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Abstract— The goal of this paper is to increase the estimation
performance of an Extended Kalman Filter for a nonlinear
differentially flat system by planning trajectories able to max-
imize the amount of information gathered by onboard sensors
in presence of both process and measurement noises. In a
previous work, we presented an online gradient descent method
for planning optimal trajectories along which the smallest
eigenvalue of the Observability Gramian (OG) is maximized. As
the smallest eigenvalue of the OG is inversely proportional to the
maximum estimation uncertainty, its maximization reduces the
maximum estimation uncertainty of any estimation algorithm
employed during motion. However, the OG does not consider
the process noise that, instead, in several applications is far from
being negligible. For this reason, this paper proposes a novel
solution able to cope with non-negligible process noise: this is
achieved by minimizing the largest eigenvalue of the a posteriori
covariance matrix obtained by solving the Continuous Riccati
Equation as a measure of the total available information. This
minimization is expected to maximize the information gathered
by the outputs while, at the same time, limiting as much as
possible the negative effects of the process noise. We apply
our method to a unicycle robot. The comparison between the
novel method and the one of our previous work (which did not
consider process noise) shows significant improvements in the
obtained estimation accuracy.

I. INTRODUCTION

Evidence from neuroscience and biology shows that the
humans’ brain dedicates a large effort for reducing the
negative effects of noise affecting both the motor and the
sensing apparatus [1]. Indeed, humans take into account
the quality of sensory feedback when planning their future
actions. This is achieved by coupling feedforward strategies,
aimed at reducing the effects of sensing noise, with feedback
actions, mainly intended to accomplish given motor tasks and
reduce the effects of control uncertainties [2].

Robots, analogously to humans, need to localize them-
selves w.r.t. the environment in order to move safely in un-
structured environments while, at the same time, a map of the
surrounding is built. This capability is highly influenced by
the quality and amount of sensor information, especially in
case of limited sensing capabilities and/or low cost sensors.
Moreover, if one wishes to include self-calibration states
in the estimation, the dimensionality of the state vector
clearly increases, while the number of measurements remains
unchanged [3]. As a consequence, it is important to deter-
mine inputs/trajectories that render all states and calibration
parameters as observable as possible by maximizing the
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information gathered along the trajectory. The problem of
optimal information gathering has been indeed studied in
the literature in a variety of contexts such as: (i) optimal
sensor placements, c.f. [4] for optimal placing the sensors on
a wearable sensing glove or [5] for studying the gyroscopic
sensing distribution of an insect wings; (ii) localization
and exploration for mobile robots, c.f. [6] that proposes a
complete observability analysis of the planar bearing-only
localisation and mapping problem.

For these reasons, understanding whether the problem of
estimating the state of the robot and the environment from
knowledge of the inputs and the outputs of the system admits
a solution is of fundamental importance. This is referred to
as observability problem as detailed in [7], [8]. The problem
is even harder to solve if the system is non-linear since,
in this case, the observability property depends not only
on the state but also on the inputs of the system. In some
cases, one may also find some singular inputs, i.e. inputs
that do not allow the reconstruction of the whole state from
measured output (c.f., [6]). In order to avoid this situation,
some authors have proposed intelligent control strategies
able to maximize the amount of information gathered by
sensors or, in other words, to maximise the “distance” from
the singular inputs/trajectories. This problem is known in
the literature as active perception, active sensing control or
optimal information gathering. One example in this context
is given by [9], where the authors maximize the minimum
eigenvalue of the Observability Gramian matrix in order to
find optimal observability trajectories for first-order nonholo-
nomic systems. Another example can be found in [10], where
the condition number of the Observability Gramian matrix
is used for finding the optimal observability trajectory for an
aerial vehicle.

While several works take into account the measurement
noise in their formulations, quite a few explicitly consider
the actuation noise, which, on the other hand, is far from
being negligible for several robotic applications (a prominent
example being aerial vehicles). One exception is represented
by the POMPD-based methods such as [11], [12] where the
authors propose a motion planning algorithm that minimises
the motion and the sensing uncertainties in environments
with static obstacles. Another approach is the one in [13],
where an optimal control algorithm selects trajectories that
optimises a cost function composed by the state tracking
goals, the control effort, and the sensitivity of planned
motion to variations in model parameters, including actuation
noise. However, these approaches are more devoted to an
offline implementation (also because of their computational
complexity), while the goal of this paper is to propose an



online solution to the active sensing problem.
The rest of the paper is organised as follows. In Sec-

tion II, some preliminary concepts are introduced while in
Section III the optimal control problem is formalized. In
Section IV, a solution that combines an estimator (i.e., an
Extended Kalman Filter) and a gradient-descend optimisation
strategy is proposed while in Section V we test our method
on a unicycle robot. Finally, some conclusions and future
works are discussed in Section VI.

II. PRELIMINARIES

Let us consider a generic nonlinear dynamics

q̇(t) = f(q(t),u(t) +w), q(t0) = q0 (1)
z(t) = h(q(t)) + ν (2)

where q(t) ∈ Rn represents the state of the system, u(t) ∈
Rm is the control input, z(t) ∈ Rp is the sensor output
(the measurements available through the onboard sensors), f
and h are analytic functions, ν ∼ N (0,R(t)) is a normally-
distributed Gaussian output noise with zero mean covariance
matrix R(t) and w ∼ N (0,V (t)) is a normally-distributed
Gaussian input noise with zero mean covariance matrix V (t).

The onboard sensors can typically provide only partial
information about the state of the robot, which may include
self-calibration parameters and features of the surrounding
world. Therefore, an estimation algorithm is needed for
recovering online those state variables not directly available
from the raw sensor readings. Its performance, that is accu-
racy, precision and convergence rate, depends not only on the
quality and amount of information about the unknown state
variables gathered by the onboard sensors but also on the
level of actuation noise. For nonlinear systems, both aspects
depend on the inputs and hence the trajectories followed
by the system. The goal of this paper is hence to improve
the performance of the employed estimation algorithm by
determining online the control inputs that maximize the
information gathered by the onboard sensors and, at the same
time, limit the negative effects of actuation noise (which
basically degrades the above-mentioned information).

In our previous work on this subject [14], we considered
the particular case where w = 0, i.e. without actuation
noise. As a consequence, the only objective was to determine
the control inputs that maximize the amount of information
gathered by the onboard sensors along the trajectory followed
during motion. In order to obtain a measure of such informa-
tion [15], we considered a well-known observability criterion
for (1)–(2), related to the concept of local indistinguishable
states [8], [16], [14], i.e. the Observability Gramian (OG)
Go(t0, tf ) ∈ IRn×n,

Go(t0, tf ) ,
∫ tf

t0

S(τ, t0)TH(τ)TW (τ)H(τ)S(τ, t0) dτ

(3)
where tf > t0, H(τ) = ∂h(q(τ))

∂q(τ) , and W (τ) ∈ Rp×p
is a symmetric positive definite weight matrix (a design
parameter) that usually (and also in this paper) is taken equal
toR−1 in order to weight the outputs w.r.t. the level of noise.

Matrix S(t, t0) ∈ Rn×n, also known as sensitivity matrix, is

given as S(t, t0) =
∂q(t)

∂qo
and it is easy to check that it

verifies the following differential equation

Ṡ(t, t0) =
∂f(q(t),u(t))

∂q(t)
S(t, t0) , S(t0, t0) = I. (4)

In [14] the smallest eigenvalue of the OG was used as
performance index in order to determine the inputs and hence
the trajectory over a future time horizon along which the
information content is maximized. Moreover, as the inverse
of the smallest eigenvalue of the OG is proportional to the
maximum estimation uncertainty, its maximisation was also
expected to minimize the maximum estimation uncertainty
of any estimation algorithm that could be used during
motion [9]. The choice of adopting the smallest eigenvalue
(E-Optimality) index hence guarantees optimization of the
worst-case performance. In particular, by using an Extended
Kalman Filter (EKF) as estimation algorithm, in [14] we
verified through simulations that the ellipsoid associated to
the covariance matrix obtained by solving the Continuous
Riccati Equation (CRE) is much less elongated along the
eigenvector associated to the largest eigenvalue hence obtain-
ing a smaller and a more uniform estimation uncertainty. We
also obtained an increment of the convergence rate and the
precision of the EKF. Of course, in case of actuation noise,
which is far from negligible in several robotic applications
(e.g. UAVs), the OG is not able to measure how the actuation
noise degrades the amount of information gathered by the
noisy sensory feedback.

The main idea of this paper is hence to use directly the
CRE and determine the inputs that maximize the smallest
eigenvalue of the inverse of the covariance matrix explicitly
evaluated in presence of process noise. By doing this, the
maximum estimation uncertainty will reduce not only be-
cause along the planned trajectory the gathered information
from noisy sensory feedback is maximized, but also because,
at the same time, the degrading effects of the process noise
on such information are minimized.

III. PROBLEM FORMULATION

We now detail the optimal sensing problem addressed in
this paper: consider the particular class of nonlinear dynam-
ics (1–2) such that f(q,0) = 0 (i.e. without drift), a time
window [t0, tf ], tf > t0, and a EKF built on system (1–2)
for recovering an estimation q̂(t) of the true (but unknown)
state q(t) during motion. The goal of the paper is to propose
an online optimization strategy for continuously solving, at
each time t, the following optimal sensing control problem

Problem 1 (Optimal sensing control) For all t ∈ [t0, tf ]
find the optimal control strategy

u∗(t) = arg max
u

λmin
(
P−1(t0, tf )

)
, (5)

s.t.

E(t0, tf ) =

∫ tf

t0

√
u(τ)TMu(τ) dτ = Ē (6)



where M is a constant weight matrix, Ē is a constant design
parameter λmin(·) is an operator that extracts the smallest
eigenvalue of the matrix argument while P (t0, tf ) is the
covariance matrix of the EKF filter, such that P−1(t0, tf ) is
solution of

Ṗ
−1

(τ) = −P−1(τ)A(τ)−AT (τ)P−1(τ)+

+HT (τ)R−1H(τ)− P−1(τ)B(τ)V BT (τ)P−1(τ),

P−1(t0) = P
−1
0 (7)

τ ∈ [t0, tf ] and initial condition P−10 representing the
a priori information available at time t0 about the initial
q(t0). Matrices A(τ) = ∂f(q,u)

∂q

∣∣∣
q̂,u

, B(τ) = ∂f(q,u)
∂u

∣∣∣
q̂,u

and C(τ) = ∂h(q)
∂q

∣∣∣
q̂,u

, are the dynamics, input and out-

put matrices of the linear time-varying system obtained by
linearization of (1)-(2) around the estimated trajectory q̂(τ):

˙̂q(τ) = A(τ) q̂(τ) +B(τ) (u(τ) +w(τ))

ẑ(τ) = C(τ) q̂(τ) + ν
(8)

The scalar quantity E(t0, tf ) is meant to represent the
“control effort” (or energy) needed by the robot for moving
along the trajectory from t0 to tf . Constraint (6) over the
time horizon T is introduced for ensuring well-posedness
of the optimization problem. Indeed, in general, as for
λmin (Go(t0, tf )), also λmin

(
P−1(t0, tf )

)
could be un-

bounded from above w.r.t. the control effort E, as the
most likely optimal solution would consist in increasing the
observation time and the state indefinitely. Notice that the
final time tf is hence not treated as a fixed parameter but,
rather, as the time needed for “spending” the whole available
energy Ē during the robot motion and depends also on the
choice of the timing law along the trajectory.
The need for an online solution is motivated by the fact
that, as for the OG in [14], also the solution P−1 of (7)
depends on the state trajectory followed by the robot, which
is not assumed available. However, during the robot motion,
starting from an initial estimation q̂(t0), the EKF improves
the current estimation q̂(t) of the true state q(t), with
q̂(t) → q(t) in the limit. It is hence reasonable to exploit
this improved estimate to continuously refine (online) the
previously optimized path by leveraging the newly acquired
information during motion.

We now proceed to better detail the structure of Problem 1
and of the proposed optimization strategy.

A. Schatten norm as differentiable approximation of λmin
The use of the smallest eigenvalue as a cost function can,

however, be ill-conditioned from a numerical point of view
in case of repeated eigenvalues. For this reason, we replace
λmin

(
P−1(t, tf )

)
with the so-called Schatten norm

‖P−1(t, tf )‖µ = µ

√√√√ n∑
i=1

λµi (P−1(t, tf )) (9)

where µ� −1 and λi(A) is the i-th smallest eigenvalue of
a matrix A: it is indeed possible to show that (9) represents
a differentiable approximation of λmin(·) [17].

B. Flatness and B-Spline parametrization

In order to reduce the complexity of the optimization
procedure adopted to solve Problem 1 and, hence to better
cope with the real-time constraint of an online implemen-
tation we now recall two simplifying working assumptions
already adopted in [14]. First, we restrict our attention to
the case of non-linear differentially flat1 systems [19]: as
well-known, for these systems one can find a set of outputs
ζ ∈ Rκ, termed flat, such that the state and inputs of
the original system can be expressed algebraically in terms
of these outputs and a finite number of their derivatives.
The flat system assumption allows avoiding the numerical
integration of the nonlinear dynamics (1) for generating the
future state evolution q̂(t), t ∈ [t̄, tf ], from the planned
inputs u(t) and the current state estimate q̂(t̄). Second, we
represent the flat outputs (and, as a consequence, also the
state and inputs of the considered system) with a family of
curves function of a finite number of parameters. Among the
many possibilities, and taking inspiration from [20], [21],
as in [14], also in this work we leverage the family of
B-Splines [22] as parametric curves. B-Spline curves are
linear combinations, through a finite number of control points
xc = (xTc,1, xTc,2, . . . , xTc,N )T ∈ Rκ·N , of basis functions
Bαj : S → R for j = 1, . . . , N . Each B-Spline is given as

γ(xc, ·) :S → Rκ

s 7→
N∑
j=1

xc,j B
α
j (s, s) = Bs(s)xc

(10)

where S is a compact subset of R, Bs(s) ∈ Rκ×N . The
degree α > 0 and knots s = (s1, s2, . . . , s`) are constant
parameters chosen such that γ(xc, ·) is sufficiently smooth
w.r.t. s (the degree of smoothness will be chosen taking into
account the dynamics of the system). Bs(s) is the collection
of basis functions and Bαj is the j-th basis function evaluated
in s by means of the Cox-de Boor recursion formula [22].

By parameterizing the flat outputs ζ(q) with a B-spline
curve γ(xc, s), and by exploiting the differential flatness
assumption, it follows that all quantities involved in Prob-
lem 1 can be expressed as a function of the parameter s
(the position along the spline) and of the control points xc.
In the following we will then let qγ(xc, s) and uγ(xc, s)
represent the state q and inputs u determined (via the flatness
relationships) by the planned B-spline path γ(xc, s). We also
note that the control points xc become the (sole) optimization
variables for Problem 1. The control points xc will then
become the new optimization variables for Problem 1 that
can be reformulated in terms of these few parameters and
s. This choice allows then reducing the complexity of
Problem 1 from an infinite-dimensional optimization into a
finite-dimensional one.

It is important to stress here that, in order to always
express q and u in terms of ζ and of a finite number of their

1The class of flat systems includes some of the most common robotic
platforms such as, e.g., unicycles, cars with trailers and quadrotor UAVs, and
in general any system which can be (dynamically) feedback linearized [18].



time derivatives, intrinsic and apparent singularities in flat
differential systems (c.f. [23], [24]) must be avoided. How-
ever, while apparent singularities can be avoided by adopting
a different set of flat outputs and different state space
representations, intrinsic singularities must be treated by
guaranteeing some constraints along the planned trajectories
that depend on the system dynamics at hand. In our previous
work [14], this problem has not been tackled because of
the simplicity of the dynamics used in the simulation part
that has neither apparent nor intrinsic singularities. In the
following, we will describe our strategy to move the control
points in order to generate trajectories that avoid intrinsic
singularities.

C. Additional requirements
In addition to the energy constraint already introduced in

Problem 1 for guaranteeing a finite maximum value for the
cost function and hence well-posedness of our optimization
problem, in this work we also consider two additional
constraints: state coherency and flatness regularity.

1) State coherency: Already introduced in our previous
work [14], this constraint guarantees that at the current
time t, qγ(xc(t), s(t)) = q̂(t), where q̂(t) is the current
estimation of the true state q(t) provided by the EKF. This
constraint, while the estimated state q̂(t) converges to the
true one q(t), guarantees that the optimization over the time
window [t, tf ] will be done coherently with the current state
estimation.

2) Flatness regularity: a second requirement of this work
consists in avoiding intrinsic singularities, in order to always
express q and u in terms of ζ and of a finite number of their
time derivatives. Any intrinsic singularity can be generically
expressed as set of equalities fl(q,u) = 0 and hence, in the
contest of this work, as fl(xc, s) = 0. The flatness regularity
requirement is then equivalent to move the control points in
order to prevent all the functions fl(xc, s) to be zero along
the future planned trajectory.

D. Online Optimal Sensing Control
Letting s0 = s(t0), sf = s(tf ) and, in general, s(t) = st,

based on previous consideration, we can then reformulate
Problem 1 as

Problem 2 (Online Optimal Sensing Control) For all t ∈
[t0, tf ], find the optimal location of the control points

x∗c(t) = arg max
xc
‖P−1(s0, st) + P−1(xc(t), st, sf )‖µ ,

s.t.

1) q̂(t)− qγ(xc(t), st) ≡ 0 ,

2) fl(xc(τ), sτ ) 6= 0 , ∀ τ ∈ [t, tf ]

3) E(xc(t), st, sf ) = Ē − E(s0, st) ,

where P−1(s0, st) represents a memory of the information
available at the current time t about the current q(t)
collected while moving during [t0, t] plus any a priori in-
formation available at time t0, while

E(s0, st) =

∫ st

s0

√
u(xc, σ)TMu(xc, σ) dσ

is the control effort/energy spent on the already traveled
interval [t0, t] (and, analogously, E(xc(t), st, sf ) the con-
trol effort/energy to be spent on the future interval [st, sf ]).
Finally, P−1(xc, st, sf ), for s ∈ [st, sf ], is solution of

Ṗ
−1

(xc, s) = −P−1(xc, s)A(xc, s)−AT (xc, s)P
−1(xc, s)+

− P−1(xc, s)B(xc, s)V B
T (xc, s)P

−1(xc, s)+

+HT (xc, s)R
−1H(xc, s)v(xc, s), P−1(st) = 0 . (11)

We now detail the chosen optimization strategy for solving
Problem 2, taking into account what has been introduced so
far.

IV. ONLINE GRADIENT-BASED TRAJECTORY
OPTIMIZATION

This section is devoted to adapt and extend to Problem 1
the online solution proposed in [14]. The method still com-
bines an online constrained gradient-descent optimization
strategy with an Extended Kalman Filter meant to recover an
estimation q̂(t) of the true (but unknown) state q(t) during
motion. The constrained gradient descent action affects the
location of the control points xc and, thus, the overall shape
of the planned trajectory followed by the system over the
future time window [t, tf ] in order to minimize the maximum
estimation uncertainty. For this reason, we introduce a time
dependency xc(t) so that the B-Spline path becomes a time
varying path. We assume hence that the control points move
according to the following simple update law

ẋc(t) = uc(t), xc(t0) = xc,0 , (12)

where uc(t) ∈ Rκ × N is the optimization action to be
designed, and xc,0 a starting path (initial guess for the
optimization problem).

Since Problem 1 involves optimization of P−1 subject to
multiple constraints, we design uc by resorting to the well-
known general framework for managing multiple objectives
(or tasks) at different priorities [25]. In short, let io(xc) be a
generic objective (or task/constraint) characterized by the dif-
ferential kinematic equation iȯ = Ji(xc)

iẋc, where Ji(xc)
is the associated Jacobian matrix. Let also (J1, . . . ,Jr) be
the stack of the Jacobians associated to r objectives ordered
with decreasing priorities. Algorithm [25] allows computing
the contributions of each task in the stack in a recursive
way where AN i−1, the projector into the null space of the
augmented Jacobian AJ i = (J1, . . . ,J i), has the (iterative)
expression AN i = AN i−1 − (J i

AN i−1)†(J i
AN i−1) and

AN0 = I .
Considering Problem 1 and all the additional requirements

in section III-C, we then choose the following priority
list: the state coherency requirement should be the highest
priority task, followed by the regularity constraint and then
by the bounded energy constraint. Optimization of P−1 is
finally taken as the lowest priority task (thus projected in
the null-space of all the previous constraints). This choice is
motivated by the fact that we consider state coherency as a
primary requirement (the planned path γ should always be
synchronized with the current estimated state q̂), followed



by flatness regularity and then by the bounded energy re-
quirement.

A. State Coherency

As mentioned before, the state coherency constraint en-
sures that the B-Spline is deformed so as to always pass
through the current robot state estimation2.

Let 1o(t) = qγ(xc(t), st) − q̂(t) represent the first
task/requirement (state coherency), so that

1ȯ(t) = J1
1uc(t) + Jsṡ− ˙̂q(t) (13)

where Js =
∂qγ
∂s

, the Jacobian J1 =
∂qγ
∂xc

=
∂qγ
∂Γ

∂Γ

∂xc
, and

matrix Γ =

[
γ(xc(t), st),

∂γ(xc(t), st)

∂s
, · · · , ∂

(k)γ(xc(t),st)

∂s(k)

]
for a suitable k ∈ N. Here, the order of derivative k is
strictly related to the flatness expressions for the considered
system: indeed, k is the maximum number of derivatives of
the flat outputs needed for recovering the whole state and
system inputs. The term ˙̂q(t) is, instead, the dynamics of
state updating rule EKF used to recover the state estimate
q̂(t). By choosing in (13)

1uc = −J†1(K1
1o(t)− ˙̂q(t) + Jsṡ), (14)

one obtains exact exponential regulation of the highest
priority task 1o(t) with rate K1. The projector into the
null space of this (first) task is just AN1 = AN0 −
(J1

AN0)†(J1
AN0) with AN0 = IκN×κN . Notice that,

if other requirements along the path should be imposed, as
e.g. the desired configuration of the robot at the end of the
path or obstacles avoidance, they could be easily included at
this level of priority.

B. Flatness regularity

The second constraint for Problem 1 consists in preserving
flatness regularity by avoiding that the control points xc
zeroing the flatness singularity functions fl(xc, s). We tackle
this requirement by designing a repulsive potential acting on
the control points when δi(xc, s) = ‖fli(xc, s)‖2 is close
to zero over some intervals S∗i . Let us define a potential
function Ui(δi) growing unbounded for δi → δmin and
vanishing (with vanishing slope) for δi → δMAX , where
δMAX > δmin represent minimum/maximum thresholds for
the potential. An example of such repulsive function, which
will be used in our simulation (see Section V), is

Ui(δi(xc, σ)) = cot d+ d− π

2
, d =

π

2

δi − δmin
δMAX − δmin

.

The total repulsive potential associated to the i-th interval
S∗i is

Ui(xc, s(t)) =

∫
S∗
i

Ui(δi(xc, σ)) dσ . (15)

2We also note that this constraint is formally needed only when the
estimated state q̂(t) has not yet converged to the true one q(t) since, after
convergence, the requirement qγ(xc(t), s(t)) = q̂(t) would be trivially
met.

where S∗i = Si ∩ [st, sf ] (indeed, the integral (15) is only
evaluated on the future path) and, as a consequence,

U(xc, s(t)) =
∑
i

∫
S∗
i

Ui(δi(xc, σ)) dσ (16)

represents the repulsive potential for all N control points
xc,i. The task here is to zero the potential (16), i.e. 2o(t) =
U(xc, s(t)). The time derivative of this task is

2ȯ(t) = J2
1uc(t) (17)

Analogously to previous tasks, by choosing

2uc = 1uc − (J2
AN1)†(K2

2o(t) + J2
1uc), (18)

with J2 = ∂U/∂xc, one obtains exact exponential regulation
of the highest priority task 2o(t) with rate K2. The projector
into the null space of both previous objectives can be com-
puted (recursively) as AN2 = AN1−(J2

AN1)†(J2
AN1).

C. Control effort

The third task in the priority (control effort) can be
implemented in a similar fashion. Let 3o(xc(t), st, sf ) =
E(xc(t), st, sf ) − (Ē − E(s0, st)) where we consider (as
usual) that the control points xc(t) cannot affect the past
control effort E(s0, st) already spent on the path. One then
has (using Leibniz integral rule and simplifying terms)

3ȯ(t) = J3
3uc(t)

where

J3 =

∫ sf

st

∂

∂xc

√
u(xc, σ)TMu(xc, σ) dσ .

As a consequence, (18) is complemented as

3uc = 2uc − (J3
AN2)†(λ3

3o(t) + J3
2uc) ,

and, again, the projector into the null space of all previous
tasks is AN3 = AN2 − (J3

AN2)†(J3
AN2).

D. Maximization of P−1

Finally, we consider the lowest priority task, that is,
maximization of the Schatten norm of P−1 in the null-space
of the previous tasks: the total control law for the control
points to be plugged in (12) then becomes

uc = 3uc + AN3∇xc‖P
−1(st, sf )‖µ.

The gradient of the Schattern norm of P−1 can be expanded
as

∇xc‖P
−1‖µ =

1−µ
µ

√√√√ n∑
i=1

λµi (P
−1)

(
n∑
i=1

λµ−1
i (P−1)

∂λi(P
−1)

∂xc

)
,

where
∂λi(P

−1)

∂xc
= vTi

∂P−1

∂xc
vi

and vi is the eigenvector associated to the i-th eigenvalue λi
of P−1 [26]. By leveraging relationship (7), the quantity
∂P−1

∂xc
can be obtained as the solution of the following



differential equation over the future state trajectory qγ(xc, s)
s ∈ [st, sf ]

d

ds

∂P−1(xc, s)

∂xc
=

∂

∂xc

dP−1(xc, s)

ds
=

=
∂

∂xc

(
−P−1(xc, s)A(xc, s)−AT (xc, s)P

−1(xc, s)−

−P−1(xc, s)B(xc, s)V B
T (xc, s)P

−1(xc, s)+

+HT (xc, s)R
−1H(xc, s)v(xc, s)

)
, P−1xc (st) = 0

(19)
where v(xc, s) = ∂γ(xc,s)

∂s . Notice that, all derivative
Axc(xc, s) = ∂A(xc,s)

∂xc
, Bxc(xc, s) = ∂B(xc,s)

∂xc
and

Hxc(xc, s) = ∂H(xc,s)
∂xc

can be analytically computed (the
initial condition P−1xc (st) = 0 steams from the fact that
P−1(st) is independent from xc). Moreover, forward inte-
gration of (19) needs also the concurrent forward integration
of (11).

V. SIMULATION RESULTS

In order to prove the effectiveness of our optimal active
sensing control strategy, in this section we apply the pro-
posed method to a unicycle robot that needs to estimate
its configuration by using, as its only outputs, the squared
distances from two fixed markers. Let us hence consider a
unicycle robot that moves in a plane where a right-handed
reference frame W is defined with origin in OW and axes
XW , YW . The robot pose q(t) = [x(t), y(t), θ(t)]T in the
world frame defines the state of our estimation algorithm,
where (x(t), y(t)) is the position of a representative point of
the robot in W and θ(t) is the robot heading with respect to
XW . Then, the robot kinematic model isẋẏ
θ̇

 =

cos θ 0
sin θ 0

0 1

[r/2 r/2
r/b −r/b

]
(u+w) = BT (u+w) ,

where u = [ωR, ωL]T are the angular velocities of the right
and left wheels, respectively. Moreover, r is the radius of
the robot wheels and b is the distance between their centers.
We assume that the robot is equipped with a sensor able to
measure the squared distances between the robot and two
fixed markers that, without loss of generality, are located at
(0, d) and (0,−d), respectively. Formally, the outputs can be
expressed as

z =

[
z1
z2

]
=

[
x2 + (y − d)2

x2 + (y + d)2

]
+ ν . (20)

To show the effectiveness of considering also the process
noise during the optimization phase, we will compare the
results obtained by applying the optimal active sensing
control strategy proposed in this paper, hereafter named
CRE-based method, with the one proposed in [14], hereafter
named OG-based method, where the actuation noise was not
taken into account. Of course, for both cases, the actuation
noise acts on the inputs ωL and ωR. While the OG-based
method is executed, the EKF does not take into account the
actuation noise, i.e. V = 0 in the covariance update step.

On the other hand, while the CRE-based method is executed,
the noise is re-introduced.

Fig. 1 compares the estimation performance of a EKF
filter when the system moves either along the optimal path
obtained by applying the CRE-based method developed in
this paper or the OG-based method developed in [14] for
the considered system3. The robot spent the same level of
energy along both paths. The two plots on the left depict the
trajectories traveled by the robot when using the CRE-based
method (top) and the OG-based method (bottom). It is im-
portant to note that, starting from the initial state estimation
q̂(t0), the optimal path from this estimated configuration is
obtained. Then, the robot starts moving at constant velocity
v = 1 and the EKF reduces the estimation error while the
gradient descent algorithm keeps updating online the shape
of the optimal path. For this reason, the final path will differ,
in general, with respect to the initial one (compare the thick
blue lines which represents the final B-Spline, with the thin
blue lines, which represents the starting B-Spline, in the plots
on the left in Fig. 1).

In the upper right corner of Fig. 1, the EKF performances
for the two methods are reported while the minimum eigen-
values of P−1 are shown in the bottom right corner of the
same figure. The last plot is particularly important since it
shows that the proposed method outperforms the one in [14]
since the minimum eigenvalue of P−1 reaches a higher
values in the former case. Notice that the two methods
generate paths having different length (the robot move at
constant velocity v = 1) but equal energy spent.

Moreover, between 1 s and 1.6 s, in the bottom right corner
of Fig. 1, the minimum eigenvalue of P−1 has a higher value
when using the OG-based method. This is due to the fact
that we are maximizing the smallest eigenvalue of P−1 at
the final time tf . For this reason, due to the presence of the
actuation noise, it may happen that locally the OG-based
method outperforms the CRE-based one. However, at the
end of the path the smallest eigenvalue of P−1 assumes an
higher value by using the CRE-based method as expected.

Table I reports the numerical data of Fig. 1. In particular,
notice again the minimum eigenvalue of P−1, whose value
at tf obtained with the CRE-based method reaches a value
almost three times larger than the value raised by the OG-
based method. This confirms the validity of the proposed
approach.

We have also performed a comparison considering three
different kind of paths: (i) paths generated by the CRE-based
method; (ii) paths generated by the OG-based method; and
(iii) random paths. Along each path the energy spent is
≈ 15.46. Both optimal methods use as initial guess the
random paths. Fig. 2 reports the maximum eigenvalue of
P (t0, tf ) (i.e., the maximum estimation uncertainty) and
its trace (i.e., a measure of the average estimation uncer-
tainty) for the three approaches. As expected, the CRE-based
method significantly outperforms the other two methods. On
the other hand, surprisingly, the OG-based paths are worse

3A video of the simulation is also attached to the paper.



TABLE I
NUMERICAL SIMULATION RESULTS OF FIG. 1. FOR BOTH SIMULATIONS, THE VEHICLE STARTS FROM q(t0) = [−10.0 M, 0.0 M, 0.0 RAD]T . THE

INITIAL STATE ESTIMATION IS q̂(t0) = [−10.4 M, −0.5 M, −0.3 RAD]T WITH P o = 0.16 I . THE INITIAL ESTIMATION ERROR IS

e(t0) = [−0.4 M, −0.5 M, −0.3 RAD]T . THE OUTPUT NOISE COVARIANCE MATRIX R = 9 · 10−1I AND THE ACTUATION NOISE COVARIANCE

MATRIX IS V = 9 · 10−1I . THE NUMBER OF CONTROL POINTS IS N = 6 AND THE DEGREE OF THE B-SPLINE IS α = 3.

q(tf ) q̂(tf ) e(tf ) [×10−3] λmin((P
−1(tf )) λMAX(P−1(tf ))

OG-based optimal path

x(tf ) = −2.498 m
y(tf ) = −2.86 m
θ(tf ) = −1.058 rad

x̂(tf ) = −2.504 m
ŷ(tf ) = −2.874 m

θ̂(tf ) = −1.059 rad

ex(tf ) = −6.3 m
ey(tf ) = 1.1 m
eθ(tf ) = −2.7 rad

22.16 76.47

CRE-based optimal path

x(tf ) = −2.875 m
y(tf ) = −4.727 m
θ(tf ) = −0.372 rad

x̂(tf ) = −2.874 m
ŷ(tf ) = −4.726 m

θ̂(tf ) = −0.371 rad

ex(tf ) = −1.8 m
ey(tf ) = −1.2 m
eθ(tf ) = 0.5 rad

62.60 566.02

Fig. 1. The estimation performance of the CRE-based method is compared with the OG-based method proposed in [14]. At the end of the CRE-based
optimal path, the smallest eigenvalue reaches a value that is almost three times the one reached at the end of the OG-based optimal path. On the left, the
optimal path from the estimated initial configuration (thin blue line), the optimal path from the real initial configuration (thin black line), the final B-pline
(thick blue line), the real robot trajectory (thick black line) and the estimated robot trajectory (red line) obtained with CRE-based optimal control method
(top-left) and with the OG-based optimal control method (bottom-left); (top-right): the estimation errors of the EKF for the CRE-based (solid lines) and
OG-based (dashed lines) optimal control algorithms; (bottom-right): the minimum eigenvalue of P−1 obtained with the CRE-based method (solid lines)
and with the OG-based method (dashed lines).

than the random ones, confirming the destructive effects of
the actuation noise when not properly considered in the
optimization phase. This result is statistically significant,
confirmed by the Wilcoxon rank sum test (after having
rejected the normality of variance assumption on samples)
that results in less than 0.05 significance level. Obviously,
the results obtained on this comparison depend on different
factors, such as the actuation noise amplitude. In fact, the
larger the noise, the worse the OG-based should perform.

Finally, the computation time at each iteration of our

algorithm for on-line optimal sensing control, implemented
in MATLAB R©/Simulink R© with not fully optimized code,
is around 23 ms on an Intel Core i7-6600U running at
2.60 GHz. This confirm the possibility of a real-time im-
plementation.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, the problem of active sensing control has
been considered for differentially flat systems in presence of
actuation noise. The objective was to maximize the smallest



6max (P(t 0,t f)) Trace(P(t 0,t f))
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Fig. 2. Statistical analysis over 40 different runs of the CRE-based method
(green), the OG-based method (red) and random paths (blue). The robot
starts from the same initial conditions. On the left, the maximum eigenvalue
of P (t0, tf ), that is the maximum estimation uncertainty; on the right, the
trace of P (t0, tf ), that is a measure of the average estimation uncertainty.

eigenvalue of the inverse of the covariance matrix, that is a
measure of the maximum estimation uncertainty taking into
account both process noise and noisy sensory feedback. We
have tested the proposed algorithm for the unicycle robot via
several simulations and we have compared it to the approach
in [14] which did not consider the actuation noise. We have
shown that, by using our approach, the maximum estimation
uncertainty is significantly reduced along the optimal path,
thus giving rise to an improved estimation of the state at
the end of the time horizon. We have also conducted a
series of simulations, comparing the two methods described
above with random paths. As one might have expected,
if not properly taken into account the actuation noise can
have disruptive effects in terms of maximum estimation
uncertainty, yielding results similar to what one could have
obtained with random (non-optimized) paths. This is, instead,
not the case when correctly considering the actuation noise
in the optimizaton problem, as proposed in this work. This,
then, further validates the proposed approach.

In the next future, we will apply the proposed method to
more complex systems such as quadrotor UAVs. It would
also be interesting to include the environment within the
variables to be estimated, i.e. to include some targets instead
of markers as well as calibration parameters.
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