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Abstract— This paper deals with the development of an Op-
tical Coherence Tomography (OCT) based visual servoing. The
proposed control law uses the wavelet coefficients of the OCT
images as the signal control inputs instead of the conventional
geometric visual features (points, lines, moments, etc.). An
important contribution is the determination of the interaction
matrix that links the variation of the wavelet coefficients to
the OCT probe (respectively to the robotic platform) spatial
velocity. This interaction matrix, required in the visual control
law, is obtained from time-derivation of the wavelet coefficients.
This work is carried out in a medical context which consists
of automatically moving a biological sample in such a way to
go back to the position of a sample region that corresponds
to a previous optical biopsy (OCT image). For instance, the
proposed methodology makes it possible to follow accurately
the progress of a pathological tissue between an optical biopsy
and a former one. The developed method was experimentally
validated using an OCT imaging system placed in an eye-to-
hand configuration viewing the robotic platform sample holder.
The obtained results demonstrated the feasibility of this type of
visual servoing approach and promising performances in terms
of convergence and accuracy.

I. INTRODUCTION

A. Motivation

The wavelet transform is a mathematical tool introduced
in 1910 by Alfred Haar but has grown in popularity only in
the late 1980s with the arrival of the early work of Yves
Meyer [1]. The rise of digital image processing and the
need of compression in order to process, encode, transmit,
and save images with increasing resolutions have led to the
development of advanced and efficient compression methods.
The wavelet framework was particularly used for elaborating
the JPEG2000 compression [2]. In fact, wavelet multiscale
decomposition of an image is obtained by repeatedly smooth-
ing and subsampling an image signal while also storing
the detail information lost at each stage of this process.
Such decomposition is not only useful for defining increas-
ingly coarse approximations of images, but also to obtain
sparse representations which means that most coefficients
describing the detail information lost in each transformation
step are typically close to zero. Therefore, the coarse ap-
proximation coefficients of an image can be considered as
signal control inputs in the formulation of a robotic visual
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control law. A 6-degrees-of-freedom (DOF) visual servoing
approach based on the low-pass approximation of an image
obtained from a discrete wavelet transform was proposed
in [3] using a conventional projective camera as a sensor.
In the same manner, shearlet transform (considered as the
extension of the wavelets one) was applied in the context of
medical image-guided tasks, where a 6 DOF ultrasound (US)
based visual servoing method was proposed for automati-
cally positioning an ultrasound probe actuated by a robotic
arm [4]. These methods have demonstrated very interesting
behavior during the different experimental validations of
the respective control laws. These preliminary investigations
already demonstrated the feasibility and potential benefits
of considering wavelet-based multiscale representations in a
visual servoing scheme, in particular with respect to unfavor-
able conditions (noise, partial image occlusion, illumination
changes). In fact, using multiscale wavelet decomposition
could serve as an interesting compromise between purely
geometric feature-based approaches [5] and image-intensity-
based (photometric) ones [6], [7]. This is especially valuable
in case of less textured images such as medical images: US,
OCT, in which the detection, extraction and tracking of visual
features over time is very challenging.

Our work takes place in an ambitious project dealing with
the development of a microrobotic-based nasal endoscopy
system embedding a fiber-based OCT system. The medical
aim is to perform optical biopsy of the olfactory mucosa
in order to prevent an eventual smell deficiency which can
be directly related to the appearance of neurodegenerative
diseases. In this paper we present one important aspect of this
project that concerns the development of a visual control law
in which the robotic sensor is an OCT imaging system. The
objective is to automatically align with a robotic platform
a tissue sample observed by the OCT system in such a
way to reach a desired OCT image previously captured at a
early stage of the pathology for examination purpose. OCT
is an emerging technological imaging device used to obtain
high resolution cross-sectional tomographic images. First
developed in 1991 [8], this device, which allows reaching
a micrometric resolution and millimetric penetration depth,
was tested on retina and on the coronary artery. Actually,
OCT is more and more often used for medical mini- and non-
invasive applications, in particular for ophthalmology and
dermatology. This device uses low-coherence interferometry
with near-infrared light in order to produce cross-section
images of a scattering medium. Nevertheless, the acquisition
of 3D volumes remains slow (nearly one minute for a
centimetric size area) due to mechanical scanning as well
as the size of the acquired data.



B. Contributions

A CCD camera is rigidly attached to our OCT probe.
That is why, one previous work was already using a wavelet
decomposition of the OCT scan to control the in-plane
movements [9]. The image captured by the CCD camera was
used to control the other DOF. Our goal now is to control
all the DOF of the robot based on OCT information. Given
that volume acquisition remains too slow to apply a visual
servoing scheme, this paper will propose a direct visual
servoing using only OCT cross-sectional image as visual
information. All the DOF can theoretically be controlled with
the work presented here. Nevertheless, since rotations are
difficult to manage with our robot with such resolutions, only
3 DOF will be controlled experimentally. They correspond
to the two in-plane (xz) and the out-of-plane y translations
of the OCT image plane (see Fig. 3 for the definition of the
x, y and z axes). The wavelet decomposition is not the same
as the one used in [9] and use more coefficient as signal
input in order to upgrade the controller. The work presented
in [10] is also making a 6 DOF visual servoing using OCT
probe with a geometric feature-based approach.

C. Plan

In the sequel, Section II first recalls the general framework
of the wavelet transform and then presents our contribution
on the design of a visual servoing approach that considers the
wavelet coefficients as visual features (signal control inputs).
Section III shows the experimental validation of the proposed
wavelet-based visual servoing approach using a Fourier-
Domain OCT (FD-OCT) imaging system as a robotic sensor.
This section also provides a discussion on the performances
of the developed method.

II. FRAMEWORK

A. Wavelet Signal Decomposition

Real-world data, like signal or images, are composed by
smooth (homogeneous) regions and non-smooth ones (e.g.,
edges). These edges often represent the most interesting
information for signal processing. In contrast to Fourier
transforms, which only yield information about which fre-
quencies are present in a signal but not their locations,
wavelet transforms allow a simultaneous and efficient analy-
sis of the behavior of a signal in both the time (in 1D case)
or the space (in 2D case) and the frequency domains.

In fact, a wavelet is a rapidly decaying wave-like oscilla-
tion, centered in 0 and existing for a given location, contrary
to sine functions in the Fourier transform. A wavelet system
is constructed by shifting and scaling a wavelet function ψ
in the Hilbert space L2(R) of square integrable functions.
Then the generating wavelet ψ shifted by k and scaled by j
is described by

ψj,k(x) = 2j/2ψ(2jx− k) (1)

In the late 1980s, pioneers like Ingrid Daubechies [11] and
Stéphane Mallat [12] introduced discrete wavelet transforms
more adapted for implementation. In this paper, we opt

for the Daubechies wavelets included within the MATLAB
WAVELET TOOLBOX.

Note that the basic formula of a continuous wavelet
transform of a function f ∈ L2(R) is defined by

(Wψf)(j, k) = 〈f, ψj,k〉 =

∫
R

ψ(
x− k2−j

2−j
)f(x)dx (2)

Thus, the wavelet transform allows extracting different
levels of details coefficients B1, B2 and B3 and smooth
approximation coefficients A3 of a given signal S.

In practice, a discrete wavelet transform is performed by
applying successively high-pass and low-pass filters to a
signal S as represented in Fig. 1.
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Fig. 1: Diagram of a discrete wavelet decomposition of a
signal S.

Therefore, in the case of 2D signal (i.e., image), we con-
sider low-pass and high-pass filtering along each direction
leading to 3 types of detail coefficients: horizontal, vertical
and diagonal ones and approximation coefficients. In other
words, the details coefficient previously introduced by B are
divided in three types: horizontal h, vertical v and diagonal
d coefficients (see Fig. 2).

B. Control Law

The objective of a visual servoing scheme is to control
the motion of a robotic structure in order to allow that a set
of visual features s (s ∈ Rk), defining a robot pose r(t) ∈
SE(3)

(
i.e., s = s

(
r(t)

))
, reaches a set of desired features

s∗ (s∗ ∈ Rk) expressing the desired robot pose r∗ ∈ SE(3).
In other words, the aim is to minimize the visual error given
by

e = s
(
r(t)

)
− s∗ (3)

For this purpose, it is needed to establish the link between
the velocity twist vector, which in our case contains only
the translation components v = (vx vy vz)

> of the OCT
system frame, and the variations of s by ṡ = Lsv where
Ls ∈ Rk×3 is called the interaction matrix.

In order to obtain a decrease of the error e such as
ė = −λe, with λ being a positive gain, the classical
controller usually considered in the literature is given by [5]

v = −λL̂s
+
(
s(t)− s∗

)
(4)

where L̂s

+
is the Moore-Penrose pseudo-inverse of an es-

timation of the interaction matrix. We propose therefore to



use this control law to control the 3 DOF robotic platform
in the OCT system frame.

In this work, the visual information s used in the control
loop consists of the wavelet coefficients computed by the
discrete Daubechies wavelet transform Wψ(.) on a square
image I of size (N ×N ) as

A3 h3

v3 d3
h2

v2 d2

h1

v1 d1

 =Wψ(I) (5)

More precisely, we take into account only one quarter of
the coefficients which are B2, B3 and A3 such as

Bm = [dm;hm;vm] with index m = {2, 3} (6)

The resulting visual feature vector is therefore built as

s =[B2(1, 1), ...,B2(i, j), ...,B2(3N/4, N/4),

B3(1, 1), ...,B3(i, j), ...,B3(3N/8, N/8),

A3(1, 1), ...,A3(i, j), ...,A3(N/8, N/8)]

(7)

As example, Fig. 2 shows the Daubechies wavelet decom-
position of an OCT image (a xz image slice) of a LEGO
toy element. The first level of details B1 corresponds to the
higher frequency assimilated to noise and is therefore not
kept to compute the visual features. As N = 512 in our
test case, then the size of s is equal to 256 × 256 = 65536
coefficients.

Fig. 2: Wavelet transform of an OCT image of a LEGO toy
element

The estimation of the interaction matrix L̂s that links the
variations of s to the velocity vector v is computed once at
the desired position by calculating the wavelet transform of
the image gradient along each direction

L̂s =[LB2(1, 1), ..., LB2(i, j), ..., LB2(3N/4, N/4),

LB3(1, 1), ..., LB3(i, j), ..., LB3(3N/8, N/8),

LA3(1, 1), ..., LA3(i, j), ..., LA3(N/8, N/8)]T
(8)

with

LB2(i, j) =[∇x(B2)(i,j),∇y(B2)(i,j),∇z(B2)(i,j)]

LB3(i, j) =[∇x(B3)(i,j),∇y(B3)(i,j),∇z(B3)(i,j)]

LA3(i, j) =[∇x(A3)(i,j),∇y(A3)(i,j),∇z(A3)(i,j)]

(9)

The functions ∇x(.), ∇y(.) and ∇z(.) give the compo-
nents along x, y and z of the wavelet transform of the 3D
gradient of the considered image.

They are calculated from

∇x(.) =Wψ(∇Ix)

∇y(.) =Wψ(∇Iy)

∇z(.) =Wψ(∇Iz)
(10)

where ∇Ix = ∂I/∂x, ∇Iy = ∂I/∂y, ∇Iz = ∂I/∂z are
the value of the image gradient for the point of coordinates
(x, y, z) with a derivative filter as the Sobel one and Wψ(.)
is given by (5). Whereas the computation of ∇Ix and ∇Iz
uses the OCT slice at the desired position, the computation
of ∇Iy needs two parallel slices on each side of the desired
slice to be calculated (see Fig. 3).

Desired slice
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Sample 

Robotic hexapod platform

OCT Device

near infrared light
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z

Fig. 3: Diagram showing the operation of a typical OCT
imaging system

III. EXPERIMENTAL VALIDATION

A. OCT Device

As mentioned in the introduction, OCT is an emerging
technology for performing high-resolution, cross-sectional,
tomographic imaging in real time. OCT system operation is
based on a low-coherence interferometric technique, usually
using near infrared light [8]. In fact, OCT images are
obtained by the measure of the reverberate time delay and the
intensity of the back-scattered light from the viewed object
that gives data about the different scrambling layers of the
tissue.

Fig. 4: Functioning of a Fourier-Domain OCT system

The OCT images (depending on the used lighting source
wave-length) have micrometer resolution and millimeter pen-
etration depth while US images offer a millimeter resolution



with several centimeters of depth. Due to the numerous
advantages of the OCT, it is considered ”optical biopsy”, in
various medical fields, which can be a substitute of the con-
ventional ”physical biopsy”. The OCT imaging system used
is shown in Fig. 5. It consists of a Fourier-Domain Telesto-
II OCT from THORLABS. It is characterized by 5.5µm and
7µm axial and lateral resolutions, respectively, and provides
up to 3.5mm of depth. The Telesto-II allows a maximum
field-of-view of 10×1 ×13.5mm3 with a maximum A-Scan
(1D optical core) acquisition rate of 76 kHz.

B. Robotic Setup

The proposed methods and materials were experimentally
tested using a robot placed as a sample holder i.e., under the
OCT imaging system, in a eye-to-hand configuration
(Fig. 5). More precisely, the robotic platform is a
6 DOF 3PPSR parallel robot (a Space-FAB SF-3000
BS from Micros) characterized by a translation range of
(tx, ty, tz)max = (50, 100, 12.7) (mm) and a rotation range
of (rx, ry, rz)max = (10, 10, 10)(◦), a linear resolution
of 0.2µm and an angular resolution of 0.0005◦; and two
computers communicating with an asynchronous TCP/IP
protocol, a 3.2 GHz i5 core Intel CPU (with a Linux
OS) for computer vision and control law implementation
and a 2.33 GHz Xeon Intel CPU (with Windows OS)
for robot inner control law implementation. Note that,
with a non-optimized implementation of the method
(essentially scripted using MATLAB), the control loop takes
approximately 100 milliseconds.

Fig. 5: Photography of the experimental setup including the
6 DOF robotic platform as well as the OCT imaging system.

During the visual servoing process, we grab also the white
light image of the CCD camera rigidly attached in a co-axial
configuration with the OCT light path. Therefore, the CCD
images are used to essentially verify the good functioning
of the developed control law. In order to validate the visual
servoing controller in which the signal control inputs are
the wavelet details coefficients, we choose two scenarios:
using an artificial sample (a LEGO piece) and a biological
sample (part of a shrimp) (Fig. 6). Two tests are presented
in detail in the following; ”LEGO piece test 1” corresponds
to subsection III-C and ”shrimp sample test 1” corresponds
to the subsection III-D.

Fig. 6: Sample materials used in the experimental validation:
LEGO and shrimp

C. LEGO Experiment

The first experiment was performed using a LEGO of size
1.6× 0.8× 1.6 cm3. First, the sample is placed at a desired
position r∗ and moved to an arbitrary (initial) position r.
So, the initial error is estimated (using the robot’s high
resolution encoders) to be ∆Tinitial = (−0.5,−0.5, 0.3)
(mm). The image difference between the initial OCT image
Ioct and desired one I∗oct is depicted in Fig.7.(b). Note that,
the displacement along the x and z axes are clearly visible on
the OCT slice, contrary to the one along y axis, this is due
to the LEGO structure (Fig.7.(b)). However, this difference
along y axis can be shown in Fig. 8.(b).

The first experiment achievement is shown in Fig. 7, where
Fig. 7.(a) is the initial image (position), Fig. 7.(b) the initial
difference image, and Fig. 7.(c) the final difference image at
convergence. As can be noticed, this final difference image
contains mostly noise which proves that final and desired
images are completely superimposed demonstrating the good
accuracy of the control law. This is also demonstrated by the
CCD images sequence illustrated (Fig.8). The final error is
estimated (again using the robot’s encoders) to ∆Tfinal =
(−0.0118,−0.0149, 0.0048) (mm).

(a) (b) (c)

Fig. 7: Test 1 (OCT): (a) desired OCT image I∗oct, (b) initial
difference image I∗oct − Ioct, (c) the final difference image
I∗oct − Ioct.

The Cartesian error decay in each DOF is recorded and
plotted in Fig. 9 as well as the norm of the global error
‖e‖ = ‖s−s∗‖ which is shown in Fig. 10. One can underline
that all the errors converge towards zero, in approximately
80 iterations. However, it is important to remember that the
control is performed on the OCT image (with an unfavorable
signal-to-noise ratio); this does not generate exponential
convergence of the Cartesian errors, unlike in case of a pose-
based visual servoing scheme.



(a) (b) (c)

Fig. 8: Test 1 (CCD camera): (a) desired white light image
I∗cam, (b) the initial difference image I∗cam − Icam, and (c)
I∗cam − Icam acquired at convergence.
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Fig. 9: LEGO: Positioning error
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Fig. 10: LEGO: Wavelet domain norm error

D. Shrimp Experiment

Concerning the second experiment, the LEGO sample was
replaced by a biological one, i.e., a part of a shrimp of
size 2 × 1 × 0.5 cm3 approximately. The scenario remains
the same, the operator records the desired position and then
moves the sample (using the robotic platform) to an arbitrary
initial position. The visual servoing task should therefore
automatically return the robot to the desired position. For this
experiment, the initial error is ∆Tinitial = (−0.5,−0.5, 0.3)
(mm). The image difference between the initial OCT im-
age and the desired one is shown in Fig. 11.(b). Con-
trary to the first task, the displacement along the y axis
is visible (Fig. 11.(b)). As experimentally demonstrated in
Fig. 11.(c), which is completely gray, the visual servoing
control law converges accurately towards the desired po-
sition. The final error (i.e., at convergence) is ∆Tfinal =
(−0.0074, 0.0035,−0.0091) (mm).

(a) (b) (c)

Fig. 11: Task 2 (OCT): (a) desired OCT image I∗oct, (b) initial
difference image I∗oct−Ioct and (c) the final difference image
I∗oct − Ioct at convergence.

(a) (b) (c)

Fig. 12: Task 2 (CCD camera): (a) the white light image
at the desired image I∗cam, (b) the initial difference image
I∗cam−Icam, and (c) the final difference I∗cam−Icam acquired
at convergence.

In a similar way to the first experiment, the CCD camera
images were recorded and shown in Fig. 12 which confirm
the accurate convergence of the OCT-based control law.
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Fig. 13: Shrimp: Positioning Error
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Again, the error in each DOF for the second test decreases
to zero as shown in Fig. 13. As can be highlighted, all DOF
converge to the desired position similarly to the first test.
Also, the norm of the error ‖e‖ = ‖s−s∗‖ was recorded and
plotted in Fig. 14 and its evolution towards zero confirms the
good convergence behavior of the OCT-based control law.

E. Others Experiments

Table I presents the initial positioning errors and the
final positioning ones (measured at convergence) of all the
experiments done to validate our method. Two tests were
performed using the LEGO piece and three using the shrimp
sample. The mean positioning error considering all axes is
0.01mm and the standard deviation (STD) considering all
axes is 0.02mm. This accuracy shows the precision of the
presented framework. We can observe that the y axis (i.e.
the out-of-plane axis) is slightly more than half as accurate
as the others despite the fact that the interaction matrix
was computed using only four slices adjacent to the slice
considered as the desired image.

TABLE I: Summary of the different performed tests

Case error (mm) 4Tx 4Ty 4Tz

LEGO piece einitial -0.5 -0.5 0.3
test 1 efinal -0.0118 -0.0149 0.0048

LEGO piece einitial -0.3 -0.6 0.5
test 2 efinal -0.0002 -0.0020 -0.0111

shrimp sample einitial -0.5 -0.5 0.3
test 1 efinal -0.0074 0.0035 -0.0091

shrimp sample einitial -0.5 -0.2 0.3
test 2 efinal -0.0209 0.0677 -0.0087

shrimp sample einitial 0.2 -0.2 0.2
test 3 efinal -0.0058 0.0054 -0.0070

mean(|efinal|) 0.0092 0.0187 0.0081
STD(|efinal|) 0.0077 0.0278 0.0024

IV. CONCLUSION AND DISCUSSION

The main objective of this paper was the study of an
OCT-based direct visual servoing scheme. In fact, instead
of considering geometric visual features in the interaction
matrix, we took into account the wavelet coefficients. Fur-
thermore, the OCT imaging system that is usually used only
for diagnosis purposes (in-situ optical biopsies acquisition)
was employed here also as a robotic sensor. The proposed
controller was experimentally tested using a highly accurate
parallel robotic structure placed under the OCT system in the
role of sample holder platform. Despite of the nature of the
OCT images (unfavorable signal-to-noise ratio), the proposed
approach demonstrated interesting behaviors, especially in
term of accuracy. Because of this unfavorable signal-to-
noise ratio, taking directly the pixels of the image in the
visual servoing scheme fails to provide an effective visual
servoing scheme. The work presented in [9] was already
using wavelet coefficients to overcome the limitations of
a direct visual servoing based on pixel intensities. In the
framework presented here, a larger amount of coefficients
is used to compute the visual features of the control law
and the interaction matrix is computed differently. With

our experimental setup, we obtained an average final error
positioning of 0.01mm which represents only 3% of the
average initial displacement.

Further work will concern the extension of this investiga-
tion to a 6 DOF control law by taking into account the ro-
tations. This haven’t be done yet because of technical issues
but the framework presented here contains all the theoretical
notions to provide a 6 DOF direct visual servoing. More than
five tests should also be proposed as well as a comparison
with a pixel intensities based visual servoing. Another way
of improvement will be the implementation of the whole
proposed materials in a more efficient software framework,
e.g., a C++ one which can improve consequently the dynamic
of the controller. Finally, OCT allows to generate volumetric
data. A visual servoing based on a C-scan could be a
groundbreaking work for optical biopsies. Nevertheless, this
process is time costly (near 1 minute for a 1cm3 sample).
One idea should be to combine some compressive sensing
acquisition scheme (which uses often wavelet transforms)
with this direct visual servoing framework.
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