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ABSTRACT
Photometric registration consists in blending real and virtual
scenes in a visually coherent way. To achieve this goal, both
reflectance and illumination properties must be estimated.
These estimates are then used, within a rendering pipeline,
to virtually simulate the real lighting’s interaction with the
scene. In this paper, we are interested in indoor scenes where
light bounces off of objects with different reflective proper-
ties (diffuse and/or specular). In these scenarios, existing
solutions often assume distant lighting or limit the analysis
to a single specular object. We address scenes with vari-
ous objects captured by a moving RGB-D camera and esti-
mate the 3D position of light sources. Furthermore, using
spatio-temporal data, our algorithm recovers dense diffuse
and specular reflectance maps. Finally, using our estimates,
we demonstrate photo-realistic augmentations of real scenes
(virtual shadows, specular occlusions) as well as virtual spec-
ular reflections on real world surfaces.
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INTRODUCTION
The image brightness of a 3D object is a function of three
components: object geometry, surface reflectance and illumi-
nation distribution. Provided these three components are ac-
curately estimated, one is able to photo-realistically render a
virtual scene that is visually coherent with a camera’s capture
of the real scene. This output is of interest for many applica-
tions such as Augmented Reality (AR) and scene relighting.

Geometry estimation is a well-known problem in the com-
puter vision community. In the last decade, the field of active
RGB-D sensors has experienced significant improvements.
Hence, sensors such as Microsoft Kinect, Google Tango and

Intel RealSense are nowadays commonly used in photometry
registration problems. In our method, we use the R200 sensor
that provides a satisfactorily accurate model of the scene.

Problem statement. As far as reflectance and illumination es-
timation is concerned, existing solutions often address scenes
with relatively simple reflectance (e.g. Lambertian and/or
non-textured surfaces) and use cast shadows [1], light probes
[2][3] or fisheye cameras [4] to estimate illumination.

On the contrary, when only specular reflections are consid-
ered, they are either recovered as highlights using a single
frame [5][6] or the analysis is limited to a small region (e.g.
a single object) [7][8]. Also, lighting is often assumed to be
distant. Nonetheless, in indoor environments where the size
of the scene is not small with regard to the distance to light,
this approach is likely to deliver inaccurate renderings.

Our contributions. In this paper, we focus on specular reflec-
tions to estimate diffuse and specular reflectance properties
of indoor scenes with arbitrary geometry and texture. More-
over, we aim at recovering the 3D position of existing light
sources without using any light probes or external assistance.
We only consider as input the RGB video and 3D geometry
acquired with an active sensor. Our estimation is achieved via
spatio-temporal processing of the input image sequence and
3D scene analysis. Our key contributions are: (a) diffuse and
specular reflectance estimation of 3D objects with arbitrary
surface properties; (b) 3D position recovery of light sources
responsible for specular reflections.

RELATED WORK
Illumination and reflectance estimation requires fitting a
Bidirectional Reflectance Distribution Function (BRDF) and
lighting distribution to the color intensity of an image. In this
task, also called inverse rendering, several reflection models
[9][10] and rendering techniques [2][11] have been consid-
ered. In the following, we give an overview of related work
that takes into account specular reflections.

Specular surfaces and distant lighting. Nishino et al. [7]
separate the reflectance components based on pixel intensity
variations throughout a registered image sequence. In [8],
Jachnik et al. capture a surface light field using a hand-held
camera. This light field is split into its diffuse component
and specular component. The latter is used to recover the en-
vironment map. Both [7] and [8] consider a single specular
object. Using a fisheye camera to capture lighting, Knecht et
al. [12] detect specular reflections as highlight in each frame
independently. The scene is segmented using color informa-



tion and an albedo value is attributed to each segment. Hence,
considered surfaces are mainly textureless.

Specular surfaces and non-distant lighting. In [5], Plopski
et al. estimate the position of a dominant light source by re-
covering the intersection point of reflection rays raised from
the center of detected highlights. In [6], Neverova et al. sep-
arate an image into its specular and diffuse components then
use them as inputs of an optimization process to recover the
3D position of light sources. Both methods use [13] to es-
timate reflectance. The latter can deliver inaccurate diffuse
estimates when the size of the specularity is significant.

PHOTOMETRIC REGISTRATION
We choose Phong reflection model [9] to describe the way a
point p on a surface reflects light as a combination of diffuse
and specular reflections:

Ip = Ipd + Ips (1)
where Ip, Ipd and Ips are respectively the color, diffuse and
specular intensities. Diffuse reflectance is the property that
defines an ideal ”matte” surface, also called Lambertian sur-
face. Its apparent brightness to an observer is the same re-
gardless of his angle of view. On the other hand, specular
reflection is the mirror-like reflection of light from a surface,
in which light from a single incoming direction is reflected
into a single outgoing direction. Using [9], diffuse and spec-
ular intensities can be described as:

Ip =
l∑

m=1

[kpdim(Np · Lpm) + kps im(Rp
m ·Vp)αp ] (2)

where kpd is the diffuse reflectance parameter of point p, kps
is its specular reflectance parameter, Np is its normal vector,
Vp is its viewpoint vector, αp is its shininess parameter, im
is the intensity of the light source m, Lpm is its light direction
vector, Rp

m is its reflection vector, and l is the number of light
sources present in the scene. Our goal is to estimate these
parameters for each 3D point in the scene.

Reflectance Estimation
We take advantage of dense 3D data provided by the sensor
to spatio-temporally analyze surface color variations through-
out camera trajectory. First, we sub-sample the input image
sequence with respect to camera poses in order to avoid re-
dundancies. Then we split the resulting sequence into subsets
(this allows us to avoid registration errors resulting from dis-
tant camera poses). Finally, we register each subset with re-
gard to a keyframe and provide a spatio-temporal color profile
of each 3D point (Fig.1) represented by a pixel in the image.

In this work, the lighting and scene are supposed to be static.
Thus, the intensity variations present in the profile can only
originate from the specular component as described in [9].
In [8], the median of the profile’s values is used to compute
Ipd. Although this value is robust in presence of shadows or
registration errors, it often gives an over-estimation of the
diffuse component. We have chosen, as in [7], to estimate
the diffuse intensity as the minimum observed value in the
profile as it should be closer to the correct value (Fig.2).
Moreover, we constrain the recovered diffuse intensity to
have a minimum number of occurrences throughout the

Figure 1: Left. 3D/2D registration : t-1 and t+1 are frames
registered with regard to keyframe K. Right. Recovered color
intensity profile of a point p using a frame subset (red dots)
registered with respect to a keyframe K (green dot).

Figure 2: Left. Input image of a specular book in the scene.
Right. Estimated diffuse reflectance map of the book.

subset.

The specular intensity is retrieved, at each frame t, as
the difference between Ip(t) and Ipd. The unknown specular
parameters are then (kps im), Rp

m and αp (Eq. 2). If pixel
intensity at the profile peak is not saturated, the product
(kps im) is retrieved as the lobe’s peak intensity value. In fact,
specular reflection occurs when the vectors Rp

m and Vp are
aligned (their scalar product is equal to 1). Hence, we set
Rp
m to be roughly equal to the peak’s corresponding view

vector Vp. Finally, estimated (kps im) values are reported in
the chosen keyframe images.

Light Sources 3D Position Estimation
In this section, we aim at estimating the 3D position of light
sources represented by point lights. For each keyframe, we
use surface normals Np and recovered reflection vectors Rp

m
to compute the light direction vectors (Lpm = 2.(Rp

m ·Np) ·
Np − Rp

m). Light rays originating from specular reflections
that fall within the same 3D region in the scene are clustered
using Euclidean distance. Hence, small clusters are processed
as outliers since they generally result from registration errors
or inaccurate normals. Then, a mean light direction vector is
computed for each significant cluster. Finally, the problem of
finding the position of light sources is similar to computing
the intersection points of a set of 3D lines.

Optimization
Specular reflectance parameters have been previously recov-
ered only for 3D points roughly viewed along the observed
reflection direction. Our goal is to estimate dense reflectance



maps. To achieve this, we initially assume uniform specular
reflectance for each 3D object in the scene. A first step
consists then in clustering the 3D mesh of the scene using
Euclidean distance between vertices and normals smoothness
constraint [14]. Then, provided that each cluster contains at
least one 3D point with its specular intensity estimate ksim,
we spread its value to the entire cluster points. Finally, con-
sidering all keyframes, we compute the specular reflectance
of each object as the maximum encountered ksim value.

We now address the possibility that an object/cluster
may not exhibit a unique specular reflectance. First, we
render specular reflections using previously recovered ksim
values and light sources position. Rendered specular maps
are correlated with observed specular maps. If correlation
fails, we proceeed to a color-based segmentation using the
k-means algorithm and set final ksim values to each color
segment as follows: observed points in the direction of light
sources that do not exhibit specular effects are considered
to be Lambertian (ks = 0), points that are left keep the
recovered ks value. Finally, we refine ksim and estimate α
using the Levenberg Marquardt algorithm with the following
cost function:

Fj =
∑
i

[Ii − (Id,i +
∑
m

ksim(Ri
m ·Vi(t))α)]2 (3)

where i and m respectively iterate over pixels that belong to
cluster j and over recovered light sources. Ii correspond to
observed pixel intensities. In (3), the diffuse component Id,i
is fixed and only ksim and α can be varied by the solver.

EXPERIMENTAL RESULTS
We use the Intel RealSense R200 sensor that provides camera
positions and a 3D model of the scene. Also, we photometri-
cally calibrate our sensor as in [15] by taking three images of
a color checker with patches of known reflectance at three dif-
ferent shutter speeds. Finally, a calibrated camera with fixed
aperture, shutter speed and color gain browses the scene.

Reflectance Evaluation
Figure 4 shows our photometric registration results for three
different scenes (S1, S2 and S3). Our algorithm recovers
dense diffuse (Fig.4, col-2) and specular (Fig.4, col-4) maps.
To evaluate the accuracy of these maps, we achieve two main
applications: relighting and Augmented Reality (AR). In
Fig.3, we use recovered reflectance and illumination to virtu-
ally relight the specular book. One can notice that the position
and intensity of the specularity are well estimated as they are
visually coherent with the input image. Furthermore, column
5 in Figure 4 shows different augmented scenes where vir-
tual shadows and specular occlusions are correctly rendered.
In Fig.4, row-1/col-5, one can notice a correct shape of vir-
tual shadows as well as consistent specular occlusions by the
virtual green and red spheres. In Figure 4. row-3/col-5, the
number of light sources is correctly recovered as well.

Illumination Evaluation
Using a fish-eye lens, we capture the environment map and
qualitatively compare it to the recovered lighting distribu-
tion (Fig.5) for three scenes (S1, S2 and S3 with respectively

Figure 3: Comparison between input image (left) and virtu-
ally rendered image using estimated reflectance and lighting.

Scenes Measured D (cm) Estimated D (cm)
S1 72.2 - - 86.1 - -
S2 94.7 105.6 - 88.9 127.1 -
S3 314.7 293.6 306 297.1 261.6 283.2

Table 1. Comparison between measured and estimated dis-
tances to light sources for scenes under different lightings.

one, two and three light sources). Our algorithm estimates
correct lighting distribution as it recovers the correct num-
ber of light sources responsible for specular reflections. Fur-
thermore, we use salient control points and evaluate the ac-
curacy of recovered positions. Table 1 shows a comparison
between measured (Measured D) and recovered distances to
light sources (Estimated D). Our algorithm is tested on vari-
ous indoor scenes under various lighting (e.g single and mul-
tiple spot lights and/or led lights) and recovers light sources
positions with an average error of 21cm for a mean distance
of 1.95m to the light source.

CONCLUSION AND FUTURE WORK
We presented an algorithm that estimates dense diffuse and
specular reflectance maps. Furthermore, our proposed ap-
proach recovers the 3D position of light sources for indoor
scenes with arbitrary geometry and texture. For future work,
we are interested in estimating the color and shape of the il-
lumination in order to produce both hard and soft shadows.
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demonstrate correctly rendered virtual objects as they occlude real specular effects and show realistic shadows.
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