (see Fig 8c) and the servo is
stopped after few iterations. As expected, the system in this
case is clearly affected by the appearance and disappearance
of parts of the scene.

Comparison to pure luminance: Next, we also compared the
WPM with the pure luminance feature. Also in this case, the
effect of the extraneous regions is severe and the control law
does not converge to the desired pose. The generated velocities
do not regulate the errors satisfactorily (see Fig 8d). The error



10

(a) Initial image (b) Desired image

(c) WPM : errors in (xn, yn, an) (d) WPM : errors in rP1 , rP2 ,↵

(e) WPM : camera velocities (f) WPM : camera trajectory

Fig. 7. Simulation V-A : 6 dof VS with WPM pertaining to Section V-A.

norm kI � I⇤k starts to increase rapidly as shown in Fig 8f.
This can be compared to the case of the WPM where the error
norm decreases exponentially as shown in Figure 8e. Also, as
mentioned previously, the visual features are redundant and
there is no mapping of individual features to the actuated
dof. The servoing behaviour depends on the profile of the
cost function, which is dependent on all the intensities in the
acquired image. The appearance and disappearance of scene
portions thus also affects the direct visual servoing method.
Thus, we see that the extraneous regions have resulted in the
worst case effect namely non-convergence to the desired pose
in both the UWPM as well as when using the pure luminance.
Next, we discuss results obtained from servoing on a scene
different from the one used in this experiment.

B. Robustness to large rotations

In this simulation, we consider 4 dof and very large dis-
placements such that large scene portions enter and leave the
camera field of view (see Figures 9a and 9b).

A rotation of 100� around the optic axis and translational
displacement of c⇤tc = [5cm, 4cm, 25cm] are required for
convergence. For this experiment, the VS control law in (31)
with the features in (33) is used with a gain of � = 2. For this
difficult task, the mean cLs = 1

2

⇣
Ls(s(t),cZ⇤) + Ls(s⇤,cZ⇤)

⌘

(a) UWPM : errors in (xn, yn, an) (b) UWPM : errors in (rP1 , rP2 ,↵)

(c) UWPM : camera velocities (d) Pure luminance : camera velocities

(e) WPM : error norm ks � s
⇤k (f) Pure luminance : error norm kI�I

⇤k

Fig. 8. Simulation V-A : 6 dof VS comparison to UWPM and pure luminance
(see Fig. 7).

has been selected in the control scheme. Note that the depths
are not updated at each iteration and only approximated using
Z⇤ = 1. This choice was on purpose to show that online
depth estimation is not necessary and an approximation of
its value at the desired pose is sufficient for convergence. The
visual servoing converged to the desired pose with an accuracy
of 0.29� in rotation and [�0.07mm,�0.48mm, 0.61mm] in
translation. The control velocities generated are shown in
Fig.9d and the resulting Cartesian trajectories are shown
in Fig.9e. This experiment demonstrates the robustness of
the WPM to very large displacements even when there is
appearance and disappearance of huge parts of the image. This
affirms also that the convergence properties are improved with
the proposed WPM.

C. Empirical Convergence Analysis

In this section, we compare through simulations the con-
vergence domain of WPM with pure luminance and UWPM.
For this, we considered the 4dof case as in [24]. Artificially
generated synthetic scenes in which polygonal blocks are
sprinkled at the image periphery were employed. As seen
from Fig 10, this allows to simulate in varying degrees the
appearance and disappearance of scene portions in the camera
FOV. For this analysis, the desired pose to be attained is fixed
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(a) Initial image (b) Desired image

(c) Feature errors ((xn,yn,yn) on left
y-axis, ↵ on right y-axis )

(d) Camera velocities (left y axis for
(vx, vy , vz), right y axis for !z)

(e) Camera trajectory

Fig. 9. 4 dof simulation results under large rotations (see Section V-B).

at 1.8m. Positioning tasks starting from 243 different initial
poses consisting of 3 sets of 81 poses each, conducted at 3
different depths of 1.8m, 1.9m and 2.0m were considered. In
all these initial poses, the camera is subjected to a rotation of
25� around the optic axis while the x and y translations vary
from �0.2m to 0.2m.

The interaction matrix cLs = Ls(s⇤,cZ⇤) is chosen in
the control scheme, just like in previous works on con-
vergence analysis [14] [16]. We consider an experiment to
have converged if the task error kek is reduced to less than
1e�10 in a maximum of 300 iterations. In addition to this
condition, we also impose that the SSD error defined by
eSSD =

P
x[I(x) � I⇤(x)]2/Npix between the final and

learnt images is less than 1.0. This criterion ensures that a
non-desired equilibrium point is not considered wrongly as
converged. In the reported converged experiments, the final
accuracy in pose is less than 1mm for translations and less
than 1� for the planar rotation. The UWPM met with failure
in all the cases. No segmentation or thresholding is employed
and the servo is subjected to appearance and disappearance
effects at the image periphery. A dismal performance resulted
as expected without the weighting strategy since the model
is not equipped to handle the energy inflow and outflow at

(a) Desired Image (b)

(c) (d)

Fig. 10. Desired image in (a) and a sampling of different images from the
243 generated initial poses are shown in (b)-(d)

the image borders. The proposed WPM on the other hand
achieved a convergence rate of 94.23%. The small number
of failure cases were due to the system getting attracted to a
global equilibrium different from the desired one. The pure
luminance feature resulted in a convergence rate of 85.1%,
still lower than the WPM. These good results are also due to
the fact that the initial poses were not too far from the desired
one. To demonstrate further the superiority of the WPM with

Fig. 11. Dense texture used in convergence analysis

respect to UWPM, the same set of experiments was repeated
using a dense texture (see Fig.11), where the WPM yield a
better result than non-weighted moments. The non-weighted
moments have converged on an average only in 55% of the
cases. Also note that this is different from the synthetic case
at 0%, that is they were completely unable to handle the entry
and exit of extraneous regions. In comparison, for WPM, only
3 cases failed to converge out of 243 total runs with a very
satisfactory convergence rate of 98%. In fact, in the first two
sets of experiments, WPM converged for all the generated
poses yielding a 100% convergence rate. No convergence to
any undesired equilibrium points were observed, thanks to
the textured object. The final accuracies for all the converged
experiments was less than 1mm in translation and less then 1�

in rotation. Based on the clear improvements in convergence
rate, we conclude that WPM are effective as a solution to
the problem of extraneous image regions and result in a
larger convergence domain in comparison to classical non-
weighted moments. We have finally to note that for larger
lateral displacements, all methods fail since initial and desired
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images do not share sufficient common information.

D. Robustness to non planar environments

In this section, visual servoing with WPM is demonstrated
on a non planar scene with the Viper850 robot by considering
4 dof as previously. A realistic scenario is emulated by
placing five 3D objects of varying shape, size and color
in the scene as shown in Fig 12f. In the initial acquired
image (see Fig 12a), 3 out of these 5 objects are not fully
visible. The WPM were in fact conceived for use in such
scenarios. Rotational displacement of �10� around the optic
axis and translations of c⇤tc = [1.5cm, 1cm, 8cm] are required
for convergence. Once again, the mean interaction matrix
cLs = 1

2

⇣
Ls(s(t),cZ⇤) + Ls(s⇤,cZ⇤)

⌘
has been selected in

the control scheme. The depth distributions in the scene are
not estimated nor known apriori. An approximation cZ⇤ =
(0, 0, 1/Ẑ⇤) with Ẑ⇤ = 0.5m was used. A gain of � = 0.4
was employed. The control law generates camera velocities
that decrease exponentially (see Fig 12d), which causes a
satisfactory decrease in the feature errors (see Fig 12c). The
average accuracy in positioning in translations is 0.6mm while
the rotational accuracy is 0.15�. The camera spatial trajectory
is satisfactory as seen from Fig. 12e. The simplification (7)
of planar scene introduced in the modelling (see Section II)
is therefore a reasonable tradeoff of complexity, even if it
is not possible to demonstrate that the sufficient stability
condition (32) is ensured since cLs 6= Ls. This demonstrates
the robustness of visual servoing with respect to (moderate)
modelling approximations.

E. 6 dof experimental results

Several 6dof positioning experiments were conducted on
the ViPER 850 robot. A representative one is presented below
while the others can be consulted in [25]. For this experiment,
the desired robot pose is such that the camera is at 0.5m in a
frontoparallel configuration in front of the target. The image
learnt from this pose is shown in Fig 13b.

The initial pose is chosen such that the image in Fig 13a
is observed. Let us note that Lauren Bacal present in the left
part of the desired image is completely absent from the initial
image. The corresponding difference image is shown in Fig
13c. There is no monotone segmented object and the assump-
tion about uniform black background is clearly not valid in this
case. Nominal displacements of [�0.35cm,�1.13cm, 6.67cm]
in translation and [0.33�, 1.05�, 12.82�] in rotation are required
for convergence. The control law in (31) with the features in
(44) is used, with bLs as the mean of the desired and current
interaction matrices. No pose estimation is performed and the
depth is approximated roughly as 0.5m. The appearance of
new scene portions in the camera view from the left side of
the image does not affect the convergence of the visual servo.
This influx of information is handled gracefully thanks to the
improved modelling used by the WPM. The error in features
related to control of rotational motions is very satisfactory
(see Fig13e). On the other hand, from the error decrease in
features related to control of translational motions in Figure

(a) Initial image (b) Desired image

(c) Visual feature errors (d) Camera velocities

(e) Camera spatial trajectory (f) External view

Fig. 12. 4 dof experimental results with a non planar scene (see Section V-D).

13d, it can be seen that the error in feature an is noisy. This
feature is based on the area moment m00 directly related to the
quantity of pixels in the image. Since the lighting conditions
are not controlled, this might sometimes contribute to some
noise in the features. It is also to be noted that when the
interaction matrix is updated at each iteration (for the mean
configuration in this case), this noise in the features sometimes
make the velocities noisy as well (see Figure 13f). However,
this noise does not affect the satisfactory convergence as
evidenced by our results. A satisfactory Cartesian behaviour
was obtained as shown in Fig 13g. The final accuracy in trans-
lations is [�0.05mm, 1.1mm, 0.08mm] and for the rotations
is [0.18�, 0.006�,�0.019�]. Let us finally note that a superior
strategy would be to use the photometric moments during
the beginning of the servo and to switch over to the pure
luminance feature near convergence (when the error norm is
below a certain lower bound). This strategy would ensure both
enhanced convergence domain thanks to photometric moments
and excellent accuracies at convergence thanks to luminance
feature.

Let us finally note that it is possible to use a normalized in-
tensity level in order to be robust to global lighting variations.
Such a normalization can be easily obtained by computing in
a first step the smallest and highest values observed in the
image. This simple strategy does not modify any modelling
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(a) Initial image (b) Desired image

(c) Image difference

(d) Errors in features (xn, yn, an) (e) Errors in (rP1, rP2,↵)

(f) Camera velocities (g) Spatial trajectory

Fig. 13. WPM 6 dof experimental results (see Section V-E).

step presented in this paper as long as the parts of the scene
corresponding to these extremal values do not leave the image
(or new portions with higher or smaller intensities do not enter
in the camera field of view), which would thus allow obtaining
exactly the same results in that case. On the other hand, if the
extremal values do not correspond to the same parts of the
scene, the induced perturbations may cause the failure of the
servoing.

VI. CONCLUSION

This paper proposed a novel visual servoing scheme based
on photometric moments, which capture the image intensities
in the form of image moments. The analytical form of the
interaction matrix has been derived for these new features.
Visual servoing is demonstrated on scenes which do not
contain a discrete set of points or monotone segmented objects.
Most importantly, the proposed enhanced model takes into
account the effect of the scene portions which appear and

disappear from the camera field of view during the visual
servoing. Existing results based on moment invariants are
then exploited to obtain visual features from the photometric
moments. The control using these visual features is performant
for large SCARA motions (where the images acquired during
the servo have very less overlap with the desired image),
with a large convergence domain in comparison to both
the pure luminance feature and to features based on non-
weighted moments. The proposed approach can also be used
with non planar environments. This paper thus brings notable
improvements over the pure luminance feature and existing
moments-based VS methods.

The 6 dof control using weighted photometric moments
yielded satisfactory results for small displacements to be real-
ized. The control can be rendered suitable for large displace-
ments if the alteration in invariance properties induced by the
weighting function can be prevented. So, an important future
direction of work would be about the formulation of alternate
weighting strategies that preserve the invariance properties as
in the non-weighted moments. This is an open and challenging
problem that, once solved, would ease a complete theoretical
stability and robustness analysis. Also, it is to be noted that the
method will certainly fail when the shared portions between
the initial and desired images are too low. Another distinction
with respect to geometric approaches is that the performance
depends on the image contents and hence large uniform
portions with poorly texture scenes might pose issues for the
servoing. Despite these obvious shortcomings, we believe that
direct approaches will become more commonplace and lead
to highly performant visual servoing methods.

APPENDIX

A. Interaction matrix of rP1 and rP2

In (42), on expanding the terms (x� xg + xsh)p and (y �
yg + ysh)q using the binomial theorem, the shifted moments
can be expressed in terms of the centred moments:

µ̃pq =
pX

k=0

qX

l=0

✓
p

k

◆✓
q

l

◆
xk
shy

l
shµp�k,q�l (46)

where

µpq =

ZZ
(x� xg)

p(y � yg)
qw(x)I(x)dxdy (47)

Differentiating (46) will yield the interaction matrix of the
shifted moments.

Lµ̃pq = Lxsh
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q

l

◆
kxk�1

sh ylshµp�k,q�l

+ Lysh
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k=0

qX

l=0

✓
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k

◆✓
q

l

◆
lxk

shy
l�1
sh µp�k,q�l

+ Lµp�k,q�l

pX

k=0

qX

l=0

✓
p

k

◆✓
q

l

◆
xk
shy

l
sh

(48)

where, from (43),
(

Lxsh = 1
2

cos ✓p
m00

Lm00 �
p
m00 sin ✓L✓

Lysh = 1
2

sin ✓p
m00

Lm00 +
p
m00 cos ✓L✓

(49)
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with ✓ = ↵ for shift point P1 and ✓ = ↵+ ⇡
2 for shift point P2.

Further, by differentiating (47), we obtain

Lµpq =
pX

k=0

qX

l=0

(�1)r
✓
p

k

◆✓
q

l

◆h
xp�k
g yq�l

g Lmkl (50)

+ mkl

�
(p� k)xp�k�1

g ygLxg + (q � l)xgy
q�l�1
g Lyg

�i

with r = p+ q�k� l. Knowing (48) and (49), the interaction
matrix for any shifted moment of order p+q can be obtained.
The next step is to compute L�1 and L�2 by differentiating
(41). Finally, the interaction matrix Lr is directly obtained by
differentiating (40).
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