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Abstract— Robustness of indirect SLAM techniques to light

changing conditions remains a central issue in the robotics

community. With the change in the illumination of a scene,

feature points are either not extracted properly due to low

contrasts, or not matched due to large differences in descriptors.

In this paper, we propose a multi-layered image representation

(MLI) in which each layer holds a contrast enhanced version of

the current image in the tracking process in order to improve

detection and matching. We show how Mutual Information

can be used to compute dynamic contrast enhancements on

each layer. We demonstrate how this approach dramatically

improves the robustness in dynamic light changing conditions

on both synthetic and real environments compared to default

ORB-SLAM. This work focalises on the specific case of SLAM

relocalisation in which a first pass on a reference video con-

structs a map, and a second pass with a light changed condition

relocalizes the camera in the map.

I. INTRODUCTION
Visual tracking systems such as SLAM and visual odom-

etry are widely used in industrial and consumer devices.
Except for direct methods, eg. [1] working on the analysis
of changes in pixel gradients, most visual SLAMs rely on
corner detection with extractors that extract keypoints (KP)
and descriptors that identify and match the extracted KPs
over different frames.

Unfortunately, the corner detection process and conse-
quently the matching problem are strongly dependent on the
illumination condition at the moment of capturing images.
Although the matching process usually relies on gradient
information that is more or less independent from intensity,
SLAM methods still suffer from illumination changes at
different degrees and may yield inaccurate maps and even
tracking failures [2], [3].

In this paper, we propose to improve the robustness of
indirect SLAM techniques to light changing conditions by
using a multi-layered image representation (MLI). We target
the specific case of relocalisation, in which a first pass in a
given lighting condition is used to construct a map, and a
second pass in a different and dynamic lighting condition is
performed to relocalise the camera in a way similar to [4]
or more recently [2]. The idea of MLI is to dynamically
generate k contrast enhancements of an input image into
k layers and apply KP detection on each image layer to
improve detection and hence KP matching and tracking (see
Fig. 1). The challenge therefore holds in how to compute
the optimal parameters of each contrast enhancement to
maximize keypoint detection and matching.
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Fig. 1: Keypoint tracking results in different lighting condi-
tions. Only a few keypoints are matched between reference
condition (image a) and standard ORB-SLAM (image b),
compared to our novel MLI method (image c).

In this paper, we rely on the information theory approach
of Mutual Information to compute the optimal contrast
enhancements on each frame of a video sequence.

The contributions of this paper are:
• a multi-layered image representation using different

contrast enhancements to improve detection and match-
ing of keypoints

• an efficient process to compute optimal parameters
for these contrast enhancements using an information
theoretic approach

• a dramatic improvement of ORB-SLAM tracking in
light changing conditions.

Results displayed in Fig. 1 shows that our approach
outperforms the default ORB-SLAM technique in terms of
percentage of tracked frames in a sequence, hence demon-
strating a stronger robustness to light changing conditions.

II. RELATED WORK

Robustness to light changing conditions is a central issue
that has received increased attention. The issue has often
been tackled at the extractor level by searching an optimal
contrast threshold in the KP extractor with respect to the
current lighting condition. For example, in SuperFast [5] the
FAST contrast threshold – a threshold value that triggers a
brighter, darker or similar decision on per-pixel comparison –
is dynamically computed using a feedback-like optimization
method that yields a new threshold value per region in the
image. Lowering the threshold however tends to generate a
large number of KPs that influence the computational capac-



ity of other processes, and the proposed technique requires
specific adaptations to be applied to other KP detectors.

Another possibility consists in applying image transforma-
tions (eg. contrast enhancers) on captured images before ap-
plying KP detectors. Interestingly, it has been demonstrated
that KP extractors gain significant performance by using
HDR images as input, converted to SDR images through
tone-mapping operators [6], [7]. Among these techniques, a
learning-based optimal tone-mapping operator has been pro-
posed for SIFT-like detectors [8]. But the high computational
cost and specific HDR devices required, as well as HDR-
customized extractors hamper the wider applicability of such
approaches. In comparison, for SDR images, research has
mainly focused on contrast enhancement operators for aes-
thetic and perceptional goals through changes in the exposure
times [9] which remain limited in addressing robustness of
KP tracking.

For direct and semi-direct SLAM methods, i.e. methods
that rely on analysis of pixel intensities rather than extracting
intermediate features, robustness to illumination changes has
been addressed by optimizing an affine brightness trans-
fer transformation between consecutive frames [10], [1] or
matching a dimension reduced deep-learning feature [11].
Using mutual information instead of photometric error as
the metric during the optimization process of pose estimation
has also demonstrated its benefits [12], [2]. While exhibiting
a good robustness to illumination changes, these methods
remain computationally expensive.

III. MULTI-LAYERED IMAGES

Our approach consists in computing, for every frame, a
number of contrast enhancements of the original camera
image into different images (called layers) before applying
keypoint detection on each layer. The idea is inspired by
the significant gain obtained in keypoint tracking on tone
mapped images of High Dynamic Range (HDR) images [6],
[7], but replacing an HDR image by artificially-exposed mul-
tiple images in a Multi-Layered Image representation called
MLI. These enhancements are computed in a way to improve
the detection and matching of keypoints. The parameters of
the first contrast enhancement are searched by maximising
the shared information between a reference image (in a good
lit condition) and the contrast-enhanced image. We rely on
a Mutual Information metric, an information theory measure
of dependence between two random variables (images), and
demonstrate the relevance of this metric in keypoint tracking
(see Section IV). The parameters of the second layer are then
searched by maximising the mutual information with the
reference image, without the information already provided
by the first layer. Other layers are computed in a similar
incremental way. Given that landscapes of the Mutual Infor-
mation metrics are difficult to optimize, a specific smoothing
process is proposed that enables the use of straightforward
gradient descent optimization techniques.

The contrast enhancement technique relies on a saturated
affine brightness transfer per-pixel function (SAT). We use
a SAT form that defines a contrast band u = (a, b)> which

Fig. 2: Using SAT function with different contrast bands to
generate a multi-layered image representation (MLI).

conveniently models the lower cut point (a) and higher cut
point (b) of the saturation, with a linear interpolation between
a and b on pixel intensity i (see Fig. 2). A given contrast
u = (a, b)> is defined in a contrast space � ✓ R2, where �
is the space of all contrast bands where b > a.

fSAT (i, (a, b)
>) = min(max(0, i/(b� a)), 1) (1)

Parameters a and b naturally represent the band region
where the contrast is enhanced, which motivated the choice
of this operator. To ensure enhancement or compression of
contrasts, we define the range of values for u = (a, b)> as
a 2 [�1, 1] and b 2 [0,1]. The computation of a layer
k in our MLI representation is performed by applying the
following operator MLIk on all pixel intensities of the image
using a contrast band uk. A MLI is therefore represented as
a set of k image layers where MLIk(I) = fSAT (I,uk) for
an image I , where fSAT (I,uk) is the application of fSAT

on all pixels of I .
This MLI representation can be seamlessly integrated

in a state of the art SLAM tracking technique such as
ORB-SLAM, replacing the keypoint detection of the camera
image, by (i) a set of contrast enhancements of the camera
image, and (ii) keypoint detection applied on each enhanced
image (see Section V).

IV. OPTIMAL IMAGE ENHANCEMENT

The challenge consists in computing the best parameters
for each contrast enhancement on each camera image in
a way to improve detection and matching of keypoints.
Our hypothesis is that we can compute a close to optimal
value of uk by maximising Mutual Information between a
well lit reference image I⇤ and a transformed test image
fSAT (I,uk).

A. Mutual Information

Mutual information (MI) was initially introduced in infor-
mation theory [13], and then widely applied in the field of
computer vision for image alignment, model registration as
well as visual tracking and SLAM [2], [14], [15]. The MI
built from the image entropy of two different images provides
a measure of their mutual dependence. In image alignment



tasks, the higher the mutual information, the better the
alignment since mutual information considers the distribution
of the intensities as well as the intensities themselves.

Entropy h(I) is a variability measure of a random variable
I . In image alignment or illumination evaluation scenarios,
I is regarded as one image with r the possible values (gray-
level intensities) of I . Equation pI(r)=P (I=r) therefore
expresses the probability distribution function of r, in other
words the normalized histogram of the image. The Shannon
entropy h(I) of an image I is expressed as:

h(I) = �
X

r

pI(r)log(pI(r)) (2)

With the same principle, the joint entropy h(I, I⇤) of two
images I and I⇤ can be defined in the following way:

h(I, I⇤) = �
X

t,r

pII⇤(t, r)log(pII⇤(t, r)) (3)

where t and r are the possible grey-level intensities of
the I and I⇤. The joint probability distribution function is
defined as pII⇤(t, r)=P (I=t \ I⇤=r), which can also be
regarded as a normalized bi-dimensional histogram of images
I and I⇤.

With the above notations of entropy and joint entropy, the
mutual information (MI) is expressed as the intersection of
two random variables I and I⇤ (see Fig. 3):

MI(I, I⇤) = h(I) + h(I⇤)� h(I, I⇤) (4)

B. Optimal enhancement for the first layer

We need to search for the optimal parameter u⇤ that
maximises the MI between a reference image I⇤ (eg. an
image lit in normal lighting conditions) and a contrast
enhanced version of camera image fSAT (I,u).

u⇤ = argmax
u

MI(fSAT (I,u), I
⇤) (5)

We can empirically show that the MI has similar behavior
to the ground truth wrt illumination changes. Given a ref-
erence image I⇤ under a given light condition, and a test
image I in a different lighting condition, the computation of
the ground truth (i.e. the absolute optimal enhancement) can
be performed by an exhaustive sampling of the contrast band
parameter uk, applying corresponding image transforms on
I and evaluating the number of matched keypoints between
I⇤ and fSAT (I,uk), as displayed in Fig. 7.

We illustrate this on an example from the NewTsukuba
data set [16]. We compare the landscapes generated by
sampling uk on (1) the ground truth ORB detector and on (2)
mutual information Eq. (4). Despite differences, we observe
the optimums are positioned at similar contrast band values.
In an obvious way, the more information is shared between
a reference image and a contrast-enhanced image, the better
are the detection and matching.

C. Optimal enhancements for other layers

The parameters of the second layer are searched by max-
imising the Mutual Information with the reference image, as
well as the information already provided by the first layer
(see Fig. 3).

This can be expressed as multivariate mutual information
with the definition of higher dimensional joint probability
distribution, to account for multiple image layers. From
Eq. (2) and (3), a joint entropy of 3 random image variables
is obtained with a definition of normalized tri-dimensional
histogram pII⇤I0(t, r, w)=P (I=t \ I⇤=r \ I0=w) where
t, r, w are possible gray-levels of each image respectively.

h(I, I⇤, I0) = �
X

t,r,w

pII⇤I0(t, r, w)log(pII⇤I0(t, r, w))

(6)
Similarly, a multivariate mutual information between three

images can be formulated:

MI(I, I⇤, I0) = h(I, I⇤, I0) + h(I) + h(I⇤) + h(I0)

�h(I, I⇤)� h(I, I0)� h(I0, I⇤)
(7)

Fig. 3: Mutual information between two images (left), and
three images (right) defined as the shared entropy between
images.

Given I⇤ an image under reference light conditions, I the
test image for which the contrast bands need to be computed,
and I0 = fSAT (I,u0) the first contrast band computed by
Eq. (9), we can express the tri-variable mutual information to
represent the low-correlated information generated in second
layer (see Fig. 3 right red line).

MI(I, I⇤)�MI(I, I⇤, I0) = MI(I⇤, I|I0)
= h(I, I0) + h(I⇤, I0)� h(I, I⇤, I0)� h(I0)

(8)

Given the contrast band from first layer u0, the optimiza-
tion of second layer is carried out as follows:

u⇤ = argmax
u

MI(I⇤, fSAT (I,u)|fSAT (I,u
0)) (9)

The computation of further layers can be expressed in a
similar way. The mutual information between four images
MI(I, I⇤, I0, I1) or more is computationally expensive to
achieve. However a reasonable approximation can be com-
puted using mutual information of previous optimal image
MI(I, I⇤, I1) to replace MI(I, I⇤, I0, I1), which balances
the computational cost and preciseness.



D. Smoothing Mutual Information

Derivative optimization approaches favor smoother objec-
tive function landscape to make sure an efficient descent to
the optimum. Unlike image alignment where reducing the
number of bins is important to smooth the cost function
(image alignment indeed concentrates more on the geomet-
ric information instead of illumination information in one
image [17], [14], [2]). For illumination estimation, lowering
the histogram bins during the estimation does not gain any
benefits but loses information. This is illustrated on another
example from the NewTsukuba data set in Fig. 4 by present-
ing the landscape of the cost function MI(I⇤, fSAT (I,u))
(see Fig. 5).

Fig. 4: Images I⇤ and I from NewTsukuba data set [16]:
a synthetic data set with identical camera trajectories and
variant illumination conditions

Fig. 5: Lowering the number of histogram bins (which is
classical for image alignment tasks) leads to a difficult-to-
optimize cost function landscape during illumination estima-
tion process (axis represent parameters a and b of contrast
band u = (a, b)>).

In our work, we selected 256 bins for the purpose of
illumination estimation combined with an sigmoid-smoothed

SAT function Eq. (11). fSgSAT (I,u) based on Eq. (1)
supporting a more curved transition at cutting points which
leads to a smoother and less aliased cost function landscape
(see Fig. 6). Here we show our sigmoid function Sg(x) with
k = 1/(b� a):

Sg(x) =
1

1 + 8ke(�(x�(b+a)/2)))

with u = (a, b)>
(10)

With the definition of d as the length of contrast band,
d = b � a, we have the sigmoid-smoothed SAT function
fSgSAT (I,u) defined as:

fSgSAT (I,u) = max(1� d, 0)⇥ Sg(I)

+min(d, 1)⇥ fSAT (I,u)
(11)

Fig. 6: Comparison between standard SAT function and
sigmoid-smoothed SAT function wrt u = (0.3, 0.5)>.
Second row shows the conditional mutual information
MI(I⇤, I|I0) computed by Eq. (8), notations keep as afore-
cited for I⇤ and I with I0 generated by the optimal contrast
band from MI(I⇤, fSAT (I,u)). We see clearly that standard
SAT causes aliasing-like effect in the landscape, due to
derivative discontinuity at cutting points a, b

E. Optimization Framework

Using the concepts introduced, we propose an optimiza-
tion framework that computes a multi-layered image repre-
sentation for each frame of a video sequence.

As illustrated in Algo. 1, the first step relies on the cost
function of standard mutual information Eq. (5) to compute
the optimal result of the first layer. The following layers
are then computed by optimizing a cost function measuring
conditional mutual information with the previous result.
This aims at finding the best contrast band (i.e. with the
lowest information correlation to the previously computed
contrast bands). I⇤ represents the image under reference
light condition and I the current test image to optimize,
ui, i = 0..N is referring to the computed optimal contrast
band of each layer with a layer number N .

Algorithm 1 Optimal MLI Generated by MI
1: i 0
2: u0  argmaxu(MI(I⇤, fSgSAT (I,u)))
3: while i < N do

4: ui  
argmaxu(MI(I⇤, fSgSAT (I,u)|fSgSAT (I,ui�1)))

5: i i+ 1
6: end while

7: return {uk}k=1..N

A demonstration with the NewTsukuba data set (see
Fig. 4) in Fig. 7 illustrates the idea of our multiple step
optimization framework. First step is the computation of
MI between two images, shown in Fig. 7 representing the



first layer (layer 1). The second and third layer rely on the
computation of the first layer and instead of optimizing a
standard MI cost function, a conditional mutual information
cost function is optimized using Eq. (9). Comparing with the
ground truth generated by ORB [18] detector, our proposed
method presents a highly similar behavior as well as a char-
acteristic of derivability for gradient optimization methods.

Fig. 7: In each layer, similar behaviors are shown with regard
to optimums (see image a,b), compared with ORB detector.
Ground truth for layers 2 and 3 are generated by a subtraction
between the common keypoints detected from the previous
optimal contrast band u⇤ and the keypoints from all others
contrast bands i.e. the ground truth of layer 2 is computed
by removing all keypoints common with keypoints detected
in previous optimum u⇤ = (0, 0.15)> in layer 1. Empirical
results also show that even with relatively different reference
images (c), the landscapes are similar.

V. EVALUATION AND EXPERIMENTS
To evaluate the benefits of our approach in visual SLAM

relocalisation tasks, we first select a synthetic scene bench-
mark under different static and dynamic lighting condi-
tions [16]. This dataset encompasses four videos rendered
with identical virtual camera trajectories in a synthetic scene
with different illumination conditions (Daylight, Fluorescent,
Lamps, Flashlight).

We then designed a real scene benchmark in different static
and dynamically changing lighting conditions by executing a
same camera trajectory using a robotic arm (see companion
videos). In both benchmarks, using a reference video in a
given lighting condition, we tested the robustness of our
approach compared to default ORB-SLAM in localising
the camera from the second video sequence against the
keyframes generated from the first video sequence, in a way

similar to [4] or more recently NID-SLAM [2]. In each
benchmark, we report the success rate, i.e. the percentage
of the frames from second video successfully relocated. Our
implementation is integrated in ORB-SLAM [19].

Results of NewTsukuba data set are displayed in Table. I.
The table reports an improved success rate against illumi-
nation changing environments in all but one condition, and
provides a 96.5% success rate where both default ORB-
SLAM and NID-SLAM fail (0%) in the Lamps to Flashlight
condition. The reason related to the failure comparison needs
to be investigated in the future work. Optimal contrast bands
for the sequences are computed with a relative low sampling
frequency wrt to image acquisition frequency (renew a
contrast band every 5 to 10 frames).

V2

V1 Daylight Fluo Lamps Flash

NID ORB MLI NID ORB MLI NID ORB MLI NID ORB MLI
Daylight 99.3 100 100 96.7 96.2 100 73.9 97.6 99.7 74.6 79.8 90.7

Fluo 95.0 88.1 99.8 99.7 100 100 85.3 93.9 100 95.8 100 90.5
Lamps 88.3 55.7 99.0 93.6 79.8 94.1 93.1 100 100 84.3 37.9 92.4

Flash 23.8 30.7 92.8 92.2 90.6 94.6 0.00 0.00 96.5 92.0 100 99.3

TABLE I: SLAM keyframe retrieval success rate between our
MLI implementation, default ORB-SLAM and NID-SLAM.

In the case of real scenes, we placed a monocular camera
on a trajectory memory 7 DoF Franka robot arm to guarantee
that the camera movement in each video is identical. In
comparison with the synthetic scene, a strongly dynamic
lighting condition is introduced, by having two operators ran-
domly move spots lights in the experiment scene. Using the
same success rate criterion, our MLI ORB implementation
managed to track 100% of the dynamically lit scene against
a keyframe map generated under normal lighting condition,
while normal ORB-SLAM only retrieved 52.12% of the
keyframes. Fig. 9 shows the inlier keypoints after graph op-
timization process (details see ORB-SLAM [19]), which can
be regarded as trusty tracked points generated in the current
frame. It demonstrates that MLI performs dramatically better
than default ORB which frequently lost tracking during the
video. Screenshots of the experiment video are displayed
in Fig. 8. A better tracking quality especially around dark
or over-exposed area of non-uniformly light images can be
observed.

VI. CONCLUSIONS

We have introduced a novel multi-layered image repre-
sentation based on mutual information optimization to tackle
the illumination robustness problem in SLAM relocalization
tasks. Each layer in MLI provides low-correlated information
which helps to enhance the contrast and therefore increase
the robustness during keypoints tracking process under vary-
ing illumination conditions. The optimal parameters are
computed using a multiple steps mutual information opti-
mization framework. The proposed method shows significant
improvements on both synthetic and real videos.



Fig. 8: Results of real scene against dynamic illumination variance. With a keyframe map generated under reference condition,
MLI shows a better retrieve capacity especially when encountering non-uniform illumination variance. In contrast, standard
ORB-SLAM only tracks the well lighted parts in the image.

Fig. 9: The number of trusty inlier keypoints after graph
optimization of ORB-SLAM which is a critical indicator
displaying the tracking quality. MLI generates significantly
better results than standard ORB under the dynamic light
changing environment.
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