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Abstract
The dynamical distance geometry problem (dynDGP) is the problem of finding a
realization in a Euclidean space of a weighted undirected graph G representing an
animation by relative distances, so that the distances between realized vertices are as
close as possible to the edge weights. In the dynDGP, the vertex set of the graph G
is the set product of V , representing certain objects, and T , representing time as a
sequence of discrete steps. We suppose moreover that distance information is given
together with the priority of every distance value. The dynDGP is a special class of
the DGP where the dynamics of the problem comes to play an important role. In this
work, we propose an application-based characterization of dynDGP instances, where
the main criteria are the presence or absence of a skeletal structure, and the rigidity
of such a skeletal structure. Examples of considered applications include: multi-robot
coordination, crowd simulations, and human motion retargeting.
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1 Introduction

Given a simple weighted undirected graph G and a positive integer K , the distance
geometry problem (DGP) askswhether there exists a realization x ofG into aEuclidean
space RK so that a predefined number of distance constraints, involving pairs of
realized vertices, are satisfied [18]. Saxe proved in 1979 that this problem is NP-hard
[30].

Surveys and collections (see for example [18,19,21,24]) have recently been appear-
ing in the scientific literature, showing a consistent interest in this topic from the
research community. The DGP has several applications, including sensor network
localization [12] and protein structure determination [16]. Most “traditional” applica-
tions of the DGP are based on a static representation of the problem: even if protein
functions may be associated to a protein dynamics, only energetically stable con-
formations of proteins are generally searched; and even in sensor networks, where
sensors may change their positions over time, the solution of the problem is generally
attempted for one network snapshot per time.More recently, an approach for extending
DG to dynamical applications was proposed in [22].

In order to consider the temporal component in DGPs, we suppose that the vertex
set of the graph G is the set product of two sets: the set V , which contains a predefined
number of objects, and the set T ⊂ N+, consisting of the first n = |T | integer positive
numbers, which represents time as a sequence of discrete steps. A vertex of the graph
is an ordered pair (v, t) ∈ V × T , representing a given object v at a certain time t
(in the following, we will use the notation vt for the vertex (v, t) of G). The edge
set E contains edges {uq, vt }, whose weights provide information about the distance
between two vertices u and v at times q and t , respectively.

We suppose that two weight functions are associated to the graph G, and that both
functions assign nonnegative weights to the edges in E . The function

δ : {uq, vt } ∈ E −→ δ(uq, vt ) ∈ R+

associates a distance value to every pair of vertices of V × T belonging to the edge
set E . We suppose that, for every t and q ∈ T , and for every u and v ∈ V , we have
that δ(uq, vt ) = δ(vt , uq). Moreover, the function

π : {uq, vt } ∈ E −→ π(uq, vt ) ∈ R+

assigns, to the edge {uq, vt }, a nonnegative value representing the “importance” of the
distances δ(uq, vt ), where higher values indicate higher importance. We also refer to
π as the priority level of the distance δ. We say that the graph G = (V ×T , E, (δ,π))
represents an instance of the dynamical DGP (dynDGP) [22].

Given a graph G, finding an optimal solution of a dynDGP consists in identifying
a realization

x : V × T −→ RK
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of the graph such that the following penalty function is minimized:

σ(x) = 1
2

∑

{uq,vt }∈E
π(uq, vt )

(
∥xqu − xtv∥ − δ(uq, vt )

)2
,

where || · || denotes the Euclidean norm, and xtv indicates the position in RK of the
object v at time t . The stress function σ was initially proposed in Kruskal’s works
on multidimensional scaling [13] in 1964, and successively studied and adapted by
de Leeuw [4] in 1984. In [4], it was proved that σ is differentiable at x if and only if
||xqu − xtv|| > 0 for all edges {uq, vt } such that π(uq, vt ) δ(uq, vt ) > 0. In dynDGP
applications, the realization x represents an animation of the objects in V over the
time steps in T .

The simplest approach to the dynDGP would be to tackle it as a classical (static)
DGP, where the fact that distances may concern the same object at two different times,
or two different objects at the same time, is neglected. However, this information can
be actually exploited for creating ad-hoc instances of the dynDGP, as well as in the
solution methods. By reviewing some recent literature, we found out that different
kinds of applications can be give rise to problems that can in fact be formulated as a
dynDGP.

The dynDGP instances for the applications that we consider in this work can be
constructed from known initial animations x . Generally, such animations are given by
the trajectories xtv of the objects v ∈ V for all times t ∈ T . Our approach consists in
representing such animations by the relative distances between pairs of vertices uq and
vt , so that they can subsequently be easily manipulated by introducing new distance
constraints. The set of distances represented by the edges in E can be divided in two
subsets:

– the set E∗, consisting of edges related to distance measurements obtained from
the initial animations;

– the set E+, consisting of edges related to newly introduced distances.

In general, modified or introduced distances are incompatible with the original ones,
and as a consequence a higher priority π needs to be associated to them. We propose
a characterization of these instances on the basis of the presence and of the properties
of the possible skeletal structures (see Sect. 2) that can be found in the graph G.

The rest of the paper is organized as follows. In Sect. 2, we will analyze some
particular subgraphs of G related to dynDGP instances, by focusing on the concept of
graph rigidity. The focus of Sect. 3 will be on dynDGP instances having no skeletal
structure (some preliminary computational examples will be shown in Sect. 3.2).
Section 4 will instead be devoted to dynDGP instances admitting a skeletal structure,
and we will separate our discussion for non-rigid (see Sect. 4.1) and rigid skeletal
structures (see Sect. 4.4). An initial illustrative computational experiment will be
given for this case in Sect. 4.2. Finally, Sect. 5 will conclude the paper.
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2 Meaningful subgraphs and rigidity

The study of some subgraphs of G can provide some important information that may
allow for verifying the relative dependence of the objects v during the animation.
We will denote with G[·] the subgraph induced by the subset of vertices given as an
argument.

The subgraph Gt = G[V × {t}], induced by the set product between V and only
one temporal value t , corresponds to one frame of the animation at a fixed time. Let
Et be its edge set. In some dynDGP applications, this subgraph may contain a graph
S, to which a skeletal structure [14] may be associated.

Definition 1 Given a connected graph S= (VS, ES), we say that the pair (S,χ) is a
skeletal structure if

χ : V −→ RK

is a realization of the graph S such that χ(u) ̸= χ(v) for each u, v ∈ VS for which
u ̸= v.

Two skeletal structures (S,χ1) and (S,χ2) are said isometric if

∀{u, v} ∈ ES, ||χ1(u) − χ1(v)|| = ||χ2(u) − χ2(v)||.

Moreover, we say that two skeletal structures (S,χ1) and (S,χ2) are congruent if

∀{u, v} ∈ VS × VS, ||χ1(u) − χ1(v)|| = ||χ2(u) − χ2(v)||.

The two definitions above show that congruency implies isometry, because the set
of constraints to be satisfy to verify the isometry case are also included in the set of
constraints related to congruency (see equations above). These preliminary definitions
allow us to define “graph rigidity” [11].

Definition 2 Given a connected graph S= (VS, ES), if every pair of isometric skeletal
structures (S,χ1) and (S,χ2) are also congruent, then we say that the graph Sis rigid.

Poorly speaking, a graph is rigid when it is not possible to apply a continuous defor-
mation to a realization of the graph while preserving the distances related to Es .

Definition 3 Given a graph G representing a dynDGP instance, we say that G admits
skeletal structure (S,χ) if, for every t ∈ T , S is subgraph of Gt and

∀{u, v} ∈ ES, ||χ(u) − χ(v)|| = δ(ut , vt ).

It is important to remark that the realization χ is not the solution, for any time t , of the
dynDGP instance. This realization ensures that the distances related to the edges in
ES are fixed to the value ||χ(u)−χ(v)|| in the animations x which are solutions to the
dynDGP. In the applications, such distances can represent stiff physical components
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of an object, such as a car, or of the human skeleton (e.g. its bones are stiff). Moreover,
the existence of χ ensures that (S,χ) is related to a DGP instance that is realizable.

Similarly, the subgraph Gv = G[{v}×T ] represents a sub-instance of the dynDGP
instance where only one object of V is concerned. Let Ev be its edge set. We also
consider the subgraphs G(t,t̄)

v corresponding to Gv = G[{v} × {t, . . . , t̄}], where t ,

t̄ ∈ T with t < t̄ . Let E (t,t̄)
v be the edge set of G(t,t̄)

v . In terms of dynDGP, a realization
of the subgraphs Gv represents a possible trajectory of a fixed object v over time.

3 dynDGPs with no skeletal structure

We consider in this section a set of applications where the graph G, representing an
instance of the dynDGP, admits no skeletal structure (see Definition 3). This is the case
when working with animations of independent (or almost independent) objects, such
as pedestrians in a crowd [9,27], “aircraft” [28,29], and multi-robot systems [5,20,31].
In the first two applications, given the initial configuration of a set of moving objects,
with known directions and speeds, our aim is to predict their future configurations
while avoiding, for example, any kind of collisions. We will not enter in the details
of every mentioned application, but we will rather consider a simplified problem
where animations of moving objects in a plane are manipulated by formulating a
dynDGP. However, we will discuss in more details the multi-robot system application
in Sect. 4.3.

Given a known animation of a set of objects, we can obtain a representation of
the animation that is based on inter-object distances. This allows us to construct an
initial graphG, which is complete, because all distances can be computed from a given
animation. However, these distances are not all strictly necessary for the representation
of the original animation.

In fact, the most important distances are those allowing to represent the movements
of the considered objects, i.e. the inter-frame distances between the objects at different
times t . Moreover, when there is no skeletal structure, it is not necessary to keep
distances between different objects in a common frame. We can consider this kind of
distances only in a second step, when including new desired distance constraints in
G. For example, in order to avoid collisions that may occur in the original animation,
we can impose that all distances between objects at the same frame are greater than a
predefined positive threshold !.

More formally, instances of the dynDGP related to these applications can be mod-
eled by a graph having the following edge set:

E∗ =
⋃

t≥τ+1

⋃

v∈V
E (t−τ,t)
v ⊂ E, (1)

where E (t−τ,t)
v is the edge set of the subgraphG[{v}×{t−τ, . . . , t}] (see Sect. 2), and

the depth parameter τ > 0 is the number of previous positions (in previous frames) for
an object of V that are used to represent its movement. The corresponding distances
δ can be either considered as is, or modified in order to imposing some desired effect.
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Different priority levels π can be associated to such distances, depending on which
distances are considered to be more important in the animation (for example, the
distances between two vertices concerning the same object v at two consecutive times
t1 and t2 represent the movement speed, which will be preserved if a high priority is
associated to this distance).

We will briefly review a well-known method for local continuous optimization in
Sect. 3.1, and some computational experiments, where this method will be employed,
will be presented in Sect. 3.2.

3.1 A non-monotone spectral gradient method

Gradient descentmethods are typically used for local optimization, where the direction
given by the vector opposite to the function gradient is explored for minimizing the
function values. A crucial point is the identification of the step along the opposite
gradient direction: when too short the function may be further optimized; when too
long local minima may be missed.

In [7], the gradient descent was coupled with a closed-form formula capable of
providing the step α that improves the convergence properties of the gradient method,
which depend upon the Hessian matrix of σ. For this reason, this class of methods is
known as spectral gradient methods, for which proof of convergence was given for
strictly convex functions (the function σ in Sect. 1 does not belong to this category). It
was noticed that the function values donot decreasemonotonically during the iterations
of the spectral gradient. Therefore, as in [22], we use the closed-form formula for α

proposed in [7] only to define an initial value that we subsequently refine with a non-
monotone line search [3,33]. We implemented a spectral gradient algorithm with box
projection [2], which allows to bound every distance in the corresponding intervals
(the interval is degenerate in case of exact distances).

3.2 Some computational experiments

Figure 1 shows a simple animation, that we intend to manipulated by our distance-
based approach. In the original animation, two objects are initially positioned at the
opposite sides of a 2D box of size 1.0 × 1.0, and they subsequently move towards
each other. At the central frame, both objects are positioned near the center of the
box, where they come very close to each other. Different degrees of blue (gray scale
in black-and-white) are used for representing different time steps.

By representing this animation by distances, we can construct the graph G with the
edge set E∗ as in Eq. (1), where our depth parameter τ is set to 3. Moreover, we added
the following set of edges:

E+ =
{
{ut , vt } : u, v ∈ V , u ̸= v and ||xtu − xtv|| ≤ !

}
,

where ! is a strictly positive real number, and we added the following distance con-
straints:

∀{ut , vt } ∈ E+, δ(ut , vt ) ∈ [!,+∞]. (2)
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Fig. 1 Two trajectories of objects moving one towards the other. Different degrees of blue are used for
representing different time steps. a The original animation; b the dynDGP solution found by imposing
! = 0.1; c the dynDGP solution found by imposing ! = 0.2

Fig. 2 An example similar to the one in Fig. 1, where the two objects have orthogonal trajectories. a The
original animation; b dynDGP solution with ! = 0.1; c dynDGP solution with ! = 0.2

In order to employ the spectral gradient method (see Sect. 3.1),+∞ can be replaced by
a sufficiently large real value. Notice that, differently from the initial paper [22] where
the dynDGP was firstly introduced, we can currently work with distances represented
by intervals, which allows us to generate animations that look more natural.

The starting point for the spectral gradientmethod is the original animation, because
not “too far” from the solution that is searched. Figure 1b shows a solution where !

was set to 0.1; Fig. 1c shows the equivalent result for ! = 0.2. The simplicity of the
animation allows us to find good solutions by employing a local optimization method.
The animation in Fig. 2a is very similar to the previous one, but the two original
trajectories are here orthogonal.

The experiment in Fig. 3 shows an initial animation where one object performs a
clock-like motion. On its way, however, it finds two obstacles. Our dynDGP instance
is therefore conceived in order to preserve this motion as much as possible, but at
the same time to avoid any collisions with the obstacles. Two new animations are
obtained, which resemble the original one, and where the imposed distance constraints
are satisfied (with two different ! values).
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Fig. 3 A clock-like trajectory that initially finds two obstacles on its way (in light blue). a The original
animation; b dynDGP solution with ! = 0.1; c dynDGP solution with ! = 0.2

Notice that the use of the initial animation as a starting point in dynDGP solution
methods such as the one in Sect. 3.1 allows us to ensure that the first and the last frame
of the animation are preserved (if no new added constraints are violated by these
two configurations), as it is generally required in these applications. Moreover, as far
as not incompatible with newly added distance constraints, the optimization process
tends to preserve as much as possible the original animation. This is the reason why
it is unlikely to simulate, by means of a dynDGP, the trajectory of an object (such as
an aircraft) that could go back to its initial position to avoid a collision, unless it is
constrained to do so.

4 dynDGPs with skeletal structure

We consider now a dynDGP class where the graphG admits a skeletal structure (S,χ)
(see Sect. 2). Given the graph S, different realizations χ1 and χ2 can be associated to
S, where the relative distances between objects connected by the edges in S can be
different.

In character animation, it is typical to create new animations for a character hav-
ing skeletal structure (S,χ2) by using a previously recorded animation of a character
having skeletal structure (S,χ1). The skeletal structure can either consist in a simpli-
fication of the human skeleton (in this case, distances represent bone lengths, see the
representations in Fig. 5); or it can represent more accurately the character morphol-
ogy, by employing a more complex skeletal structure that is generally referred to as
mesh structure. We will focus our attention on skeletal structures such as the one used
for the animations in Fig. 5. A discussion about the possible use of mesh structures is
in Sect. 5.

One main challenge in character animation is the one of reproducing the desired
animations without causing undesired body contacts [6,8,26]. The simplest approach
to this problem consists in transferring all edge angles of the character having skeletal
structure (S,χ1) to the one having skeletal structure (S,χ2). Consider, for example,
the character representation in Fig. 5, and consider that the character stands with his
hands on his ears at frame t . Increasing the lengths of the arms (i.e the arms of (S,χ1)
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are shorter than the arms of (S,χ2)), and transferring the angles to the new skeletal
structure would result in an animation where the character penetrates its brain with
the hands. These particular problems are part of a general application that is known
in the specialized literature as motion retargeting.

4.1 Non-rigid skeletal structures

Techniques that are more sophisticated than the simple angle-transfer approach have
been proposed over the last years, yet without providing a general and efficient solu-
tion to the problem. These techniques mainly belong to two classes: the one where
existing captured motions are manipulated [25], and the one where they are rather
simulated by exploiting physical equations [10].

Our dynDGP approach to this application belongs to the former class of methods
listed above. Themain idea is to represent the original animation by distances and,with
this distance information, to construct the graph G associated to the dynDGP. Since
a character animation can be seen as a sequence of character postures, there are two
particular ways to construct the dynDGP instances associatedwith a human animation.
First, we can define the edge set of the graph G by employing the same procedure
detailed in Sect. 3, where the information about the skeletal structure is included in
the set E+, and the highest importance is given to the corresponding distances. The
experiments presented in Sect. 4.2 will be based on this model.

Alternatively, another way to generate a dynDGP instance from a given motion is
to consider only inter-frame distances. In this case, we exploit the fact that every frame
of the animation is a posture, which can be reconstructed independently, provided that
enough distance information is given in order to obtain a final animation that is smooth
and natural. The edge set E∗is defined as:

E∗ =
⋃

t∈T
Et ,

and it contains all edges that relate vertices at same times t . Such edges present
either bone lengths or relative movements. This alternative approach has the advan-
tage of generating a sequence of smaller (and static) DGPs, which is convenient
when dealing with very long animations. On the other hand, it requires an adap-
tation of the overall set of distances to the target skeletal structure, as explained
below.

The process of replacing distances of (S,χ1) with the corresponding distances
of (S,χ2) needs to take into consideration the overall set of distances. This is a
very delicate step, because the inclusion of large changes in the modified distances
may cause large distance incompatibilities, and spoil the simulations. One possible
technique for modifying the distances related to pairs {u, v} /∈ ES in accordance with
new skeletal structure was recently presented in [1,23]. Some preliminary results can
be viewed in a video clip associated to the paper [1] (downloadable from the conference
website).
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Fig. 4 Two “friendly” pedestrians that would be separated when avoiding an obstacle with the smallest
deviation. a The original animation; b dynDGP solution without skeletal structure; c dynDGP solution with
skeletal structure

4.2 Some computational experiments

Two pedestrians that walk together, while chatting for example, tend to continue their
trajectories in a way to keep interacting. In Fig. 4a, our simulated pedestrians walk on
a linear trajectory where theymeet an obstacle at the central point of their environment
(the same 1.0× 1.0 box used in the previous experiments). When a dynDGP instance
is created from this animation, and distance constraints are added to the instance for
avoiding collisions between the two pedestrians, as well as between pedestrians and
the obstacle, then the solution reported in Fig. 4b is obtained. In order to preserve the
original animation as much as possible, both pedestrians find their own way around
the obstacle.

In order to simulate a jointwalk,we added a virtual skeletal structure in our dynDGP
instance, which simply connects the two pedestrians with one edge. Distances that are
related to this skeletal structure naturally have a higher importance π. The solution
to the so-modified dynDGP instance is given in Fig. 4c. This simple example shows
how important can be the impact of a skeletal structure in the found animations.

Finally, we present an illustrative experiment with a dynDGP instance having a
skeletal structure resembling the human skeleton. The original animation is in dimen-
sion 2, and it simply shows a character slowly raising his hands until they come together
and very close to his head (see Fig. 5a). In this setting, null distances between some
pairs of vertices need to be avoided: in fact, while two hands can touch each other,
a hand should not overlap with the vertex representing the geometrical center of the
character head. The animation is recorded in terms of angle variations between pairs
of consecutive edges, so that it can be played with different skeletal structures. This
animation is composed by 100 frames. The frames 1, 25, 50, 75 and 100 are shown in
the first column of Fig. 5.

When changing the skeletal structure by reducing the upper arms of the character
by 20%, we obtain the animation shown in Fig. 5b, where, at the end of the animation,
the vertex head and the two hands are in collision, because placed almost at the same
position in the 2-dimensional space. This is a typical retargeting problem, asmentioned
in Sect. 4.
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Fig. 5 A human skeleton in the 2-dimensional space. a The original animation; b a classical retargeting
problem occurring when the animations are given in terms of angle variations; c the solution to our dynDGP
instance
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In order to correct this retargeting problem,we define a dynDGP instance as detailed
in Sect. 4.1 (first method). We impose the modifications on the skeletal structure
by high-priority distance constraints, and solve the instance by the spectral gradient
method (see Sect. 3.1). The obtained result is in Fig. 5c: the new animation satisfies
the distance thresholds imposed on the skeletal structure, which avoids the overlaps
between head and hands. Notice moreover that all frames of the animations are gen-
erated at the same time, so that frames where there are no collision problems (see
for example the initial frames of our animation) are also modified. This helps obtain-
ing a smoother animation because the changes are not only performed on the frames
affected by retargeting problems.

4.3 The particular case of multi-robot systems

The application on multi-robot systems has some particular additional properties.
We focus our attention on local on-board sensors that are capable to measure the
distance between mobile robots. The main problem is to implement decentralized
group localization and formation control algorithms, with the aim of deploying a
highly autonomous robot teams in “non-trivial” environments (e.g. inside buildings,
underwater, underground, or even in deep space). In recentworks, the formation control
is performed by ensuring that the robots are able to define, at every time t ∈ T , a
skeletal structure (S,χ) that is rigid [32]. The existence or absence of an edge in S is
generally associated to the distance range between two robots (if too large, the robots
cannot communicate), and to the presence of obstacles (that does not allow the robots
to obtain the necessary relative measurements).

Given a pre-recorded animation of a multi-robot system, we can represent it by
relative distances for creating a graph G representing such an animation (see above).
As for the other applications, by Definition 3, there is no skeletal structure in G.
However, since it is imposed to the robots to form a rigid structure at every frame, the
pair (Gt , xt ) is in fact a rigid skeletal structure for every t ∈ T .

As above, new distance constraints can be included in the dynDGP instance, and
a new manipulated animation, describing the new trajectories for the robots, can be
obtained by solving such an instance.However, in the particular application concerning
multi-robots formations, we have an additional constraint imposing that (Gt , xt ) keeps
defining a rigid skeletal structure. This is done to ensure a good level of communication
among the robots. Even if this constraint is satisfied by the pre-recorded animation, the
introduction of new distances in G can define new animations where this constraint
may not be satisfied (when two robots are constrained to get further apart, for example,
they may not be able to communicate anymore). The rigidity of (Gt , xt ), for every
t ∈ T , is therefore an additional constraint that we will consider in future works in the
context of the dynDGP.

4.4 Discretizable dynDGPs with rigid skeletal structure

The discretization of a dynDGP instance and the rigidity of the graph G (see Sect. 2)
representing such an instance are two very close concepts. We say that a dynDGP
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instance is discretizable if it satisfies some special assumptions that allow for reducing
its search space to a discrete domain having the structure of a tree [18]. It is easy to
verify that, given a dimension K , every discretizable instance has an underlying graph
G that is rigid in dimension K [15]. The inverse implication is not true in general.
However, a dynDGP admitting a rigid skeletal structure includes such a rigid structure
at every frame, and G is a graph that contains all such rigid subgraphs, together with
several other distances. Therefore, even if this is not true in general, we can say that
there are “chances” that a so-constructed graph G admits the discretization.

An example is given by the kind of mesh structure that is basically formed by a
closed triangular grid. Such structures generallywork in spaces having dimension K =
3. In terms of graph, every triangle of the mesh is a 3-clique, while two overlapping
triangles induce a subgraph which misses only one edge to form a 4-clique. We will
refer to this missing distances as the 6th distance (six distances are necessary for
a subgraph consisting of four vertices to form a clique). Since the 6th distance can
be estimated in practice, the discretization assumptions can be satisfied by dynDGP
instances that rely on a triangular mesh skeletal structure.

In the representation of a human hand, for example, where several possible move-
ments are possible, the pairs of overlapping triangles where the 6th distance can be
estimated are quite limited. Inversely, in the representation of a human skull, this
distance can be fixed in most pairs of overlapping triangles.

The discretization allows to employ a branch-and-prune (BP) algorithm for the
solution of dynDGP instances [17]. This algorithm performs a systematic exploration
of the search tree, but it uses pruning devices to discover infeasible branches, so that
it is able to focus the search around the branches of the tree which contain solutions.
In the context of motion retargeting, apart from reducing the dynDGP search space
to a tree, the discretizability has the great advantage to fix all exact distances, such as
the ones related to edges forming the stiff mesh triangles. This can avoid undesired
vibrations of the skeletal structures in the animations obtained as dynDGP solutions.

5 Conclusions

This paper sets the ground for future research on specialized solution methods for the
dynDGP. The dynDGP is an extension of the classical DGP, which turns out to have
several interesting applications in different application domains. Our contribution is to
be considered as an initial step for a more complete classification of these applications
on the basis of their features. Even if it does not propose any new method from an
optimization point of view, this work shows how different dynamical applications in
the context of the DGP can be in fact tackled by existing optimization tools. Future
research will consist in exploring in more details all different situations that are briefly
discussed in this paper.
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