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Abstract— We consider the problem of localization in multi-
agent formations with bearing only measurements, and analyze
the fundamental observability properties for dynamic agents.
The current well-established approach is based on the so-
called rigidity matrix, and its algebraic properties (e.g., its
rank and nullspace). This method is typically motivated using
first-order derivatives, and shows, among other facts, that the
global scale of the formation is not observable. This work
shows that current results represent an incomplete view of the
problem. In particular, we show that 1) current methods are a
particular instantiation of nonlinear observability theory, 2) we
can introduce the concept of the dynamic bearing observability
matrix from higher order derivatives to study the observability
of dynamic formations, and 3) the global scale is, in fact,
generally observable when the agents move according to known
inputs. We use tools from Riemannian geometry and Lie
group theory to tackle, in a general and principled way, the
general formulation of the localization problem with states that
include both rotations and translations. Finally, we verify our
theoretical results by deriving and applying, in both simulations
and real experiments on UAVs, a centralized Extended Kalman
Filter on Lie groups that is able to estimate the global scale of
a moving formation.

I. INTRODUCTION

Multiagent systems, and in particular multirobot systems
(e.g., quadrotors), have been the subject of research for more
than thirty years. These systems have many potential advan-
tages with respect to single-agent systems (e.g., decentralized
processing, resilience against failures of individual agents,
faster task completion times, etc.) A fundamental problem
in this area is the one of localization, broadly defined as
the process of determining the position of the agents in
a common reference frame from a sparse set of relative
measurements between them, and without the aid of an
external centralized system (such as GPS). This problem
becomes of paramount importance, for instance, when a
team of robots has to navigate autonomously in an unknown
environment, or needs to collaborate on a physical task (e.g.,
transporting a load [1]). In this case it is usually required for
the robots to be able to localize themselves w.r.t. other agents
of the formation. During recent years, a number of sensor
modalities for such measurements have been considered. From
a theoretical point of view, the most important aspect of these
different modalities is the quantity of information they provide.
For instance, the sensors could provide estimates of distance
(e.g., from wireless signal strength), bearing directions (e.g.,
with monocular cameras), translations (e.g., with stereo or
depth cameras), or both rotations and translations (e.g., using
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cameras and two-view Structure from Motion [2], [3]). In this
paper, we consider the case of bearing measurements, that
is, we assume that each agent can measure the direction (but
not the distance) of a subset of neighboring agents in its own
reference frame. This setup is arguably the most practical with
today’s most popular hardware, which, due to weight, cost,
and power consumption considerations, is usually limited
to an Inertial Measurement Unit (IMU) and a monocular
camera [4]. Our goal is to show that, despite the very limited
information provided by this type of measurements (direction
of relative translations alone), it is possible to reconstruct
the full 3-D pose (rotation and translation) of the agents,
including the global scale, up to a global gauge ambiguity.
We demonstrate this 1) theoretically through an application
of nonlinear observability analysis and Riemannian geometry,
and 2) practically by applying an Extended Kalman Filter in
both simulations and experiments.

Prior work. The problem of localization from bearing-only
measurements has appeared in a variety of domains, such
as (to cite a few) sensor network localization [5]–[7] and
formation control [8]–[10] in controls and robotics, Structure
from Motion [11], [12] in computer vision, and graph
drawings [13] in discrete mathematics. Most of the literature
has focused on the development of distributed algorithms
(especially in the sensor network and robotics communities),
but centralized solutions have also been considered (mostly
in the computer vision community). In this work, rather
than specific algorithms, we are interested in analyzing the
fundamental aspects of the localization problem. In this
direction, for our case of interest involving bearing-only
measurement, there has been a considerable amount of work
for developing a theory of rigidity [14]–[19], which can
predict what information can be recovered from the available
measurements (i.e., whether the solution is “unique”). While
most of these works considered only agents in 2-D, recent
work has considered also the 3-D case [20]. The commonly
accepted result is that, when the number and connectivity
of the measurement graph is sufficiently high (that is, when
the graph is rigid), then, for static agents, the solution to
the bearing-only localization problem is unique up to a
rototranslation and a contraction/expansion of the whole
formation. This is determined by considering the nullspace
of a so-called rigidity matrix. Most of the existing works,
however, do not explicitly consider the case of dynamic
agents. At a high level, one could expect that if the agents
know their own velocities in their own local frames (e.g.,
because they control them, or measure them using the onboard
IMU), then they could use this metric information to avoid
the scale ambiguity. Recent works [21] have pursued this
idea, but do not provide a full, rigorous analysis rooted in



nonlinear observability analysis and Riemannian geometry.
One disadvantage of [21] is the presence of two estimators
in series for estimating the scale of the formation (one filter
estimates the distances over a selection of edges, and the
second filter recovers a correctly scaled estimation of the
formation configuration). Stability of this cascaded structure
is difficult to prove (indeed, nothing is said in [21]), while
our algorithm achieves the same result with only one single
EKF. On the other hand, [21] is able to determine the optimal
motion for the agents in order to maximize the observability
of the scale factor. We plan to exploit the ideas in [21]
for a similar characterization in the context of our EKF
estimation. Nonetheless, ideas related to this approach have
been successfully explored in the context of single-agent
Simultaneous Localization and Mapping (SLAM) [4], [22]
and localization from distance measurements [23].

In this regard, nonlinear observability (the problem of
determining if the state of a nonlinear dynamical system
can be reconstructed by knowing its inputs and outputs) is
a classical topic in automatic controls [24]–[26], and it now
constitutes textbook material [27]. However, it has never
been explicitly applied to the problem of localization from
bearing-only measurements. On the other hand, Riemannian
geometry has been applied in the context of geometric control
and estimation of mechanical systems in general [28], [29],
and quadrotors in particular [1], [30], [31]. A Riemannian
geometry formulation has also been used for multiagent
localization with unscaled relative poses [32], but it has never
been applied together with nonlinear observability analysis
to the bearing-only case.

Finally, in this paper we propose a validation of our
theoretical results using an Extended Kalman Filter (EKF)
for statistical filtering of states evolving on Riemannian
manifolds. The main advantage of the EKF formulation is
that it is relatively easy to derive; in fact, both centralized
[33] and decentralized [34] implementations have been
proposed specifically for multiagent systems, although without
considering states evolving on Riemannian manifolds. On
the other hand, it is known that the EKF is not optimal
for nonlinear systems. Developing filtering techniques with
optimality guarantees on Riemannian manifolds (and Lie
groups in particular) is still an active field of research [35],
[36]. Since the goal of the paper is to simply use filtering
as a validation of the theoretical derivations, we opted for
a straight (although suboptimal), centralized (as opposed to
distributed) application of the EKF, albeit with the explicit
consideration of the Riemannian geometry of the states.

Paper contributions. In this paper, we make several
contributions to the state of the art:

• We show how the study of rigidity is, in fact, a particular
instance of classical nonlinear observability analysis;

• Using this insight, we propose the notion of dynamic
bearing observability matrix (DBOM), which extends
the standard notion of rigidity matrix for the case moving
agents with known inputs;

• By (numerically) analyzing the rank of the DBOM, we
show that the global scale of the formation is generally
observable;

• We show how tools from Riemannian geometry can

be employed to carry out the observability analysis for
states evolving on the space of rigid body motions;

• We derive and apply a centralized Extended Kalman
Filter (EKF) on Riemannian manifolds that empirically
verifies the theory (i.e., that shows that the global scale
can be indeed recovered).

Overall, we show how bearing-only measurements (which,
taken individually, do not contain any scale information)
and local linear and angular velocity information can be
used to recover the entire state of the agents up to a
common rotation and translation (since all measurements
are relative and do not have any relation to external reference
systems, this last ambiguity appears to be unavoidable, even
with dynamic agents). Moreover, by explicitly using the
Riemannian geometry of the space of poses (which is based,
among other elements, on the use of rotations matrices)
throughout the paper (both for the observability analysis and
the statistical filter), we avoid the problems given by other
representations (e.g., the singularities of Euler angles, and the
non-uniqueness of quaternions). Finally, in this paper we do
not perform a full, analytical characterization of the nullspace
of the DBOM, and we do not consider distributed filtering
solutions. However, these are interesting future directions that
are enabled by the present work.

Paper overview. The paper is organized as follows. Sect. II
reviews notions from several areas that are necessary to carry
out our analysis. In Sect. III we introduce the novel concept
of Dynamic Bearing Observability Matrix. Sect. IV illustrates
our EKF design. Finally, Sect. V reports experimental results
with a group of quadrotor UAVs, followed by Sect. VI that
concludes the paper and gives possible future directions.

II. PRELIMINARIES

A. General notation

Let W represent an absolute 3-D world reference frame,
and Ai represent a body reference frame attached to the i-th
agent. We use {em}3m=1 to denote the standard R3 basis. We
also let 1N and IN represent a vector of all ones and the
identity matrix of dimension N , respectively. The operator
stack(·) returns a matrix containing a vertical stacking of the
arguments.

B. Formation, Agent and Measurement Model

As customary, we model the formation of robots with a
directed sensing graph G = (V, E), where the vertex set V =
{1 . . . N} represents the agents, and the edge set E ⊆ V ×V
contains the pairs of agents (i, j) ∈ E for which agent j can
be sensed from agent i. We denote as Ni = {j ∈ V| (i, j) ∈
E} ⊂ V the set of neighbors of an agent i in G.

We model the state of an agent i ∈ V as a pose qi =
(pi,Ri), where pi ∈ R3 represents the translation of the
origin of Ai expressed in W , and Ri ∈ SO(3) represents the
rotation transforming directions from Ai to W . We denote
the space of rigid poses as SE(3) (the detailed definition
of SO(3) and its geometry is postponed to Sect. II-C). We
assume a simple first order model for the 6-D dynamics of
each agent

q̇i =
(
ṗi, Ṙi

)
=
(
Rivi,Riŵi

)
(1)



=

3∑
k=1

(
Riek, 0

)
vik +

3∑
k=1

(
0,Riêk

)
wik , (2)

where vi,wi ∈ R3 represent, respectively, the linear and
angular velocities expressed in Ai, and vik , wik represent
their components along the ek basis vector. We use this
model for generality, but the results of this work could be
easily specialized to other cases (e.g., considering only the
positions of the agents, or only the 2-D yaw angle, as done
in the majority of previous works).

We assume that each robot is equipped with a sensor
(onboard calibrated camera) that allows it to measure the
relative bearing vector w.r.t. an agent j ∈ Ni in its own
reference frame Ai, i.e., the 3-D unit-norm vector

βij = hij(qi, qj) = RT
i

pj − pi
‖pj − pi‖

= RT
i

pij
dij
∈ S2, (3)

where pij = pj − pi, dij = ‖pj − pi‖.
As in [16], [17], [21], [37], we assume that we have

only available the inputs {vi,wi}i∈V , and the measurements
{βij}(i,j)∈E . In particular, we have access neither to the
absolute states qi, nor to the global reference frame W .
Throughout the nonlinear observability analysis we will refer
to the different components of the vector βij as:

βijm = eTmβij ∈ R, m ∈ {1, 2, 3}. (4)

Remark 1. While we will individually consider each one
of the three elements of each bearing βij as a separate
output, in reality the fact that βij ∈ S2 implies that only
two outputs are algebraically independent. The effect of this
is that the bearing rigidity matrix that we will derive will
contain more rows than strictly needed (i.e., some rows will
be automatically linearly dependent). However, this does not
change the result of the rank-based observability test.

C. Elements of Riemannian geometry

This section covers the basic Riemannian geometry notions
that are used in the derivations below. We will be mostly
concerned with three manifolds: the Euclidean space R3, the
space of 3-D rotations SO(3) = {R ∈ R3×3 : RTR =
I, det(R) = 1}, the space of 3-D poses SE(3) = {(p,R) :
R ∈ SO(3),p ∈ R3}, and the space of N 3-D poses SE(3)N .
These manifold are in fact Lie groups, but we will not make
use of this fact.

a) Tangent spaces: We denote as TxM the tangent
space of a manifoldM at a point x ∈M. The tangent space
at a point can be identified as the vector space spanned by
the tangents of the curves passing through that point; for
instance, if R(t) : I → SO(3) is a parametrized curve in
SO(3) defined on some interval I ⊂ R around zero, then
Ṙ(0) ∈ TR(0)SO(3). For R3, the tangent space at each point
can be identified with R3 itself. For SO(3) however, we first
need to redefine the usual hat (̂·) and vee (·)∨ operators
between R3 and the set of skew-symmetric matrices in R3×3

as follows, with v = [v1, v2, v3]T :

vR∧ = R

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 = Rv̂, V R∨ =
(
RTV

)∨
(5)

where V is any vector V ∈ TRSO(3)1. It can be shown that
the tangent space of SO(3) is given by

TRSO(3) = {Rv̂ : v ∈ R3}. (6)

We define a basis for TRSO(3) as {eR∨m }3m=1; it follows
that any vector V ∈ TRSO(3) can be expressed as a
vector v ∈ R3 of local coordinates in this basis with the
relation v = V R∨. For instance, for the curve R(t) defined
above, letting R0 = R(0) we will have Ṙ(0) = wR0∧

for some w ∈ R3, or, equivalently, w = Ṙ(0)R0∨. In
the case where R(t) represents a physical time-varying
rotation, using the convention given in Sec. II-B, the vector
w coincides with a vector of angular velocities expressed in
the body frame (see also (1)). The tangent space of TqSE(3)
can be identified with the direct sum R3 ⊕ TRSO(3) (i.e.,
a tangent for SE(3) is simply a tangent for R3 together
with a tangent for SO(3)). Similarly, the tangent space of
SE(3)N is simply the direct sum of N copies of TqSE(3). A
representation in local coordinates of a vector TqSE(3) can
be obtained by stacking the local coordinate representation
of each rotational component (as discussed above), with the
translational components.

Remark 2. Note that q̇ can be interpreted as a tuple of
linear and angular velocities or as a single vector expressed
directly in local coordinates.

b) Riemannian metrics: A Riemannian metric 〈, 〉
smoothly assigns an inner product to each tangent space.
The standard Riemannian metric for R3 is the usual inner
product. The standard Riemannian metric for SO(3) is defined
as

〈Rv̂1,Rv̂2〉 =
1

2
tr(v̂T1 v̂2) = vT1 v2, (7)

where Rv̂1,Rv̂2 ∈ TRSO(3) are two tangent vectors. For
SE(3), we use the metric given by the sum of the two previous
metrics, and for SE(3)N , the sum of the metrics for each
copy of SE(3).

c) Gradients and how to compute them: The gradient
of a differentiable function f(x), f : M → R computed
at a point x0 on a manifold M is defined as the unique
tangent vector ∇xf(x0) such that, for all curves x(t) with
x(0) = x0,

〈∇xf(x0), ẋ(0)〉 =
d

dt
f
(
x(t)

)∣∣∣
t=0

. (8)

For R3, it can be shown that this definition coincides with
the more common definition as a vector of partial derivatives.
For SO(3), we can use (8) to compute gradients of any
arbitrary function f in a few steps. First, we consider a
fictitious parametrized curve R(t) in SO(3). Then we use
the chain rule to compute d

dtf
(
R(t)

)
, the derivative of the

function along the curve. It can be shown that this derivative
(when it exists) can always be written as

d

dt
f(R) = tr(MTṘ) = tr

(
skew(RTM)TRTṘ

)
, (9)

where M is some matrix in R3×3 which in general depends
on R, skew(A) = 1

2 (A −AT) is an operator that extracts

1If R is not present in the superscript, or if the R = I , the definitions
of hat and vee operators are the classical ones present in the literature.



the skew-symmetric component of a matrix, and the explicit
dependency on t has been omitted for brevity. The first
equality in (9) comes from the fact that the differential of
a map (gradients are a particular case of differentials) are
always linear maps [38], and they can be expressed as linear
functionals using the trace operator [39]. The second equality
in (9) comes from the characterization of TRSO(3) given in
(6) and the fact that tr(Sv̂) = 0 for any symmetric matrix
S ∈ R3×3 and v ∈ R3. Comparing (9) with (8), we then
obtain ∇Rf(R0) = 2R skew(RTM) (this is equivalent
to the formula given, e.g., in [40]); in local coordinates,
this becomes 2 skew(RTM)∨. Informally, we refer to this
set of steps as the trace trick. For SE(3) and SE(3)N , the
computation of the gradient reduces to a separate computation
for each component.

Remark 3. In this paper we represent rotations using rotation
matrices. Compared to other representations (such as Euler
angles or quaternions), this representation is unambiguous,
does not have singularities, and, as shown above, provides
a relatively straightforward way to compute gradients (see,
e.g., [31] for additional insights).

D. Elements of local nonlinear observability

Let q = (q1, . . . , qN ) ∈ SE(3)N (according to remark
2), β = stack({βij}) ∈ R3|E|, and the input vector fields
gvik

, gwik
on SE(3)N which are obtained by appropriately

padding with zeros the corresponding vectors in (2). Then,
the dynamical model of the entire network can be considered
as a nonlinear system with affine inputs:

q̇ =
∑
i∈V

3∑
k=1

(gvik
vik + gwik

wik),

β = h(q),

(10)

where h : SE(3)N → R3|E|, h = stack({hij}).
The goal of nonlinear observability theory [22] applied to

problem (10) is to determine what parts of the state q can
be reconstructed from the outputs β and the inputs {vi,wi}.
Following the notation of [22], we indicate the kth order Lie
derivative of a function h along the vector fields f1, . . . ,fk

as Lk
f1,...,fk

h. The definition of Lie derivative is given by
letting L0h = h, and then, recursively:

dLk
f1,...,fk

h = ∇qL
k
f1,...,fk

h, (11)

Lk+1
f1,f2,...,fk+1

h = 〈dLk
f1,...,fk

h,fk+1〉, (12)

where 〈, 〉 is the Riemannian metric on SE(3)N described in
Sect. II-C, and dLk

f1,...,fk
h is a shorthand notation for the

gradient of a Lie derivative. In nonlinear observability, the
function h is set to be an output of the system, and the vector
fields f1, . . . ,fk are taken to be the input vector fields.

In our case, we consider each βijm (that is, each element
of β) as a separate output of the system. In order to carry
out the local nonlinear observability analysis at a particular
configuration q, it is necessary to define the subspace

dΩ = span
(
{dLk

f1,...,fk
βijm}

)
, (13a)

where k ∈ {0, 1, . . . }, (i, j) ∈ E ,m ∈ {1, 2, 3}, (13b)

f1, . . . ,fk ∈ {gvik , gwik
}. (13c)

As discussed in [27, Sect. 1.9], it is sufficient to consider
Lie derivatives up to the order k = 6N − 1 (where 6N
is the dimension of the system (10)). In practice, we will
numerically verify that k = 1 is already sufficient under
general conditions to show that the global scale of the system
can be recovered. We define dΩ⊥ to be the annihilator of
dΩ, that is, the subspace of TqSE(3)N such that

〈v, n〉 = 0 ∀v ∈ dΩ, n ∈ N (14)

The annihilator tells us the locally unobservable modes of
the system [22], [27], that is, what variations of the state
q cannot be observed under any choice of the inputs (and
their Lie brackets). In practice, to find dΩ⊥ and compute
its dimension, we need to switch to a local coordinate
representation. To avoid introducing additional notation, we
redefine dLk

f1,...,fk
h to be the vector in R6N of local

coordinates (as opposed to an abstract tangent vector in
TqSE(3)N ). Similarly, we redefine dΩ as a matrix (the
original subspace dΩ is given by the row span of this matrix):

dΩ = stack
(
{dLk

f1,...,fk
βijm}

)
, (15)

where the indexes are the same as in (13). Intuitively, the
matrix dΩ generalizes the classical observability matrix used
for linear systems [24], [25], [27]. Finally, the annihilator
dΩ⊥ is redefined to be the nullspace of dΩ, dΩ⊥ = null(dΩ).

In the next section we will give the details of the
computation of dΩ for Lie derivatives of order up to k = 1
for our system (10).

III. Dynamic BEARING OBSERVABILITY MATRIX

In this section we introduce the notion of Dynamic Bearing
Observability Matrix2 (DBOM). We define the DBOM R̃ to
be equal to the matrix dΩ computed with the gradients of
Lie derivatives of order up to k = 1. More explicitly:

R̃ = stack({dL0βijm}, {dL1
f1
βijm}) = stack(R̃A, R̃B),

(16)
where the matrix R̃A and R̃B contain the gradients of the
Lie derivative of order, respectively, k = 0 and k = 1, and
will be described in detail in Sects. III-A and III-B.

We anticipate here that the matrix R̃A is equivalent to the
traditional bearing rigidity matrix first introduced in [41], and
then expanded upon in various papers (e.g., [17], [18], [20]).
However, here we 1) derive it for full 6-D states in SE(3),
using a clear interpretation with respect to the Riemannian
geometry of the space, and 2) give it the interpretation of a
first step in a full nonlinear observability analysis. Intuitively,
since this matrix includes only zeroth order Lie derivatives,
its properties tell us which parts of the state can be estimated
without providing any input (static agents). As expect from
previous works, and compatibly with the intuition, global
scaling (contraction/expansion) of the formation generate
tangent vectors that are in the nullspace of R̃A, meaning that
the global scale is not observable.

The matrix R̃B constitutes the main novelty in our analysis.
Intuitively, since this matrix includes first order Lie derivatives,

2We chose this name to stress that the scale of a formation based on
bearing measurements is retrievable through dynamic information.



its properties tell us what can be estimated by moving the
agents with constant inputs. As we will numerically verify
in the following, this matrix contributes to reducing the
dimension of the nullspace of R̃ by one. The direction that
is removed corresponds exactly to the contraction/expansion
motion. This is compatible with the intuition above: when
agents move, there is a parallax effect that can be exploited
to get an estimate of the unknown scales. In the remainder of
this section we include only the main results of our analysis.
Please refer to [42] for more detailed derivations.

A. Matrix R̃A

In order to compute the matrix R̃A, since the zeroth-order
Lie derivatives L0βijm are simply equal to the function them-
selves, we can directly focus on computing their gradients
∇qL

0βijm. For this purpose, we will use the trace-trick
method. Assuming that βij moves along a fictitious curve
βij(t), we compute the following:

d

dt
L0βijm = 〈∇pi

L0βijm, ṗi〉+ 〈∇pj
L0βijm, ṗj〉+

+〈∇RiL
0βijm, Ṙi〉+ 〈∇RjL

0βijm, Ṙj〉 = eTmβ̇ij

(17)

Expanding eTmβ̇ij , and after some tedious algebra, relying
on the steps detailed in Sect. II-C, we can extract the desired
gradients (in local coordinates):

∇pi
L0
(
eTmβij

)
= − 1

dij
eTmP ijR

T
i , (18)

∇pj
L0
(
eTmβij

)
= +

1

dij
eTmP ijR

T
i , (19)

∇Ri
L0
(
eTmβij

)
= −

(
skew

(
2βije

T
m

)∨)T
, (20)

∇Rj
L0
(
eTmβij

)
= 0, (21)

where P ij = I3 − βijβ
T
ij is the orthogonal projector onto

the orthogonal complement of βij . Equations (18)–(21) then
give the (1× 6N) k-th row block of R̃A associated to the
edge (i, j) ∈ E , of the form[
−0− −e

T
mP ijR

T
i

dij

(
− skew

(
2βije

T
m

)∨)T −0− eTmP ijR
T
i

dij
−0− −0−

]
,

(22)
where the blocks are ordered following the ordering of the
translational and rotational states in q. Notice that, in this
formula, this block row is expressed in the frame W . It is
also possible to express it in the local frame using the same
ideas as [18].

B. Matrix R̃B

In order to compute the matrix R̃B , it is necessary to
first compute the first-order Lie derivatives L1

f1
βijm =

〈∇qL
0βijm,f1〉, where f1 ∈ {gvık , gwık

}ı∈V . Note that,
for a given i, j, all these Lie derivative are zero except for
f1 ∈ {gvik , gwik

, gvjk
} (for f1 = gwjk

, the Lie derivative
is zero due to (21)). We can therefore consider only the latter
ones. For instance, let us focus on the case f1 = gvik

. To
compute the gradient of L1

gvik

βijm we can employ again the

trace-trick method.
d

dt
L1
gvik

βijm = 〈∇pi
L1
gvik

βijm, ṗi〉+ 〈∇pj
L1
gvik

βijm, ṗj〉+

+〈∇RiL
1
gvik

βijm, Ṙi〉+ 〈∇RjL
1
gvik

βijm, Ṙj〉
(23)

Notice that, however, while expanding above we will obtain
terms that depend on β̇ij . Similarly to what we mentioned
in Sect. II-C, one can show that this dependency is linear.
More explicitly, we can rewrite (23) as
d

dt
L1
gvik

βijm = 〈∇̄pi
L1
gvik

βijm, ṗi〉+ 〈∇̄pj
L1
gvik

βijm, ṗj〉+

+〈∇̄Ri
L1
gvik

βijm, Ṙi〉+ 〈∇̄Rj
L1
gvik

βijm, Ṙj〉+Kijβ̇ij ,

(24)
where Kij is a matrix in R3×3. We can exploit (24) to
compute the rank of the DBOM R̃, while avoiding the
explicit computation of the terms in Kij , thus simplifying
the analytical expressions involved; this is because we can
collect all the {Kij}(i,j)∈E into a 3|E| × 3|E| matrix K =
diag

(
{Kij}

)
, and then rewrite (16) as

R̃ =

[
R̃A

R̃C +KR̃A

]
, (25)

where R̃C is defined in the same way as R̃B , but by using
the modified (and analytically simpler) gradients ∇̄q instead
of the full gradients ∇q . Eq. (25) implies that

rank

[
R̃A

R̃B

]
= rank

([
I 0
K I

] [
R̃A

R̃C

])
= rank

[
R̃A

R̃C

]
(26)

Hence, for our purposes, we can compute the rows of R̃C

instead of those of R̃B . Compared to (17), here the algebra
required is really tedious and, due to space limitations, we
directly provide the final results. For f1 = gvik

we have:

∇̄pi
L1
gvik

βijm = −

[
1

d2ij
eTmP ijR

T
i RiekRiβij

]T
(27)

∇̄pj
L1
gvik

βijm =

[
1

d2ij
eTmP ijR

T
i RiekRiβij

]T
(28)

∇̄RiL
1
gvik

βijm = 0T , ∇̄RjL
1
gvik

βijm = 0T (29)

The expressions in (29) are zero due to a numerical cancel-
lation inside the skew operator and the fact that L1

gvik

βijm

does not depend on Rj . For f1 = gvjk
we have:

∇̄pi
L1
gvjk

βijm =

[
1

d2ij
Riβije

T
mP ijR

T
i Rjek

]T
(30)

∇̄pj
L1
gvjk

βijm =−

[
1

d2ij
Riβije

T
mP ijR

T
i Rjek

]T
(31)

∇̄RiL
1
gvjk

βijm =

[
1

dij
skew

(
2RT

i Rjeke
T
mP ij

)∨]T
(32)
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Fig. 1: Behavior of the last 8 singular values of the matrix R̃A
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∇̄RjL
1
gvjk

βijm =

[
1

dij
skew

(
2RT

j RiP ijeme
T
k

)∨]T
(33)

Regarding the case f1 = gwik
, the Lie derivative L1

gwik

βijm

depends on the states only through βij . Since we have
separated the contribution of β̇ij in (24), we have that
∇̄qL

1
gwik

βijm = 0. Finally, as already mentioned, all the
other first order Lie derivatives are zero, so they cannot
contribute to the rank of R̃.

C. Numerical verification of the ranks of R̃A and R̃
Sects. III-A and III-B provided a complete analytical

expression of the different terms of the matrix R̃. Notice that
these matrices (and their ranks) depend only on the position
and rotations of the agents, on their velocities (i.e., inputs).

After building the matrix (25) we found that, for a
formation of 3 agents in random positions, the rank of the
R̃A is equal to 11 (6N − 7) while the one of the R̃ to 12
(6N−6). As an example, we plot in Fig. 1 the last 8 singular
values of the two matrices as a function of time along the
trajectories of the experiment discussed in Sect. V. Note that,
as with any dynamic observability result, this result does
not imply that the global scale can be recovered under any
arbitrary choice of inputs. Instead, it is necessary to choose
inputs that “excite” this mode (intuitively, where the agents
move approximately perpendicularly to the bearing). This is
in line with what was found in [21].

Note that at the beginning of the paper we claimed that
this algorithm is bearing-only while in the previous terms,
almost everywhere, it appears the distance dij . This quantity is
retrievable through the EKF which is the topic of next Sect. IV

IV. A MULTI-AGENT EXTENDED KALMAN FILTER

This section describes the design of an Extended Kalman
Filter (EKF) on Lie groups to empirically verify the ideas of
the previous sections. In particular, the EKF will provide an
estimate q̂i = (p̂i, R̂i) of the configuration qi of each agent.
There are, however, two issues that need to be addressed.
First, as already seen, the state of the system can be estimated
only up to a global rotation and translation. We fix this
ambiguity by choosing a moving reference frame that moves
with the first agent. Of course, the uncertainty associated

with this agent will always be zero by construction. A
more representative choice would probably be to consider
an “average” reference frame placed at the centroid of the
formation; this, however, would significantly complicate the
derivation of the filter, and it is therefore outside the scope of
this paper. Second, actual implementations of any filter must
work in discrete time. We therefore need to discretize our
dynamical model (1). As in [31], we use a simple 1-step Euler
forward approach, which is equivalent to assuming constant
input velocites vi,wi between discretization instants. With
this assumption, our system (1) becomes

qi,k+1 =

[
pi,k + dtvi,k

expRi,k

(
dtRi,k

(
wi,k

)∧)] = f i(qi,k,ui,k),

(34)
where ui,k = stack(vi,k, wi,k), dt is the length of time of
the discretization interval, and expR(·) is the exponential
map at R ∈ SO(3); the exponential map can be computed
as expR(Rŵ) = R expI(ŵ), where the exponential at the
identity expI , which corresponds to the matrix exponential,
can be computed using the Rodriguez’s formula [2]. Moreover,
we define an operator expqk

(τk) with qk = (pk,Rk) ∈
SE(3) and τk = (vk,wk) ∈ TqSE(3). This operator for the
position part of qk corresponds to the operation qk+vkdt and
for the rotation part of qk corresponds to the usual expRk

(ŵk)
(this notation simplifies the filter equations). Note that (34)
is used for i > 1; for agent i = 1 we have qi,k = 0, given
our choice of the reference frame. Note also that the output
function hij in (3), corresponding to the edge (i, j), should
be redefined to explicitly take into account the measurement
noise (denoted with oij)

h̃ij(qi, qj ,oij) = RT
i

pj − pi + oij

‖pj − pi + oij‖
(35)

Similarly, we define f̃ i(qi,ui,ni) = f(qi,ui + ni), where
ni ∈ Tqi

SE(3) is the noise.
The overall system for the entire network is then

qk = f̃(qk−1,uk,nk), βij = h̃(qj , qj ,ok), (36)

with uk = stack ({ui,k}), and where we added process and
measurement noises nk,ok (ok = stack ({oij}) introduced
in (35)), which are assumed to be zero mean multivariate
Gaussian with covariance (block diagonal) matrixes Qk,Rk.
The EKF is based on the linearization of the system (36):

F k =
∂f

∂q

∣∣∣∣x̂k−1|k−1,
uk,nk=0

, Hk =
∂h

∂q

∣∣∣∣
x̂k|k−1,ok=0

, (37)

Lk =
∂f

∂n

∣∣∣∣ x̂k−1|k−1,
uk−1,nk=0

, Mk =
∂h

∂o

∣∣∣∣
x̂k|k−1,ok=0

. (38)

In our case, the matrix F is block diagonal with blocks
given by

F iq̇i = ∂f i

∂qi
q̇i =

(
ṗi + dtṘivi + dtRiv̇i

DRi
Ṙ
∨
i + dtDwi

ẇi

)
. (39)

DRi
= DRi

expRi
(dtRiŵi) and Dwi

= Dwi
expRi

(dtwi)
denote the differentials of the exponential map with respect
to R and w, respectively; details on the implementation of



these differential can be found in [43]. The matrix Hk is
actually the same as the matrix R̃A computed in Sect. III-A.
The matrices Lk and Mk can be computed similarly to F k

and Hk.
The prediction step of the EKF is given by the state estimate

q̂k|k−1 = f(q̂k−1|k−1,uk−1) (40)

and the covariance matrix estimate

P k|k−1 = F k−1P k−1|k−1F
T
k−1 +Lk−1Qk−1L

T
k−1. (41)

The update step of the filter consists of the state estimate

q̂k|k = expq̂k|k−1

(
P k|k−1H

T
k +

+
(
HkP k|k−1H

T
k +MkRkM

T
k

)︸ ︷︷ ︸
Sk

−1
)
ỹk

(42)

where ỹk is the difference between the measured and
estimated bearings.

Moreover, the covariance matrix estimate is given by

P k|k =
(
I −

(
P k|k−1H

T
k + S−1k

)
Hk

)
P k|k−1 (43)

Sect. V below shows a result of our (centralized) EKF.

V. EXPERIMENTAL RESULTS

In order to validate the presented ideas, extensive simu-
lations in a Matlab environment have been performed con-
sidering cases with both process and measurement noise. In
addition to simulations also experiments have been performed
with real quadrotor UAVs3. In this section an experiment with
3 agents (2 real quadrotor UAVs and a fixed virtual agent) will
be presented. The experiments were performed in our flying
arena which has a flying volume of 6.5 m x 6.5 m x 3 m and
is equipped with a Vicon motion capture system. This was
used for obtaining the ground truth and for reconstructing
the body-frame bearing measurements βij that would have
been obtained by the onboard cameras.

For the experiment presented in this section 2 MK-Quadro
by Mikrokopter have been used. The usual Mk-Quadro was
extended with an ODROID-XU4 Linux computer running
ROS and a set of packages based on GenoM3 [44] for
implementing the low-level flight control. The high level
controller was implemented in Matlab. The third virtual agent
of the formation which fix the ambiguity discussed in Sect. IV
has been placed, for convenience, in the origin of the motion
capture system reference frame. This agent will be the one
w.r.t. the other 2 UAVs will refer their measurements.

During the experiment reported in Figs. 2 and 3 the agent
2 was moving mainly back and forth on the x axis while
the agent 3 was following an ellipsoidal trajectory. An user
was also able to give velocity inputs to the UAVs through a
joystick. The trajectories described above allows to highlight
the fact that, in order to collectively estimate the scale, the
agents need to move along exciting trajectories [21]. Indeed,
from Figs. 2a and 2b it is possible to notice that the variance
associated to the coordinates which are only ligthly excited
(y, z coordinates on the agent 2 and 3) remains higher than

3Video of the experiments: https://goo.gl/izyYk3

the ones which are strongly excited (x coordinates on the
agents 2 and 3). Fig. 2c shows the behavior of the true and
estimated distance between the agents 2 and 3 and it is clear
that the EKF, even starting far from the true values (both for
position and orientations (Fig. 3)) it is able to recover the
true distance d23, hence the scale of the formation.

The orientation error showed in Fig. 3 is defined as:

Rerri =
1

2
tr
(
I − R̂

T

i Ri

)
, ∀i ∈ V (44)

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we considered the problem of scale estimation
in localization with bearing-only measurements and known
agent velocities. By applying nonlinear observability theory
and Riemannian geometry, we extended existing results on
the theory of rigidity and introduced the notion of Dynamic
Bearing Observability Matrix (DBOM). Using experiments
with 2 quadrotor UAVs, we have shown that the global scale is
indeed observable, and that it can be recovered by employing
a centralized EKF on SE(3).

The preliminary results of this work open several inter-
esting future research direction, such as 1) providing a full
analytical characterization of the nullspace of the DBOM and
critical agent configurations, 2) verifying if the inclusion of
higher order Lie derivatives can provide additional insights,
3) designing input signals that minimize the uncertainty in
localization (using [21] as inspiration), 4) studying distributed
implementations of the EKF (building upon, e.g., [34], [45]),
5) investigating the use of real vision-based measurements
(with, e.g., AprilTag [46]), 6) applying similar ideas to
different types of agents (e.g. second-order integrators or
unicycle dynamics) and measurements (e.g., distance-only)
and, finally, 7) extending the proposed ideas to the case of
multi-agent systems with unknown input as in [47].
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