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Abstract— This paper presents image-based navigation from
an image memory using a combination of line segments and
feature points. The environment is represented by a set of key
images, which are acquired during a prior mapping phase
that defines the path to be followed during the navigation.
The switching of key images is done exploiting the common
line segments and feature points between the current acquired
image and the nearby key images. Based on the key images and
the current image, a control law is derived for computing the
rotational velocity of a mobile robot during its visual navigation.
Using our approach, real-time navigation has been performed in
real indoor environment with a Pioneer 3-DX equipped with an
on-board perspective camera and the humanoid robot Pepper
without the need of accurate mapping and localization nor of
3D reconstruction. We also show that the combination of points
and lines increases the number of features that helps in robust
and successful navigation especially in those regions where few
points or lines can be detected and tracked/matched.

I. INTRODUCTION

Visual information has already been widely used for
mobile robot navigation [1]. Visual navigation can be broadly
classified into two approaches: model-based and appearance-
based. The first approach relies on the knowledge of an
accurate and consistent 3D model of the navigation space that
can be computed from different features like lines, planes,
or points [2], or estimated from a learning step. Most of
the Simultaneous Localization And Mapping (SLAM) based
methods [3], [4], [5] fall in this category. On the other hand,
the appearance-based approaches do not require a 3D model
of the environment, and work directly in the sensor space.
To simplify the process of such navigation schemes, the
environment is generally represented as topological graphs
[6], [7], [8], [9]. The nodes of the graph give characteristic
features or zones of the environment (locations) obtained
using the sensor data, and arcs give adjacency relations
between locations. Such maps can be built in a prior off-
line learning phase, which is far less complex than what
needed for metric maps. The comparison between the current
view and the images in the map is generally based on
global descriptors, like considering the whole image [10],
[11], [12], color histograms [13], or image gradient [14];
or by using local descriptors, like photometric invariants
[15] or corners, Scale-Invariant Feature Transform (SIFT)/
Speeded Up Robust Features (SURF) points or Maximally
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Stable Extremal Regions (MSER) [6], [7], [8], [16], or line
segments [9].

The works in [6], [7], [8], [9], [16] have demonstrated
navigation in indoor and outdoor environments using ap-
pearance based approaches from image memory. In [6], [7],
[9], it is shown that accurate mapping and localization is
not mandatory for visual navigation. The first two methods
used a hybrid model for topological navigation based on
visual memory in an outdoor environment where local 3D
reconstruction has been used for verifying the key-point
matches and automatic key-frame selection using SIFT, Multi
Scale Harris, and MSER features. However, the motion
control was still based upon 2D features, in particular, the
centroid of matched points. Most of the techniques employed
in outdoor environments typically results in a significant
performance drop when applied to indoor scenarios because
of windows, wiry structures, reflections and repetitions, as
well as limited texture in indoor scenarios, which causes
standard procedures based on image descriptors to poorly
perform indoors [17]. However, our previous work [9], along
with SLAM based methods like [4], [5], [18], and corridor
navigation methods like [19], [20], [21], showed that line
segments are actually good features for indoor navigation.
Still, there are some limitations mainly due to the line
matching/tracking algorithms, which are still not a mature
field in computer vision unlike points, especially when very
few line segments can be detected in the images. Therefore,
in this work we extend the navigation framework proposed
in [9] to combine line segments with point features for
increasing robustness in terms of its application to the wide
range of indoor scenarios with smooth motion.

Our main contribution is a complete method for indoor
navigation (automatic construction of a navigation route,
initial localization that enables the robot to start from any
position within the map, successive localization and on-
line control of the rotational velocity) combining general
2D line segments with points features with the aim to
coarsely follow a learned path without the need of accurate
mapping, localization, 3D or of robot odometry. We have also
performed closed loop stability analysis using line segments
only, points only and combination of lines and points. Up-
to our knowledge, combining general line segments with
features points for the navigation has never been done before
in the literature. This combination is particularly effective in
those cases where there are few lines detected and matched,
especially during sharp turnings and changes in the illumi-
nation conditions. Using points with lines will increase the
number of features at those regions, and eventually help in



better motion control and hence more robust navigation.
The next section describes the complete framework for

mapping and navigation along with closed loop stability
analysis. Section III presents some experimental results with
a real robotic system in different indoor scenarios, which
demonstrate the validity of the proposed navigation scheme.
Finally, some concluding remarks are reported in Section IV.

II. OVERVIEW

A. Constraints

We consider a non-holonomic mobile robot of unicycle
type equipped with a fixed perspective camera. The intrinsic
parameters of the camera are constant and coarsely known.
The presented method is concerned only with a goal-directed
behavior without considering obstacle avoidance, which will
be considered in future works. The robot exhibits a qual-
itative path following behavior. It is therefore suitable to
prefer the center of the free space during the acquisition
of the learning sequence. During navigation, it is assumed
that the robot is initially inside the mapped environment. The
localization outside the mapped location is out of scope of
this paper.

B. Features detection and tracking/matching

In this work, we combine line segments with point fea-
tures. Edge Drawing Lines (EDLines) detector [22] and the
line matching method proposed by [23] have been used to
detect and to match the line segments, respectively. SURF
points [24] and the corners detected by FAST (Features from
Accelerated Segment Test) corner detector [25] have been
considered as point features. Wide baseline matching of the
SURF points is performed only during the initial localiza-
tion. During the navigation, FAST corners detected from
the key images are tracked using modified KLT (Kanade-
Lucas-Tomasi Feature Tracker) algorithm as presented in [6].
Trifocal tensor with Random Sample Consensus (RANSAC)
[2] has been used to remove outliers for the line segments
matching similar to the process described in our previous
work [9]. The outliers of point matching/tracking are re-
moved by using 5 point algorithm with RANSAC [26].

In our method, two view correspondences are used in
initial localization, switching of key images and generating
three view correspondences. Three view correspondences are
used in mapping, switching of key images and motion con-
trol. For generating three view correspondences, the current
key image and the two most recently acquired images are
used during the mapping, whereas, the two key images and
the currently acquired image are used during the navigation.
In our method, we have used only those line segments and
points that are geometrically consistent (2 view geometry
for points and 3 view geometry for lines) and pass inlier test
using RANSAC. Therefore, we have high confidence over
the lines and points that have been obtained to use number
of correspondences as metrics to compare.

C. Key images selection
In the proposed method, the environment is represented

by a set of key images that are selected automatically. The
first acquired image is always stored in the database as a key
image (first node in the graph). Let Ic be the most recently
acquired image and Ik be the most recent key image. The
line segments and corners detected in Ik are tracked over Ic.
For tracking of lines, we have used the method proposed in
our previous work [9]. For tracking of points, the approach
used in [6] has been used. If nL(Ik, Ic−1, Ic) and nP (Ik, Ic)
denotes numbers of lines and points tracked after outliers
rejection and ε is a positive integer, the new key image is
selected when

nL(Ik, Ic−1, Ic) + nP (Ik, Ic) < ε.

In this case Ic−1 will be new Ik. Otherwise, the new Ic is
acquired and the process continues. The last acquired image
is also stored in the database, which helps to determine when
the robot has to stop at the end of the navigation. Hence,
the output of the mapping process is a set of key images
that represents the arc the robot has to follow during the
navigation. The neighboring key images share some common
line segments and feature points as shown in Fig. 1, which
makes it possible to consider multiple key images in a
neighborhood for defining the heading angle of the robot.

Fig. 1: The map consists of key images. Adjacent key images share
some line segments and feature points with the current image. These
corresponding features with the current acquired image are used for
switching of key images and motion control.

D. Initial Localization in the map
The navigation starts with the initial localization, which
allows determining the initial position of the robot in the
map. The first image acquired (Ia) is compared with all the
images in the database based upon line segment and points
matching. If Ik denotes the key image, n(...) is the total
number of lines and points matched between the images, IP
is the previous key image and IN is the next key image, IP
and IN are selected as:

Iki = argmax
Ik

{n(Ia, Ik1), n(Ia, Ik2), ......, n(Ia, Ikn)},

Ikj = argmax
Ik

{n(Ia, Iki−1), n(Ia, Iki+1)},

IP = Ikj and IN = Iki if i > j,
IP = Iki and IN = Ikj if i < j.



Fig. 2: Localization in the map.

E. Successive Localization (Key Images Switching)

After initial localization in the map, further localizations
can be done exploiting the adjacency relationship between
the key images. The previous key image IP , the next key
image IN , and the second next key image INN are compared
with the current acquired image Ia. Let nL(...) be the total
number of lines matched and nP (...) be total number of
points tracked between the images. Then switching of key
images is done when at least one of the following criteria is
fulfilled for two consecutive acquired images Ia and Ia+1:

((nL(Ia, IN , INN ) + nP (Ia, IN , INN )) >
(nL(IP , Ia, IN ) + nP (IP , Ia, IN )))

OR
(((nL(Ia, INN ) + nP (Ia, INN )) > (nL(Ia, IN ) + nP (Ia, IN ))

AND
((nL(Ia, INN ) + nP (Ia, INN )) > (nL(Ip, Ia) + nP (Ip, Ia))).

The first criterion is based on the result of three view
matching between the images inside the brackets, whereas
the second criterion is based on two view matching of
images. The second criterion is essentially useful when there
are no three view matches or very few number of three
view correspondences that may occur in rapid turnings. After
switching the images, IN becomes IP , INN becomes IN ,
and next key image from IN becomes INN . Then the process
repeats. When the end of the database is reached, INN will
not be available and IN will be the last image acquired during
the mapping. Therefore, the navigation needs to be stopped
to prevent the robot moving outside the mapped zone.

F. Control

For the considered navigation task, the robot is not re-
quired to accurately reach each key image of the path,
or to accurately follow the learned path. In practice, the
translational velocity is kept constant and reduced to a
smaller value when turning. The rotational velocity is derived
using the key images and the current image via an image
based visual servoing (IBVS) control law [27].

Fig. 3: Top view of robot (orange) equipped with a perspective
camera (blue) with its optical axis perpendicular to axis of robot
rotation (left) and representation of line and point (right).

Let us define a vector of visual features as s, the
camera velocity expressed in camera frame as uc =
(vcx, vcy, vcz, ωcx, ωcy, ωcz), where v is the linear velocity
and ω is the rotational velocity around the given axes. The
velocity of s can be related via an interaction matrix Ls [27]
to uc as

ṡ = Lsuc. (1)

For the considered unicycle-like robot (Fig. 3), uc can be
expressed in terms of robot velocity u = (vr, ωr) as

uc = (−δωr, 0, vr, 0, −ωr, 0), (2)

where δ is the distance between the camera center and the
robot center of rotation, vr is the forward velocity and ωr is
the rotational velocity of the robot. Now, from (1) and (2),
we obtain

ṡ = Jvvr + Jωωr, (3)

where Jv and Jω are the Jacobian associated with vr and
ωr respectively. In practice, Jω and Jv have to be estimated
or approximated because they depend on the unknown depth
[27]. Let them be represented by Ĵω and Ĵv. In order to
drive s to desired value s∗, we set vr as constant and control
ωr as [27]:

ωr = −Ĵ+
ω (λ(s− s∗) + Ĵvvr), (4)

where λ is a positive gain, Ĵ+
ω is the pseudo-inverse of Ĵω

and (s− s∗) is the error (e). The calculation of Jacobians is
presented below.
For the line segments, we use the abscissa of the centroid of
the points of intersection of the n matched lines and their
respective normal from the origin (Fig. 3 (right)) as in our
previous work [9]. For the points, we have used x-coordinate
of the centroid of the m tracked points as in [6].
The interaction matrix for line segments has been derived in
[9] and it takes the expression

ĴvL = 0 and ĴωL =
1

n

n∑
i=1

(cos2 θi − ρ2i cos(2θi)), (5)

where (ρi, θi) are the line parameters (as shown in Fig. 3
(right)) of the matched lines in Ia, and ĴvL and ĴωL are
the approximated Jacobians for translational velocity and
rotational velocity respectively.
From [27] and (2), the interaction matrix Jx of point (x , y)
that links the displacement of x w.r.t. the robot velocity u is

Jx =
[

x
Z −

(
δ
Z + 1 + x2

) ]
, (6)

where x and y are normalized image coordinates and Z is
the depth of the point.
Using the x-coordinate of the centroid of m tracked points
as feature, the Jacobians for translational velocity (JvP ) and
rotational velocity (JωP ) are given as

JvP = 1
m

m∑
j=1

(
xj

Zj

)
,

JωP = 1
m

m∑
j=1

(
δ
Zj

+ 1 + x2j

)
.

(7)



Neglecting δ w.r.t. Z (depth of the point), Z w.r.t x, and
assuming the camera optical axis is orthogonal to the axis
of robot rotation and that the centroid stays near the image
center, we obtain approximated Jacobians ĴvP and ĴωP as

ĴvP = 0 and ĴωP ' 1 +
1

m

m∑
j=1

(x2j ). (8)

Since we only control ωr, only one feature derived from
all line segments and points is sufficient. We combine them
using linear least square to derive rotational velocity.
Let Xa, XN and XNN be the abscissa of the centroid of the
points of intersection of n matched lines and their respective
normal from the origin of Ia, IN and INN respectively. Then,
the error term for the case of line segments is Xa −XN .
Let xa, xn and xnn be the x-coordinate of the centroid of
the tracked points of Ia, IN and INN respectively. Then, the
error term for the case of points is xa − xn.
Combining lines and points together, the expression for the
rotational velocity can be computed from (4), (5) and (8) as

ωr =

[
ĴωL
ĴωP

]+(
λ

[
(Xa −XN )
(xa − xn)

]
+

[
ĴvL
ĴvP

]
vr

)
.

(9)
Since ĴvL and ĴvP are zero (from (5) and (8)), after
simplification, (9) becomes

ωr = −
λ
(
ĴωL(Xa −XN ) + ĴωP (xa − xn)

)
Ĵ2
ωL + Ĵ2

ωP

. (10)

In order to smooth the rapid steering actions when switching
between frames, a feed-forward command is also added to
ωr. The calculation of the feed-forward term is based on
the difference of the centroids between the shared lines and
points of Ia with IN and INN . The final expression for the
rotational velocity can be computed as

ωr = −
λ

(
ĴωL(g1(Xa −XN ) + g2(Xa −XNN ))

+ĴωP (g1(xa − xn) + g2(xa − xnn))

)
Ĵ2
ωL + Ĵ2

ωP

,

(11)
where g1 and g2 are positive weights such that g1+g2 = 1. If
at least one point feature can be tracked from key images to
current view, no singularity can occur in (11) because of (8).
Even in presence of only lines, singularities are rare. In fact
in all our experiments, we never encountered any singularity.

Stability Analysis

In order to assess the stability of the closed-loop visual
servo systems, we will use Lyapunov analysis. We consider
the candidate Lyapunov function (L) defined by the squared
error norm [27] i.e L = 1

2 ‖e(t)‖
2
, whose derivative is given

by
L̇ = eTṡ, (12)

where e =s− s∗. From (3), (4), and (12), we have
L̇ = eT (Jvvr − JωĴ

+
ω (λe+ Ĵvvr)). (13)

On simplification of (13), we have
L̇ = −λeTJωĴ+

ω e− eT (JωĴ
+
ω Ĵv − Jv)vr. (14)

In order to ensure global asymptotic stability, we have to
show L̇ < 0. In (14), the first term is always negative if
JωĴ

+
ω > 0. In second term, Jv (hence Ĵv), which consists

of depth term, can be approximated to zero as shown in (5),
(7-8) and [9]. Therefore, in this case L̇ < 0.
Let JωL and JωP be the true Jacobians, and ĴωL and ĴωP
be the approximated Jacobians related to ωr for lines (that
with subscript L) and points (that with subscript P) features.
From [9], we obtain

JωL = ĴωL+
1

n

n∑
i=1

δ cos θi(λθiρi sin θi − λρi cos θi)), (15)

where λθi and λρi are the functions of (1/di), with di being
the depth of line segment from image plane. From (5) and
(15), we have

JωLĴ
+
ωL = 1+

1
n

n∑
i=1

δ cos θai(λθaiρai sin θai − λρai cos θai)

1
n

n∑
i=1

(cos2 θai − ρ2ai cos(2θai))
.

(16)
Since δ � di, from (16) we have

JωLĴ
+
ωL > 0. (17)

Hence, with (16-17), the global asymptotic stability is guar-
anteed for a feature derived from all the matched lines.
From (7-8) for points only, we have

JωP Ĵ
+
ωP = 1 +

1
m

m∑
j=1

(
δ
Zj

)
1
m

m∑
j=1

(
1 + x2j

) > 0, (18)

since δ � Zj and 1
m

m∑
j=1

(
1 + x2j

)
is close to 1. Hence,

with (18), the global asymptotic stability is guaranteed for
a feature derived from all the matched points.

For the combination of lines and points, we have

JωĴ
+
ω =

[
JωL
JωP

] [
ĴωL
ĴωP

]+
=

1

Ĵ2
ωL + Ĵ2

ωP

[
JωLĴωL JωLĴωP
JωP ĴωL JωP ĴωP

]
≥ 0, (19)

which is positive semi-definite because one of its eigen value
is 0 and other is JωLĴωL + JωP ĴωP > 0 because we are
controlling one degree of freedom with two features in (9).
But we have, Ĵ+

ω Jω = JωLĴωL+JωP ĴωP > 0. Hence, with
Ĵ+
ω Jω > 0, local asymptotic stability can be ensured using

lines and points [27].
Thus, our complete framework uses only 2D information
obtained from line segments and feature points. From this
information, we derive the required rotational velocity using
a IBVS control law, which makes the robot to follow the
learned path successfully without any need of 3D or accurate
mapping and localization.

III. EXPERIMENTAL RESULTS

The experiments in Sects. III-A-III-B were performed with
a Pioneer 3-DX equipped with AVT Pike F-032C camera
module, whereas experiment in Sect. III-C was performed
with the humanoid Pepper. The image resolution in the



experiments was 640×480 pixels. All computations, except
for the low-level control, were performed on a laptop with 3-
GHz Intel Core i7-3540M CPU. The mapping was performed
off-line, whereas the navigation experiment was performed
on-line at 5 Hz. The acquisition of images and the high-level
motion control were done through the interface provided by
ViSP [28]. The image coordinates have been normalized by
the camera intrinsic parameters before deriving the rotational
velocity. The experiments have been performed in an indoor
environment, i.e., inside a room and a corridor. In all our
experiments, we have used g = 0.7, g2 = 0.3, and λ = 1.
Even though the proposed method has been validated in a
simple navigation path with linear and curved trajectories, the
method can be easily extended for graphs with intersections
and multiple paths. The trajectories presented below are
obtained from the odometry of the Pioneer Robot. Since
our navigation is qualitative rather than quantitative, the
odometry obtained from Pioneer 3-DX is highly accurate
enough to serve our purpose.

A. Mapping

During the mapping, the robot was driven manually to
acquire the images. From the acquired images, the key im-
ages were selected automatically from the mapping algorithm
described in Sect. II-C. The number of images acquired and
selected key images in different experiments are presented
in Table I, where n(Acq.) represents the total number of
acquired images and n(Ref.) represents the total number
of key images selected. The trajectory obtained from the
odometry is shown by a red curve in Figs. 4, 6, 7, 8, and
9, where the red symbol ∗ represents the location of the key
images. There are more key images over a small distance in
case of quick displacements of features like during turnings
or when line segments and points cannot be successively
matched/tracked over the sequence because of, e.g., changes
in the illumination.

Experiment n(Acq.) n(Ref.)

I Inside Robotics room 1260 19
II Room-Corridor-Robotics room 4555 105
III Robotics Room-Corridor 4100 52
IV Corridor Out-In 10297 132
V Corridor In1 7021 140
VI Corridor In2 6530 122

TABLE I: Table showing the number of acquired images and
selected key images in the different experimental scenarios.

B. Navigation

The robot was placed inside the mapped environment with
the camera facing towards the mapped direction (initial
position shown by green dot). The forward velocity was set
to 0.15m/s and reduced to 0.08m/s when turning, whereas the
rotational velocity was controlled by the navigation algorithm
(11). Such turnings are automatically detected by observing
the commanded rotational velocity. During navigation, the
robot has been able to follow the learned trajectory as shown

by the blue curve in Fig. 4, and Figs. 6-9, where green dot
( ) represents the starting location.

1) Navigation inside the robotics room: The navigation
has been performed with some changes in environment,
for instance the chair and table have been added to the
environment after the mapping phase. Besides, the chair was
moving from one point to another and a person was walking
during the navigation. These changes can be clearly seen in
Fig. 4 (middle and right). Fig. 4 (left) shows the successful
navigation of the Pioneer in the environment despite the
various changes. After turning, the majority of lines detected
and matched only belong to the floor. But thanks to the
points, the robot was able to obtain features from the walls
and from other objects. With more and better distribution
of obtained features from points and lines, the motion was
smoother especially after turning, which was not the case
using line segments only (refer Fig 5).

Fig. 4: Navigation inside the robotics room (left), some key images
(middle), and some changes in environment during navigation
(right).

Fig. 5: Rotational velocity input with line segments only in the
same environment as in Fig. 4

2) Navigation from a room to another room via a cor-
ridor: The navigation between rooms via a corridor is
shown in Fig. 6. The robot followed the learned path of
22m with turnings whenever it was required. Right angle
turning, especially the second one (in the corridor), was a
challenging task. This turning was very difficult using line
segments only because of few lines matched and illumination
conditions, which were not always sufficient to get a large
enough rotational velocity for this sharp turning. However,
together with the points, the number of features in this
region increased significantly, which allowed the system to
be successful during the sharp turning. The lateral drift was
within 5 cm from the mapped position, thus confirming the
accuracy of the visual servoing control law.



Fig. 6: Navigation between the rooms via corridor (left), some key
images (middle), and some images during navigation (right).

3) Navigation from a room to the corridor: In this case,
we performed the navigation in the 23m path that starts
from the robotics room and navigates into the corridor.
The path consists of multiple turns and different levels of
illumination as shown in Fig. 7. Even in presence of moving
people and objects, the robot was able to follow the learned
trajectory. With the addition of point features, the motion was
relatively smooth because of the increased number and better
distribution of features to compute the rotational velocity.

Fig. 7: Navigation in between the room and the corridor (left), some
key images (middle), and some images during navigation (right).

4) Navigation in a corridor (Out-In): In this case, we
performed the navigation of 47m in a corridor (mapped
length is 51m). The beginning of the navigation zone consists
of large windows that allow seeing outdoor. So, the robot
undergoes large changes in the illumination in the mapped
path as we enter inside the corridor. Also, there are two small
inclined planes in the path. Even in presence of changing
lightning condition (cloudy when mapped and sunny during
navigation) and walking people, the robot was able to follow
the learned trajectory as shown in Fig. 8. Especially due to

illumination change, the number of lines matched decreased.
However, the addition of point features allowed for a smooth
navigation. For this experiment we started the robot 4m in
front the mapped location. The robot successfully navigated
the remaining path by automatically selecting the initial key
images, thanks to the initial localization.

Fig. 8: Navigation in the corridor (left), some key images (middle),
and some images during navigation (right).

5) Navigation in indoor corridor (In1, In2): Here, we
performed navigation in two corridors that are completely
indoor. The corridors have shiny floor and walls are mostly
white. The illumination in first corridor (In1, length 32m)
totally depends upon the bulbs on the top of the ceilings
where as in second corridor (In2, length 34m) there is also
light from outside. Navigation in both cases were difficult
using line segments only because of the type of surface of
walls, very few line segments can be detected and matched
in some regions and in turnings. With lines only as in [9] or
points only as in [6], navigation was not successful. Using
points in addition to lines, more number of features are
present which makes it possible for successful navigation
as shown in Fig. 9.

C. Navigation with the humanoid robot Pepper

Here, we performed a simple experiment to validate our
approach in more sophisticated platform like Pepper. Pepper,

Fig. 10: Humanoid Robot Pepper.

as shown in Fig. 10, is a humanoid robot developed by
SoftBank Robotics [29]. It consists of two High Definition
2D cameras at its head and three multi-directional wheels that
enables it to move around freely through 360◦. Out of two
cameras, we have used upper camera only because the lower
camera can see the floor only. The images grabbed by Pepper



Fig. 9: Navigation in the corridor : In1 (upper) and In2 (lower).

in VGA resolution is send to laptop by Wifi for processing.
With wheel base, and one camera keeping head pitch and
roll angle constant, the control scheme as discussed in Sect.
II-F can be used as motion control. Therefore, we control the
rotational velocity of Pepper using (11) via NaoQi API [29].
The navigation environment is represented by 12 keyframes
as shown in Fig. 11. Some images during navigation are
shown in Fig. 12. Despite the changes in the navigation
environment from mapping one that are clearly seen in Figs.
11-12, Pepper is able to navigate inside the room.

D. Discussion

The presented results show the viability of our approach
in different scenarios and constraints. The robot has been
able to follow autonomously the learned path from the start
position. Our framework does not depend upon any particular
type of line segment or points but it is just based on generic
lines or points that are detected and matched/tracked from
key images. The key images selected by our approach proved
to be good enough for the navigation. Based upon the line
matching and tracking of the points from neighboring key
frames, the key images are switched automatically and an
appropriate rotational velocity can be computed for allowing
the robot to follow the learned path. The IBVS law has been
able to keep the error within small bounds. The deviation
from the learned path is within the range of 5 cm. We

Fig. 11: Reference Images of Robotics Room.

Fig. 12: Navigation inside Robotics Room.

have also shown that our closed loop control scheme is
asymptotically stable.
Our framework takes advantages from both lines and points.
Line segments are abundant in a structured indoor environ-
ment, and they are also more resilient to motion blur and
partial occlusions. Even if the performance of point features
can degrade in indoor environments, they can still be tracked
locally to some extent, which is sufficient to supplement
the line segments. This then helps in better switching the
key images and in computing the rotational velocity. The
robust sharp turning, smooth motion of the robots, and
successful navigation in wide range of environment are the
consequences of using multiple features. Besides that, the
point tracking and the line matching can be operated in
parallel without any significant increase in the computational
time. We still manage to operate at 5Hz with the improved
performance as in the case of line segments only [9]. How-
ever, our framework has also some limitations that are mainly
due to the line matching and the point tracking algorithm
especially in the cases where very few line segments are
detected in the images and the tracking of points does
not perform well. Initial localization might produce false
results when there are few matches that make the geometrical
verification of matched points/lines not possible. However,



most of above problems can be greatly avoided by selecting
a proper trajectory during the mapping.

IV. CONCLUSIONS
We have presented a framework for indoor qualitative

mapping and navigation based on image memory using a
combination of line segments and points, by expanding our
previous work [9]. Our navigation is exclusively based on
2D image information without relying on any 3D recon-
struction or pose estimation, and also without accurately
tracking the trajectory used in the learning phase. This is
possible because of the topological representation of the
environment and of the robustness of the adopted IBVS
law. We validated our approach with a mobile robot and
the humanoid robot Pepper. Combination of points and
line features increases the number of features in the image
which results in a more robust navigation and smoother
control. Increased number of features plays an important
role especially during sharp turnings where less features
can be detected, which changes rapidly also. We showed
a successful navigation in different indoor scenarios while
being robust to some level of occlusions and blur in the
image, moderate changes in lighting conditions and presence
of new objects in the environment. Difficult situations include
featureless areas like smooth/texture-less walls. Apart for the
initial localization, we have used only the corners detected
by FAST algorithm for the navigation. However, we can
easily incorporate other interest point detectors like SIFT,
SURF, BRISK (Binary Robust Invariant Scalable Keypoints
[30]) etc. in our framework so as to increase its robustness.
Besides, more precise image processing and/or robot control
strategies, like using vehicle kinematics and filtering the
velocity, could be incorporated to overcome uncertainties in
the navigation. Finally, incorporating obstacle avoidance as
in [31] will constitute our future work.

ACKNOWLEDGMENTS
This work has been supported by the Brittany Council and

BPI Romeo 2 project.

REFERENCES

[1] F. Bonin-Font, A. Ortiz, and G. Oliver, “Visual navigation for mobile
robots: A survey,” Journal of Intelligent and Robotic Systems, vol. 53,
no. 3, pp. 263–296, 2008.

[2] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge Univ. Press, ISBN: 0521540518, second ed., 2004.

[3] A. Davison, I. Reid, N. Molton, and O. Stasse, “Monoslam: Real-time
single camera slam,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 29, pp. 1052–1067, June 2007.

[4] A. P. Gee and W. Mayol-Cuevas, “Real-time Model-based SLAM
using Line Segments,” in Proc. of the 2nd. Int. Conf. on Advances
in Visual Computing, pp. 354–363, Springer-Verlag, 2006.

[5] L. Zhang and R. Koch, “Hand-held monocular SLAM based on line
segments,” Int. Machine Vision and Image Processing Conf., vol. 0,
pp. 7–14, 2011.

[6] A. Diosi, S. Segvic, A. Remazeilles, and F. Chaumette, “Experimental
evaluation of autonomous driving based on visual memory and image
based visual servoing,” IEEE Trans. on Intelligent Transportation
Systems, vol. 12, pp. 870–883, Sept. 2011.

[7] S. Segvic, A. Remazeilles, A. Diosi, and F. Chaumette, “A mapping
and localization framework for scalable appearance-based navigation,”
Computer Vision and Image Understanding, vol. 113, pp. 172–187,
2009.

[8] O. Booij, B. Terwijn, Z. Zivkovic, and B. Krose, “Navigation using
an appearance based topological map,” in IEEE Int. Conf. on Robotics
and Automation, pp. 3927–3932, 2007.

[9] S. R. Bista, P. Robuffo Giordano, and F. Chaumette, “Appearance-
based indoor navigation by IBVS using line segments,” IEEE Robotics
and Automation Letters, vol. 1, pp. 423–430, Jan. 2016.

[10] F. Labrosse, “Short and long-range visual navigation using warped
panoramic images,” Robotics and Autonomous Systems, vol. 55, no. 9,
pp. 675 – 684, 2007.

[11] A. Dame and E. Marchand, “Using mutual information for appearance-
based visual path following,” Robotics and Autonomous Systems,
vol. 61, no. 3, pp. 259 – 270, 2013.

[12] S. R. Bista, P. Robuffo Giordano, and F. Chaumette, “Appearance-
based indoor navigation by IBVS using mutual information,” in IEEE
Int. Conf. on Control, Automation, Robotics and Vision, pp. 1–6, 2016.

[13] F. Werner, J. Sitte, and F. Maire, “Visual topological mapping and
localisation using colour histograms,” in IEEE Int. Conf. on Control,
Automation, Robotics and Vision, pp. 341–346, 2008.

[14] J. Kosecka, L. Zhou, P. Barber, and Z. Duric, “Qualitative image based
localization in indoors environments,” in IEEE Computer Society Conf.
on Computer Vision and Pattern Recognition, vol. 2, pp. II–3–II–8
vol.2, 2003.

[15] T. Goedeme, M. Nuttin, T. Tuytelaars, and L. Van Gool, “Omnidirec-
tional vision based topological navigation,” Int. Journal of Computer
Vision, vol. 74, no. 3, pp. 219–236, 2007.

[16] J. Courbon, Y. Mezouar, and P. Martinet, “Indoor navigation of a non-
holonomic mobile robot using a visual memory,” Autonomous Robots,
vol. 25, no. 3, pp. 253–266, 2008.

[17] B. Micusik and H. Wildenauer, “Descriptor free visual indoor local-
ization with line segments,” in IEEE Conf. on Computer Vision and
Pattern Recognition, pp. 3165–3173, 2015.

[18] P. Smith, I. Reid, and A. Davison, “Real-time monocular SLAM with
straight lines,” in Proc. British Machine Vision Conf., pp. 17–26, 2006.

[19] A. Faragasso, G. Oriolo, A. Paolillo, and M. Vendittelli, “Vision-
based corridor navigation for humanoid robots,” in IEEE Int. Conf.
on Robotics and Automation, pp. 3190–3195, 2013.

[20] F. Pasteau, A. Krupa, and M. Babel, “Vision-based assistance for
wheelchair navigation along corridors,” in IEEE Int. Conf. on Robotics
and Automation, pp. 4430–4435, 2014.

[21] R. F. Vassallo, H. J. Schneebeli, and J. Santos-Victor, “Visual servoing
and appearance for navigation,” Robotics and Autonomous Systems,
vol. 31, no. 1, pp. 87–97, 2000.

[22] C. Akinlar and C. Topal, “EDlines: A real-time line segment detector
with a false detection control,” Pattern Recognition Letters, vol. 32,
no. 13, pp. 1633 – 1642, 2011.

[23] L. Zhang and R. Koch, “An efficient and robust line segment matching
approach based on LBD descriptor and pairwise geometric consis-
tency,” Journal of Visual Communication and Image Representation,
vol. 24, no. 7, pp. 794 – 805, 2013.

[24] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (surf),” Computer Vision and Image Understanding, vol. 110,
no. 3, pp. 346–359, 2008.

[25] E. Rosten, R. Porter, and T. Drummond, “Faster and better: A ma-
chine learning approach to corner detection,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 32, pp. 105–119, Jan 2010.

[26] D. Nistér, “An efficient solution to the five-point relative pose prob-
lem,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 26, pp. 756–770, June 2004.

[27] F. Chaumette and S. Hutchinson, “Visual servo control, part i: Ba-
sic approaches,” IEEE Robotics and Automation Magazine, vol. 13,
pp. 82–90, Dec. 2006.

[28] E. Marchand, F. Spindler, and F. Chaumette, “Visp for visual servoing:
a generic software platform with a wide class of robot control skills,”
IEEE Robotics and Automation Magazine, vol. 12, pp. 40–52, Dec.
2005.

[29] Aldebaran Robotics and SoftBank, “Pepper - Documentation.”
http://doc.aldebaran.com/2-4/home pepper.html Accessed: 27-06-17.

[30] S. Leutenegger, M. Chli, and R. Y. Siegwart, “Brisk: Binary robust
invariant scalable keypoints,” in IEEE Int. Conf. on Computer Vision,
pp. 2548–2555, 2011.

[31] A. Cherubini and F. Chaumette, “Visual navigation of a mobile robot
with laser-based collision avoidance,” The Int. Journal of Robotics
Research, vol. 32, pp. 189–205, Feb. 2013.


