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ABSTRACT

Feature-based SLAM (Simultaneous Localization and Map-
ping) techniques rely on low-level contrast information ex-
tracted from images to detect and track keypoints. This pro-
cess is known to be sensitive to changes in illumination of
the environment that can lead to tracking failures. This pa-
per proposes a multi-layered image representation (MLI) that
computes and stores different contrast-enhanced versions of
an original image. Keypoint detection is performed on each
layer, yielding better robustness to light changes. An opti-
mization technique is also proposed to compute the best con-
trast enhancements to apply in each layer. Results demon-
strate the benefits of MLI when using the main keypoint de-
tectors from ORB, SIFT or SURF, and shows significant im-
provement in SLAM robustness.

Index Terms— keypoint detection, contrast enhance-
ment, SLAM

1. INTRODUCTION

Research in visual tracking systems such as SLAM and SfM
(Structure from Motion) has led to mature technologies ex-
ploited in industrial-level systems. Except for direct methods
working on the analysis of changes in pixel gradients, the ma-
jority of visual SLAMs rely on corner detection with extrac-
tors that extract keypoints (KP) and descriptors that identify
and match the extracted KPs over different frames.

Unfortunately, the corner detection process and conse-
quently the matching problem are strongly dependent on the
illumination condition at the moment of capturing images and
generally make a brightness constancy assumption. Although
the matching process usually relies on gradient information
that is more or less independent from intensity, SLAM and
SfM methods still suffer from illumination changes at differ-
ent degrees (see Fig. 1) and may yield inaccurate maps and
even tracking failures during the tracking process [1, 2].

Robustness to light changing conditions is therefore a cen-
tral issue that has received increased attention. The issue has
often been tackled at the extractor level by searching an op-
timal contrast threshold in the KP extractor with respect to
the current lighting condition. For example, in SuperFast [3]
the FAST contrast threshold – a threshold value that triggers a

brighter, darker or similar decision on per-pixel comparison –
is dynamically computed using a feedback-like optimization
method that yields a new threshold value per region in the
image. Lowering the threshold however tends to generate a
large number of KPs that influence the computational capac-
ity of other processes, and the proposed technique requires
specific adaptations to be applied to other KP detectors.

Fig. 1. ORB keypoint extractor and descriptor on different
lighting conditions (images a and b). Only a few keypoints are
matched between (a) and (b) using ORB (i.e. same position,
same descriptor), compared to our MLI method (image d).

Another possibility is to apply image transformations
(eg. contrast enhancers) on captured images before applying
KP detectors. Interestingly, it has been demonstrated that
KP extractors gain significant performance by using HDR
(High Dynamic Range) images as input, converted to SDR
(Standard Dynamic Range) images through tone-mapping
operators [4, 5]. Among these techniques, a learning-based
optimal tone-mapping operator has been proposed for SIFT-
like detectors [6]. But the high computational cost and spe-
cific HDR devices are required, as well as HDR-customized
extractors hamper the wider applicability of such approaches.
In comparison, for SDR images, research has mainly focused
on contrast enhancement operators for aesthetic and percep-
tional goals through changes in the exposure times [7] which
remain limited in addressing robustness of KP tracking.

For direct and semi-direct SLAM methods, i.e. methods
that rely on analysis of pixel intensities rather than extract-
ing intermediate features, robustness to illumination changes
has been addressed by optimizing an affine brightness trans-
fer transformation between consecutive frames [8, 9]. Using
mutual information instead of photometric error as the metric
during the optimization process of pose estimation has also
demonstrated its benefits [10, 1]. While exhibiting a good ro-
bustness to illumination changes, these methods remain com-
putationally expensive.



In this paper, a new representation – multi-layered im-
age (MLI) – is proposed to improve the robustness of visual
tracking systems like SLAM. We first analyze the reasons for
which KP extraction fails. We then present our MLI repre-
sentation that relies on different contrast-enhanced versions
of the same image. We design an optimization technique to
compute the best contrast enhancements to perform and we
demonstrate how MLI boosts performance of traditional KPs
extractors/descriptors, and lead to significant improvements
on the robustness of a state-of-the-art visual SLAM system.

2. ISSUES WITH CONTRAST ENHANCERS

Except for HDR images, the majority of contrast enhance-
ment techniques can be defined as continuous monotone sur-
jective mappings from domain interval [0, 1] to codomain in-
terval [0, 1] that transform a given image to a (more) con-
trasted version. Typically, the classical S-Curve Tone Map-
ping method [7] is used to correct underexposure and overex-
posure regions in images, by applying a per-pixel function.

However, by using such transformations the improvement
of the contrast in one region must necessarily be paid for by
a reduction of the contrast in another region (see examples
of S-Curves in Fig. 2). Given that most keypoint detection
techniques are based on analysis of finite local differences in
contrasts, contrast enhancement tends to increase the detec-
tion of keypoints by passing some internal thresholds, while
contrast compression leads to the opposite. We illustrate
this through the example of a synthetic scene shot in different
lighting conditions [11]. The ORB detector [12] is used to ex-
tract and match keypoints between a well-lit given reference
image (see Fig. 1 a) and an image from the same viewpoint
with only a flashlight illuminating the scene. The ORB
detector with default parameters only finds a few matched
keypoints between the two images (i.e. keypoints extracted
and described as being the same at the same image locations).
Interestingly by applying different S-Curve transformations
(see Fig. 2), the total number of keypoint matches increases
while ORB detector loses already matched keypoints from
previous transformations. This empirically shows (i) that a
single contrast enhancer only represents a partial solution to
keypoint robustness, and that (ii) improving extraction by
contrast-enhancement also improves matching.

3. MULTI-LAYERED IMAGE

The idea of Multi-Layered Image (MLI) is to generate k con-
trast enhancements of a given image into k image layers on
which keypoint detection will be performed. The contrast en-
hancement technique relies on a saturated affine brightness
transfer per-pixel function (SAT). We use a SAT form that de-
fines a contrast band u = (a, b)> which conveniently models
the lower cut point (a) and higher cut point (b) of the satu-
ration, with a linear interpolation between a and b on pixel

Fig. 2. Matching KPs with ORB detector between a refer-
ence image (see Fig. 1 a) and different S-Curve tone mapped
versions of an image in a different lighting condition. Each
tone-mapping provides newly matched KPs (blue) while los-
ing others (orange).

Fig. 3. Using SAT function with different contrast bands to
generate a multi-layered image representation (MLI).

intensity i (see Fig. 3). A given contrast u = (a, b)> is de-
fined in a contrast space Γ ⊆ R2, where Γ is the space of all
contrast bands where b > a.

fSAT (i, (a, b)>) = min(max(0, i/(b− a)), 1) (1)

Parameters a and b naturally represent the band region
where the contrast is enhanced, which motivated the choice of
this operator compared to S-Curve. To ensure enhancement
or compression of contrasts, we define the range of values for
u = (a, b)> as a ∈ [−∞, 1] and b ∈ [0,∞]. The computa-
tion of a layer k in our MLI representation is performed by
applying the following operator MLIk on all pixel intensities
of the image using a contrast band uk. A MLI is therefore
represented as a set of k image layers where MLIk(I) =
fSAT (I,uk) for an image I , where fSAT (I,uk) is the appli-
cation of fSAT on all pixels of I .

4. LOW-CORRELATED CONTRAST SPACE

To address the issue of robustness, the key challenge is there-
fore to generate different layers such that each layer has the
lowest correlation with the others in terms of detected key-
points (i.e. aiming at providing new keypoints in each layer).



In other terms, we are looking at computing a set of contrast
band parameters such that each contrast band yields an image
containing newly matched keypoints with the reference image
(the initial lighting condition).

This paper proposes a technique to compute the optimal
contrast bands together with a stopping criterion on the num-
ber of layers required, given a reference image I∗ represent-
ing a given lighting condition and a camera image I in an-
other lighting condition. The first layer is computed by se-
lecting a contrast band ui that maximizes the correspondence
of keypoints between the reference image I∗ and the contrast-
enhanced image fSAT (I,ui). The other layers are computed
by selecting contrast bands that provide the lowest correlation
(in terms of correspondence between keypoints) with the cur-
rent contrast band. More formally we start by defining the
KP-correspondence set between two images. Given S∗ the
set of KPs extracted from a reference image I∗ (and respec-
tively S from I), the KP-correspondence SCor is the set of
KPs in S∗ for which there is a correspondence in S, i.e. for
which there is a keypoint at a similar location in image I:

SCor = {x∗ |x∗ ∈ S∗, x ∈ S, ‖x∗ − x‖ < ε} (2)

This definition expresses the repeatability ratio [13] between
two sets of keypoints from two different images, a well-
known metric in visual tracking [14], that measures the ratio
of KPs appearing at similar positions on both images, over
the number of keypoints in the first image:

Card({x∗ ∈ S∗, x ∈ S, s.t. ‖x∗ − x‖ < ε})
Card(S∗)

(3)

Given a KP extractor e, we define a band-correspondence set
Su
Cor as the KP-correspondence set between a SAT contrast-

enhanced version of I and a reference image I∗ given u:

Su
Cor = {x∗ |x∗ ∈ e(I∗), x ∈ e(fSAT (I,u)),

‖x∗ − x‖ < ε}
(4)

Intuitively, this means the more keypoints there are in this
band correspondence set, the better is the contrast band u in
yielding an image containing corresponding keypoints with a
reference image. We therefore express the cardinality of this
set MCor : Γ ⊆ R2 → R as MCor(u) = Card(Su

Cor).
The global maximum of this function represents the optimal
contrast band u in terms of KP-correspondence and is used to
compute the first layer of our MLI.

We then need a way to compute new contrast bands
with low-correlation in the contrast space u ∈ Γ. We
define a covariance-like method on Su

Cor that provides a
co-Correspondence set Su1,u2

coCor. This co-Correspondence
computes the corresponding keypoints between two contrast
bands u1 and u2 and a reference image I∗. We similarly
define its cardinality McoCor : Γ× Γ ⊆ R2 × R2 → R.

Su1,u2

coCor = {x1 ∈ Su1

Cor |x2 ∈ S
u2

Cor, ‖x1 − x2‖ < ε} (5)

Algorithm 1 Optimal MLI
1: i← 0; C0(u)←MCor(u);
2: while i = 0 or Ci(ui) > k ∗ Ci−1(ui−1) do
3: ui ← argmaxu(Ci(u))
4: Ci+1(u)← Ci(u)−Mui

sim(u)
5: i← i+ 1
6: end while
7: return {uk}k=1..N

Fig. 4. Evolution of MLI layers: (a)(c) represent heatmaps of
cost functionCi(u) and similarityMui

sim(u) in each iteration.
(b) demonstrates accumulated matched ORB KPs against ref-
erence image from every iteration represented with different
colors. In each heatmap, vertical and horizontal axis repre-
sents u = (a, b)> respectively with a < b.

McoCor(u1,u2) = Card(Su1,u2

coCor) (6)

Using this co-correspondence definition we can compute
how much a given contrast-band ur yields information sim-
ilar to all the other contrast bands, i.e. the number of KPs
generated by this contrast-band also found in others. This
similarity measure Mur

sim : Γ ⊆ R2 → R is expressed as:

Mur
sim(u) = Card(Sur,u

coCor) (7)

A low similarity represents a low correlation between the con-
trast bands. Using these definitions, the computation of the
different contrast bands consists in applying a sequence of
two stage operations (see Alg. 1). The first stage selects an
optimal contrast band u that maximizes a cost function C(u),
i.e. maximizes the correspondences between reference image
I∗ and fSAT (I,u). The second stage then updates the cost
function by subtracting the similarity Mui

sim between the cur-
rent contrast band ui and all others (ensuring a low correla-
tion). The algorithm terminates when the new iteration yields
information proportionally lower than the previous one using
a factor k.



cam
ref

Daylight Fluorescent Lamps Flashlight

ORB SIFT SURF ORB SIFT SURF ORB SIFT SURF ORB SIFT SURF
Daylight D 100/100 100/100 100/100 63.6/21.2 36.2/21.5 50.1/20.0 21.1/0.8 22.2/0.5 28.6/1.1 52.3/5.8 43.0/11.3 48.6/5.9

M 100/100 100/100 100/100 85.3/38.7 64.1/37.3 75.4/34.4 35.7/1.6 39.8/1.1 49.8/2.2 67.6/8.4 50.9/13.8 56.7/8.4
Fluorescent D 63.7/21.2 48.7/27.2 63.2/22.8 100/100 100/100 100/100 7.0/0.3 33.3/1.0 44.4/1.5 49.8/9.1 54.5/16.9 59.7/8.4

M 72.3/34.7 61.2/34.7 76.6/30.7 100/100 100/100 100/100 13.8/0.4 51.0/1.6 65.7/2.0 66.2/13.9 60.8/21.5 65.4/13.4
Lamps D 4.2/0.9 2.0/1.2 3.1/1.7 1.4/0.5 2.1/1.4 3.6/1.7 100/100 100/100 100/100 4.4/1.0 1.2/0.5 3.8/0.8

M 64.6/20.0 46.9/24.0 62.1/21.8 66.6/21.8 47.0/26.7 60.7/25.9 100/100 100/100 100/100 56.8/6.7 41.3/14.2 46.2/9.0
Flashlight D 34.0/5.3 12.2/5.4 16.4/5.3 32.4/7.6 11.3/6.3 16.2/6.2 14.6/0.5 5.1/0.0 12.1/0.2 100/100 100/100 100/100

M 58.1/11.8 31.4/11.8 44.6/11.4 61.4/16.6 30.5/15.0 44.0/13.5 18.4/0.5 16.4/0.5 35.0/0.8 100/100 100/100 100/100

Table 1. Repeatability/matching ratio evaluation between MLI (M) and default single image (D) in percentage.

The algorithm is illustrated in Fig. 4 using the FAST ex-
tractor [15], and the ground truth is ensured by calculating
BRIEF descriptor [16]. Again we reuse the data set of New
Tsukuba [11]. For the purpose of illustration, Γ is defined as
a discrete sampling space between [−0.5, 1.5] × [−0.5, 1.5].
Images (a) and (c) represent the landscape of the cost func-
tions Ci(u) and similaritiesMui

sim(u) of the previous optimal
contrast band in each iteration. We observe that the maxi-
mums of Ci(u) change every iteration after updating by a
subtraction with Msim. As one can see in the third iteration
(Fig. 4.b), extract more KPs with low-correlation between the
layers. This empirically shows that instead of intuitively or
programmatically decreasing the thresholds parameters of de-
tectors, an optimization scheme to compute the optimal con-
trast bands in each layer improves the correspondence of key-
points with a reference image.

5. EVALUATIONS AND EXPERIMENTS

We compare the use of MLI with classical detectors/descriptors:
ORB [12], SIFT [17] and SURF [18] on the NewTsukuba
Data set [11]. We measure the repeatability (cf. eq. 3) and
the matching ratio by matching descriptors on feature points
between a reference image I∗ and new images I from the
same viewpoint and different lighting conditions. For each
condition, the optimal values of the contrast bands are com-
puted by using the algorithm defined in Alg 1. The measures
reported in Table 1 show that MLI improves repeatability and
matching ratio across all detectors, despite different detection
methods and default threshold parameters. This demonstrates
the wide applicability of our approach.

We then compare the use of MLI on visual SLAM tasks in
different lighting conditions. We choose ORB-SLAM [19] to
implement our MLI representation. We tested two sequential
videos from a combination of four different lighting condi-
tions. The experiment consisted in localizing and tracking the
camera from the second video sequence against the keyframes
generated from the first video sequence (in a way similar to
NID-SLAM [1]). The measured value is the success rate,
i.e. the percentage of the frames from second video success-
fully tracked against keyframes created from the first video.

The optimal contrast bands of the MLIs of each illumina-
tion condition (first video to second video) are computed by
Algo. 1 over 5 sample images in the test set. Comparison is
performed between standard ORB-SLAM [19], our MLI im-
plemented ORB-SLAM and reported results of monocular vi-
sual SLAM NID-SLAM [1] which demonstrated a good per-
formance against illumination changing environments. Two
to three layers are used in the experiments. The MLI ap-
proach is significantly more robust than the default ORB im-
plementation (see Table 2), especially in difficult situations
(Lamps to Flashlights, Daylight to Flashlight). Our approach
also compares very favourably with NID-SLAM, displaying
similar or better performances for a lower computational cost
(keypoint extraction only represents 3 to 5% of computation
time in ORB [19], limiting the impact of MLI cost). Typically
the Lamps to Flashlight failed to track all keyframes with both
ORB and NID (0%) and successfully tracked 94.2% of the
keyframes with our MLI approach.

V2

V1 Daylight Fluo Lamps Flash

NID ORB MLI NID ORB MLI NID ORB MLI NID ORB MLI
Daylight 99.3 100 100 96.7 96.2 98.4 73.9 97.6 53.6 74.6 79.8 77.1

Fluo 95.0 88.1 95.1 99.7 100 100 85.3 93.9 100 95.8 100 100
Lamps 88.3 55.7 93.3 93.6 79.8 93.4 93.1 100 100 84.3 37.9 96.8
Flash 23.8 30.7 77.6 92.2 90.6 93.6 0.00 0.00 94.2 92.0 100 99.3

Table 2. SLAM keyframe retrieval success rate between our
MLI implementation, default ORB SLAM and NID SLAM.

6. CONCLUSION

We have introduced a novel multi-layered image representa-
tion to address robustness of keypoint tracking in light chang-
ing conditions. Each layer is a contrast-enhanced version of
an original image, computed in a way to improve the de-
tection and matching of keypoints. We proposed a method
to compute optimal parameters for each layer and demon-
strated the benefits of our approach on keypoint detection
tasks and SLAM applications. While the proposed solution
pre-computes the optimal contrast bands to apply, we are cur-
rently exploring an adaptive computation of such transforms.
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