Determining the Singularities for the Observation of Three Image Lines
 Sebastien Briot, Philippe Martinet, Francois Chaumette

To cite this version:

Sebastien Briot, Philippe Martinet, Francois Chaumette Determining the Singularities for the Observation of Three Image Lines. IEEE Robotics and Automation Letters, IEEE 2017, 2 (2), pp.412-419.

HAL Id: hal-01398925
https:/ / hal.archives-ouvertes.fr/ hal-01398925
Submitted on 1 Dec 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scienti c research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinee au depot et a la di usion de documents scienti ques de niveau recherche, publies ou non, emanant des etablissements d'enseignement et de recherche francais ou etrangers, des laboratoires publics ou prives.

Fig. 1. Observation of a line
required to control a particular $3{ }^{-} \quad$ parallel robot 1. Then, in Section III, the singularities of the mapping are analyzed and validated through simulations. Finally, conclusions are drawn in Section IV.

II. THE ROBOT MODEL HIDDEN IN THE OBSERVATION OF LINES

Before presenting the architecture of robot hidden in the observation of three lines, we make some brief recalls on the computation of the related interaction matrix.

In the following section of the paper, we use the standard pin hole model with focal length equal to 1 for the representation of the camera model. However, any other model based on projective geometry could be used.

A 3-D line i_{i} of Plücker coordinates ${ }_{i}^{T}{ }_{i}^{T}{ }^{T}$ in the camera frame (i being a unit vector characterizing its direction while $i_{i} \quad$, being the coordinates of any point M_{i} belonging to ${ }_{i}$) is projected in the image plane on a 2-D line ℓ_{i} of Plücker coordinates ${ }_{i}^{T}{ }_{i}^{T} T^{T}$ (i_{i} being a unit vector characterizing its direction while ${ }_{i}{ }_{i}$, being the coordinates of any point m_{i} belonging to ℓ_{i}) (Fig. 1). From [12], we know that

$$
i\left[\begin{array}{l}
u_{x i} \tag{1}\\
u_{y i} \\
u_{z i}
\end{array}\right]\left[\begin{array}{c}
L_{y i} / \\
L_{x i} /
\end{array}\right], i \quad\left[\begin{array}{l}
l_{x i} \\
l_{y i} \\
l_{z i}
\end{array}\right] \quad\left[\begin{array}{l}
L_{x i} / \\
L_{y i /} \\
L_{z i} /
\end{array}\right]
$$

where ${ }_{i} \quad L_{x i} L_{y i} L_{z i}^{T}$ and $\quad \sqrt{L_{x i} L_{y i}}$.
By differentiating these equations, the classical equations linking the velocities ${ }_{i}$ (and as a result the velocities i_{i}) to the twist $\boldsymbol{\tau}_{c}^{T} \quad \boldsymbol{v}_{c}^{T} \boldsymbol{\omega}_{c}^{T}$ of the camera in its relative motion with respect to the observed object frame (\boldsymbol{v}_{c} being the translational velocity and $\boldsymbol{\omega}_{c}$ the rotational velocity expressed in the camera frame) are

$$
\begin{equation*}
{ }_{i} \quad{ }_{i} \boldsymbol{\tau}_{c} \tag{2}
\end{equation*}
$$

[^0]

Fig. 2. Observation of three lines lying on a body
where ${ }_{i} \quad{ }_{i}^{T} \quad{ }_{i}^{T} \quad{ }_{i}^{T}{ }^{T}$ with

$$
\begin{align*}
& i\left[\begin{array}{c}
l_{x i} l_{y i} U_{z i} / \\
l_{y i} U_{z i} / \\
l_{y i} l_{x i} U_{x i} l_{y i} U_{y i} / \\
l_{x i} l_{y i} l_{z i} \\
l_{y i} l_{z i} \\
l_{y i}
\end{array}\right]^{T} \tag{3}\\
& i\left[\begin{array}{c}
l_{x i} U_{z i} / \\
l_{x i} l_{y i} U_{z i} / \\
l_{x i} l_{x i} U_{x i} \quad l_{y i} U_{y i} / \\
l_{x i} l_{z i} \\
l_{x i} l_{y i} l_{z i} \\
l_{x i}
\end{array}\right]^{T} \tag{4}\\
& {\left[\begin{array}{cc}
U_{y i} & l_{y i} l_{z i} U_{z i} / \\
U_{x i} & l_{x i} l_{z i} U_{z i} / \\
l_{z i} & l_{x i} U_{y i} \\
l_{y i} & l_{y i} U_{x i} / \\
l_{z i} \\
l_{x i} & l_{z i}
\end{array}\right]^{T}} \tag{5}
\end{align*}
$$

In order to fully servo the relative motion between an object and a camera, at least three lines fixed on the object must be observed [11] (Fig. 2). Thus, considering the observation of three lines , and , the interaction matrix linking the velocities i of the lines $\ell_{i}(i, \quad$,$) grouped in the vector$ $T T T T$ to the camera twist $\boldsymbol{\tau}_{c}$ by the relation

$$
\begin{equation*}
\boldsymbol{\tau}_{c} \tag{6}
\end{equation*}
$$

is thus given by

$$
\left[\begin{array}{ccc}
T & T & T \tag{7}
\end{array}\right]^{T}
$$

Singularities appear when the matrix is rank deficient. Looking at the analytical form of , it is clear that determining the singularities of through the determinant of $\quad T$ seems to be out of reach.

Note that we have used above the Plücker representation of lines, but following results are not dependent of the choice of the representation (Cartesian, cylindrical) [12].
result,
where is a block-diagonal matrix which cannot be rank-deficient. Finally, by combining (6) and (9) with the screw transformation relation linking the camera twist $\boldsymbol{\tau}_{c}$ (expressed with respect to the object frame) to the observed object twist τ_{p} (expressed with respect to the camera frame) by [3]

$$
\boldsymbol{\tau}_{c} \quad \boldsymbol{\tau}_{p}, \text { where } \quad\left[\begin{array}{lll}
c & & \tag{10}\\
& & \\
& &
\end{array}\right]
$$

(in which is the identity matrix, is a zero matrix, and ${ }^{c}{ }_{p}$ is the cross-product matrix associated to the 3-D vector ${ }^{c}{ }_{p}$ characterizing the translation between the camera and the observed object frames), we found:
inv
Then, as matrices and are never rank-deficient, we obligatorily have a loss of rank of if and only if inv is rank-deficient. Therefore, the conditions of singularity of the hidden robot inverse kinematic Jacobian matrix $i_{i n v}$ are the same as the singularity conditions of the interaction matrix

III. SINGULARITY ANALYSIS

Singularities on the inverse Jacobian matrix $i n v$ of a parallel robot (also called or singularities [13]) appear when at least two solutions of the FGM are identical [10]. As mentioned in Section II, these singularities are analogous to the singularities of the interaction matrix.

In Type 2 singularities, parallel robots gain one (or more) uncontrollable motion. Kinematically speaking, there exists a non-null vector s defined such that inv s while , i.e. the actuators are fixed (which means that ${ }_{s}$ is in the null space of ${ }_{i n v}$). As known in mechanics, if a rigid body got an uncontrollable motion, this means that it is not fully constrained by the system of wrenches applied on it, i.e. the static equilibrium is not ensured. As this uncontrollable motion appears only in a singularity, this means that locally the system of actuation wrenches, i.e. wrenches transmitted from the actuators to the platform by the legs, is degenerated [10].

For a given leg i, any actuation wrench denoted by $\boldsymbol{\xi}_{i j}$ is reciprocal to the unit twists denoted $\zeta_{i k}$ characterizing the displacements of the passive joints [14], i.e. $\boldsymbol{\xi}_{i j}^{T} \boldsymbol{\zeta}_{i k}$ for any j and k. This means that the virtual power developed by the wrench $\boldsymbol{\xi}_{i j}$ along the direction of motion $\boldsymbol{\zeta}_{i k}$ is null; in other words, the actuator j of the leg i cannot transmit a wrench $\boldsymbol{\xi}_{i j}$ to the platform along the direction $\boldsymbol{\zeta}_{i k}$.

Let us consider a $\underline{U} P R C$ leg belonging to our $3-\underline{U} P R C$ hidden robot. In the frame ${ }_{i} M_{i}, \boldsymbol{x}_{i}, \boldsymbol{y}_{i}, \boldsymbol{z}_{i} \quad$ (M_{i} being the point of intersection between the axis of the prismatic and revolute joints) attached to the leg, the unit twist defining the motion of the passive P joint is expressed as (see Fig. 3):

$$
\begin{equation*}
\boldsymbol{\zeta}_{i} \quad[\quad]^{T} \tag{12}
\end{equation*}
$$

while

$$
\begin{equation*}
\boldsymbol{\zeta}_{i} \quad[\quad]^{T} \tag{13}
\end{equation*}
$$

is the unit twist defining the motion of the passive R joint and

$$
\begin{array}{cccc}
\boldsymbol{\zeta}_{i} & {\left[\begin{array}{lcc}
\gamma_{i} & \gamma_{i} &]^{T} \\
\boldsymbol{\zeta}_{i} & {[} & \gamma_{i}
\end{array}\right.} & \left.\gamma_{i}\right]^{T}
\end{array}
$$

are the unit twists defining the motions of the passive C joint, γ_{i} being the angle between \boldsymbol{x}_{i} and \boldsymbol{a}_{i} (and thus $\quad{ }_{i}$), both axes being contained in i_{i} (Fig. 3).

In these twists, the three first components represent the direction of the translation velocity while the three last components represent the direction of the rotational velocity.
As a result, the unit actuation wrenches $\boldsymbol{\xi}_{i j} \quad{ }_{i j}^{T} \quad{ }_{i j}^{T}{ }^{T}$ expressed in the frame i are

$$
\begin{array}{ccccccc}
& \boldsymbol{\xi}_{i} & { }^{i} & & { }^{T}, & i & \\
\boldsymbol{\xi}_{i} & i & & , & { }^{i} & \gamma_{i} & \gamma_{i}^{T} \tag{17}
\end{array}
$$

in which ${ }_{i j}$ represents the direction of the force exerted on the platform and ${ }_{i j}$ the direction of the moment. As a result, $\boldsymbol{\xi}_{i}$ is a pure force directed along \boldsymbol{y}_{i} and $\boldsymbol{\xi}_{i}$ is a pure moment reciprocal to $\boldsymbol{\xi}_{i}$ and i which is included in the plane ${ }_{i}$ (Fig. 3).

Thus, for the three robot legs, the system of actuation wrenches is given by $\boldsymbol{\xi} \quad \boldsymbol{\xi} \quad \boldsymbol{\xi} \quad \boldsymbol{\xi}$ exists some tools able to define the conditions of degeneracy of a wrench system among which are the Grassmann geometry [10] and the Grassmann-Cayley algebra [9], [15]-[17]. In what follows, we use the Grassmann-Cayley algebra in order to find the singularity conditions related to our problem. Indeed, as any wrench of the wrench system $\boldsymbol{\xi}$ can be seen as the Plücker representation of a line ${ }^{2}$ [10], the GrassmannCayley algebra makes it possible to compute the determinant of the wrench system $\boldsymbol{\xi}$ as an expression involving twelve points selected on the six lines (corresponding to the six wrenches). This expression is a linear combination of 24 monomials [9], each monomial representing the volume of a tetrahedron whose extremities correspond to four of the considered twelve points. By a smart selection of the twelve points, due to the experience of the user, it is possible to vanish a large number of the monomials and thus to simplify the expression of the determinant of the wrench system.

Regarding our particular case, the Grassmann-Cayley algebra was used in [17] to prove that, if the system of wrenches is composed of a pair of three forces $\boldsymbol{\xi}, \boldsymbol{\xi}, \boldsymbol{\xi}$ and of three moments $\boldsymbol{\xi}, \boldsymbol{\xi}, \boldsymbol{\xi}$, conditions of singularities appear

$$
\begin{array}{cccc}
f & T & \text { or } f & T \tag{18}
\end{array}
$$

which means that the vectors , and (, and , resp.) lie in the same plane (or are collinear to the same vector). As a result, the mechanism is not able to resist to forces (moments , resp.) orthogonal to this plane (or in any directions orthogonal to) and thus translations (rotations,

[^1]resp.) are gained along the direction of (around the axis of , resp.).
From these two conditions, it is possible to find the configurations of the end-effector (the observed body) in the camera frame leading to singularities. Examples of singular configurations, depending on the arrangement of the lines on the observed body, are detailed below.

Thanks to the particular geometric properties of the system to analyze (invariance of robot leg configurations for any rotation around O), it is possible to simplify the singularity analysis by fixing the platform orientation. Thus, all expressions below will be given for the "zero" platform orientation. For another given platform orientation (parameterized by the rotation matrix), singularity loci will be found by parameterizing the variables X, Y and Z characterizing the position of the origin of the object frame b in the camera frame (see Figs. 5 and 6) when considering the "zero" platform orientation thanks to new variables X, Y and Z representing the position of the origin of the object frame for the considered "non-zero" platform orientation such that

$$
\left[\begin{array}{lll}
X & Y & Z
\end{array}\right]^{T} \quad\left[\begin{array}{lll}
X & Y & Z \tag{19}
\end{array}\right]^{T}
$$

In such a case, the three lines intersect in points M, M and M (Fig. 5(a)) (we disregard the case where at least two lines are parallel, which is considered in Section III-B5). We define the frame ${ }_{b} Q, \boldsymbol{x}_{b}, \boldsymbol{y}_{b}, \boldsymbol{z}_{b}$ attached to the observed body
such that Q is the center of the circumcircle of the triangle
$M M M$ and \boldsymbol{x}_{b} is collinear to $Q M$. Moreover, for the analysis, we fix the orientation of the body so that ${ }_{b}$ can be obtained from the camera frame by a translation of vector $O Q$. As a result,

$$
\begin{array}{cccccccc}
O Q & X Y Z^{T}, Q M & \rho & T \tag{20}\\
Q M & \rho & \phi & \phi & & & \\
& T
\end{array}, Q M \quad \begin{array}{lllll}
& \rho & \psi & \psi & \psi^{T}
\end{array}
$$

where ϕ, ψ are two angles defined in Fig. 5(a) and ρ is the radius of the circle.

Then, from section III-A, we know that

$$
\begin{array}{llllll}
i & i & O M_{i}, & i & i & i \tag{21}
\end{array}
$$

leading to, from (18), and after some tedious developments,

$$
\begin{array}{llll}
f & Z & & \tag{22}\\
f & Z X & Y & \rho
\end{array}
$$

Condition $Z \quad$ means that the plane containing the lines ,
and also contains the camera center O, which is not critical in practice. In such a case, all three lines project in a single line in the image plane and the pose of the object cannot be determined. Condition $X \quad Y \quad \rho$ means that the camera center O lies on the cylinder whose axis is perpendicular to the plane containing all three points M, M and M and which includes the three points. These conditions are the same as the singularity cases where three image points are observed [2], which is indeed not a surprise due to the equivalence of both problems.

(a) with no common intersection (b) with a common intersection point
point point

Fig. 5. Observation of three coplanar lines

We define the frame $b \quad Q, \boldsymbol{x}_{b}, \boldsymbol{y}_{b}, z_{b}$ attached to the observed body such that Q is the intersection point of all three lines and \boldsymbol{x}_{b} is collinear to (Fig. 5(b)). Again, we fix the orientation of the body so that ${ }_{b}$ can be obtained from the camera frame by a translation of vector $O Q$. Thus,

$$
\begin{array}{ccccc}
O Q & X Y Z^{T}, & & T, \tag{23}\\
\phi & \phi & & \\
& & & \psi & \psi
\end{array}
$$

where ϕ, ψ are two angles defined in Fig. 5(b).
Then, from section III-A,

$$
\begin{equation*}
i \quad i \quad O Q, \quad i_{i} \quad{ }_{i} \quad{ }_{i} \tag{24}
\end{equation*}
$$

leading to, from (18),
f for any object configuration
$f \quad Z X \quad Y$
Thus, if three coplanar lines intersect in a single point, the rank of the interaction matrix is never full, i.e. at least one degree of freedom (a translation towards the intersection point) of the object cannot be controlled, as already known [11]. Moreover, additional degrees of freedom become uncontrollable if
$Z \quad$, which means as previously that the plane containing the lines , and also contains the camera center O.
$X \quad Y$, which means that the camera center O lies on the line which passes through Q and which is perpendicular to all vectors i, which is the same condition as when f

Here, the three lines are spatial, not orthogonal and intersect in a common point. We define the frame $b \quad Q, \boldsymbol{x}_{b}, \boldsymbol{y}_{b}, \boldsymbol{z}_{b}$ attached to the observed body such that \boldsymbol{x}_{b} is collinear to
, \boldsymbol{y}_{b} is in the plane containing and , while Q is the intersection point of the lines. As a result,

$$
O Q \quad \begin{align*}
& X Y Z^{T}, \quad \quad c d e^{T}, \tag{26}\\
& a b{ }^{T},
\end{align*}
$$

where a, b, c, d and e are variables parameterizing the direction of the lines.

Fig. 6. Observation of lines in space
i and i_{i} can be found thanks to expression (24), and from (18) we obtain,
$f \quad$ for any object configuration
$f \quad b a d e Y \quad a d \quad b c d$ ae Z

$$
\begin{equation*}
a c \quad b d e X Y \quad e b c X \quad a d \quad b c Z \tag{27}
\end{equation*}
$$

$$
b e X Z Y \quad a d \quad b c d \quad \text { ae } X Z
$$

$$
b d \quad a c e X Z
$$

Thus, if three spatial lines intersect in a single point, the rank of the interaction matrix is never full, i.e. at least one degree of freedom (a translation) of the object cannot be controlled, as already known [11]. Moreover, additional degrees of freedom become uncontrollable if the origin of the body frame belongs to a cubic surface parameterized by f

Note also that in the case where the three lines are orthogonal, the equation f degenerates into $X Y Z$

Here, the three lines are orthogonal and do not intersect. We define the frame ${ }_{b}$ $Q, \boldsymbol{x}_{b}, \boldsymbol{y}_{b}, \boldsymbol{z}_{b}$ attached to the observed body such that \boldsymbol{x}_{b} is collinear to $\quad, \boldsymbol{y}_{b}$ is collinear to and z_{b} is collinear to . Moreover, the distance between and is equal to a, between and is equal to b, and between and is equal to c, while Q is the barycenter of the lines (Fig. 6(a)). As a result,

| $O P$ | X | Y | c | Z | a^{T}, | T |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $O P$ | X | b | Y | Z | a^{T}, | T |
| $O P$ | X | b | Y | c | Z^{T}, | T |

where P_{i} is a point belonging to $\quad i$.
Then, we have

$$
\begin{equation*}
i \quad i \quad O P_{i}, \quad i \quad i \tag{29}
\end{equation*}
$$

which leads to, from (18),

$$
\begin{array}{llllr}
f & a X Y & b Y Z & c X Z & a b c \\
f & a c X & a b Y & b c Z & X Y Z \tag{30}
\end{array}
$$

Expression f represents a quadric surface while expression f is a cubic surface (Fig. 7).

Here, the lines ℓ and ℓ are parallel. We define the frame $\quad b \quad Q, \boldsymbol{x}_{b}, \boldsymbol{y}_{b}, \boldsymbol{z}_{b}$ attached to the observed body such that \boldsymbol{x}_{b} is collinear to , \boldsymbol{y}_{b} is lying in the plane containing and

Fig. 7. Example of singularity loci when three perpendicular lines are observed (computed for $=313,=313,=313$)
Q is at the intersection of and the line . From Fig. 6(b), we define

$$
\begin{array}{llllll}
O P & X & Y & a & Z^{T}, & T \\
O P & X & Y & b & Z^{T}, & T \tag{31}\\
O P & X Y & Y & Z^{T}, & & c d e^{T}
\end{array}
$$

where c, d, e are variables parameterizing the direction of the line

Then, i and i being found from (29), by using the singularity conditions (18), we obtain

$$
\begin{array}{lllll}
f & Z d Z & e Y \\
f & Z X d & e & c Y d & c Z e \tag{32}
\end{array}
$$

Here, singularities are equations of planes:
$Z \quad$, which occur when the plane containing and also contains the optical center,
$e Y d Z \quad$ is the plane containing , and the optical center,
$X d \quad e \quad c d Y \quad c e Z \quad$ is the plane containing , and the optical center.
The two first cases are degenerated cases where two 3-D lines are contained in the same interpretation plane (i.e. the plane passing through the camera center and the image line), leading to the same image line for the two 3-D lines.

This is the most general case. We do not provide here the expressions which are more complex than in the previous cases but they are still exploitable and can be found in a technical report [18].

As in the case of the three perpendicular lines, condition $f \quad$ provides the expression of a quadric surface while $f \quad$ leads to a cubic surface.

In order to show the exactness of our results, we first perform simulations in the case where the three lines have a general configuration (Section III-B6). The three general

Fig. 8. Relative motion of the camera with respect to the observed lines in a general configuration.

Fig. 9. Inverse of the condition number of the interaction matrix \mathbf{M} obtained when observing three lines in the general case.
lines are parameterized as follows. We define the frame ${ }_{b} \quad Q, \boldsymbol{x}_{b}, \boldsymbol{y}_{b}, \boldsymbol{z}_{b}$ attached to the observed body such that \boldsymbol{x}_{b} is collinear to , \boldsymbol{y}_{b} is lying in the plane containing and . Then, the line ${ }_{i}$ is parameterized by its direction and a point P_{i} lying on it by taking the following expressions:

| $O P$ | X | b | Y | c | Z | a^{T}, | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $O P$ | | | | | | | | |
| $O P$ | X | b | Y | c | Z | a^{T}, | $d e$ | |
| $O P$ | X | b | Y | c | Z^{T}, | | | $f g h^{T}$ |

where d, e, f, g and h are variables parameterizing the direction of the lines and , and X, Y, Z are the coordinates of Q in the camera frame. For simulation purpose, we set $a \quad b \quad c \quad \mathrm{~m}$ and $d \quad e \quad, f \quad, g \quad h \quad$. Then, a relative motion between the object frame and camera frame origins is imposed and is parameterized by the following functions characterizing the location of Q in the camera frame:

$$
\begin{array}{ccc}
X & . s, Y & \tag{34}\\
& . s, \\
Z & . & . s
\end{array}
$$

with $s \quad$. . a linearly increasing function. The relative motion of the camera with respect to the observed lines is shown in Fig. 8. In such simulation, when s, the point O reaches the configuration $X_{O} \quad . \quad \mathrm{m}, Y_{O} . \mathrm{m}$ and $Z_{s} \quad . \quad \mathrm{m}$ in the object frame (see Fig. 8) which is a point

Fig. 10. Relative motion of the camera with respect to the three observed orthogonal lines.

Fig. 11. Inverse of the condition number of the interaction matrix \mathbf{M} obtained when observing three orthogonal lines.
lying on the quadric surface whose expression can be found in the technical report [18]. As a result, the rank-deficiency of the matrix appears for s, which is shown on Fig. 9 in which the inverse of the condition number is null only for s

A second simulation is performed in order to show now the singularities when observing three orthogonal lines in space (see Section III-B4). For simulation purpose, we take the following values of the parameters a, b and c in (28): $a \quad b \quad . \quad \mathrm{m}, c \quad$. m . Then, a relative motion between the object frame and camera frame origins is imposed and is parameterized by the following functions characterizing the location of Q in the camera frame:

$$
\begin{gathered}
X \\
Z
\end{gathered} \quad . s, Y \quad . s
$$

with s
a linearly increasing function. The relative motion of the camera with respect to the observed lines is shown in Fig. 10. In such simulation, when s, the point O reaches the configuration $X_{O} \quad . \mathrm{m}, Y_{O}$. m and $Z_{O} \quad \mathrm{~m}$ in the object frame (see Fig. 10) which is a point lying on the cubic surface whose expression is given in (30). As a result, the rank-deficiency of the matrix appears for
s, which is shown on Fig. 11 in which the inverse of the condition number is null only for s

IV. CONCLUSION

In this paper, we determined the singularity cases for the observation of three image lines thanks to a tool named the "hidden robot concept". We showed that the hidden robot concept allows for considerable simplification of the analysis, leading to the computation of new singularity cases. Indeed, the hidden robot is a tangible visualization of the mapping between the observation space and the Cartesian space. As a result, the singular configurations of the hidden robot corresponded to the singularities of the interaction matrix.

Indeed, the concept of hidden robot allowed to change the way we defined the problem. By doing so, we were able to replace the degeneracy analysis of the velocity transmission between inputs (velocity of the observed features) and outputs (camera twist), by its dual but fully equivalent problem which was to analyze the degeneracy in the transmission of wrenches between the inputs of a virtual mechanical system (virtual actuators of the hidden robot whose displacement was linked to the motions of the observed features) and its outputs (wrenches exerted on the virtual platform, i.e. the observed object).

Then, by using geometric interpretations of the mapping degeneracy and tools provided by the mechanical engineering community such as the Grassmann-Cayley algebra, we were able to find rather simple geometric interpretation of the interaction matrix degeneracy. We proved that in the most complicated cases where three general lines in space are observed, singularities appear when the origin of the observed object frame is either on a quadric or a cubic surface. In simpler cases where at least two lines belong to the same plane, these two surfaces can degenerate into simpler geometrical loci (e.g. planes, cylinders, lines).

Future works concern the analysis of the singularity cases in the observation of n lines, and research about the singularities when observing other primitives (spheres, circles, and eventually of combination of different primitives), or when using several cameras.

REFERENCES

[1] S. Hutchinson, G. Hager, and P. Corke, "A tutorial on visual servo control,"
, vol. $12, \mathrm{pp}$. 651-670, 1996.
[2] H. Michel and P. Rives, "Singularities in the determination of the situation of a robot effector from the perspective view of 3 points," INRIA, Tech. Rep., 1993.
[3] F. Chaumette and S. Hutchinson,
Springer, 2008.
[4] V. Rosenzveig, S. Briot, P. Martinet, E. Özgür, and N. Bouton, "A method for simplifying the analysis of leg-based visual servoing of parallel robots," in
, Hong Kong, China, May 2014.
[5] S. Briot and P. Martinet, "Minimal representation for the control of Gough-Stewart platforms via leg observation considering a hidden robot model," in
, Karlsruhe, Germany, May, 6-10 2013.
[6] S. Briot, P. Martinet, and V. Rosenzveig, "The hidden robot: an efficient concept contributing to the analysis of the controllability of parallel robots in advanced visual servoing techniques,"
, vol. 31, no. 6, pp. 1337-1352, 2015.
[7] N. Andreff, A. Marchadier, and P. Martinet, "Vision-based control of a Gough-Stewart parallel mechanism using legs observation," in
, Barcelona, Spain, April 18-22 2005, pp. 2546-2551.
[8] S. Briot, F. Chaumette, and P. Martinet, "Revisiting the determination of the singularity cases in the visual servoing of image points through the concept of "hidden robot"," , 2017, to appear.
[9] P. Ben-Horin and M. Shoham, "Singularity analysis of a class of parallel robots based on Grassmann-Cayley algebra,"
, vol. 41, no. 8, pp. 958-970, August 2006.
[10] J.-P. Merlet, , 2nd ed. Springer, 2006, iSBN 978-1-4020-4133-4.
[11] N. Andreff, B. Espiau, and R. Horaud, "Visual servoing from lines," , vol. 21, no. 8, pp. 679-700, 2002.
[12] F. Chaumette, "La relation vision-commande : théorie et application à des tâches robotiques," Ph.D. dissertation, Université de Rennes 1, 1990.
[13] C. Gosselin and J. Angeles, "Singularity analysis of closed-loop kinematic chains," , vol. 6, no. 3, pp. 281-290, 1990.
[14] I. Bonev, "Geometric analysis of parallel mechanisms," Ph.D. dissertation, Université Laval, QC, Canada, nov 2002.
[15] P. Ben-Horin and M. Shoham, "Application of Grassmann-Cayley algebra to geometrical interpretation of parallel robot singularities," , vol. 28, no. 1, pp. 127-141, 2009.
[16] N. White,
Springer, 2008, vol. 8, ch. Grassmann-Cayley algebra and robotics applications, pp. 629-656.
[17] D. Kanaan, P. Wenger, S. Caro, and D. Chablat, "Singularity analysis of lower mobility parallel manipulators using Grassmann-Cayley algebra," , vol. 25, no. 5, pp. 995-1004, 2009.
[18] [Online]. Available: https://hal.archives-ouvertes.fr/hal-01400575

[^0]: ${ }^{1}$ In the following of the paper, , , , will stand for passive prismatic, universal, revolute and cylindrical joints, respectively. If the letter is underlined, the joint is considered active.

[^1]: ${ }^{2}$ A pure force will be represented by a line in the $3-\mathrm{D}$ space while a pure moment will be a line in the projective space at infinity.

