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Abstract— This paper proposes an image-based localization
method that enables to estimate a bounded domain of the
pose of an unmanned aerial vehicle (UAV) from uncertain
measurements of known landmarks in the image. The approach
computes a domain that should contain the actual robot pose,
assuming bounded image measurement errors and landmark
position uncertainty. It relies on interval analysis and constraint
propagation techniques to rigorously back-propagate the errors
through the non-linear observation model. Attitude information
from onboard sensors is merged with image observations to
reduce the pose uncertainty domain, along with prediction
based on velocity measurements. As tracking landmarks in the
image is prone to errors, the proposed method also enable
fault detection from measurement inconsistencies. This method
is tested using a quadcopter UAV with an onboard camera.

I. INTRODUCTION

To navigate and accomplish their tasks, robots not only
need to locate themselves with respect to the environment
but also need to have confidence information about their
position. In the case of Unmanned Aerial Vehicles (UAVs),
the standard solution consists in using GPS, INS, barom-
eter or Compass measurements. Yet, this solution is not
appropriate in difficult environment such as, eg, indoors
areas, proximity to large buildings where GPS signals are
blocked or unreliable, or near steel structures that jeopardize
compass readings. Our goal here is to provide a reliable pose
confidence domain; a box in which we are sure the robot is
located. In other words, we wish to compute a “safety area”
around the robot that can be considered by the controller in
order to avoid collisions with other robots or objects present
in the navigation environment.

A lot of commercially available UAVs carry an onboard
video camera, mainly used to provide a visual feedback
to the pilot and to shoot aerial videos. This paper thus
focuses on using an onboard camera in order to enhance the
robot localization. Using a image-based primary positioning
system enables to overcome GPS and compass unreliability
in difficult environments. Image-based visual servoing [1],
[2] is a way to control robots in such environments. In
computer vision, many solutions to pose estimation from
a set of known landmarks (see, eg, [3]–[5] for a survey)
exist but classically provide a punctual estimate of the robot
location. Interval analysis is a powerful tool for rigorous
uncertainty propagation which has been considered GPS
position uncertainty domain computation [6] and for 3-D
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vision application [7].

In this paper, we aim at characterizing a domain that
contains the pose (6-DOF position and attitude) of a robot
equipped with a camera and proprioceptive sensors, by using
interval-based constraints propagation techniques. More pre-
cisely, to quantify the robot pose uncertainty, we propose an
interval-based set-membership approach [8], which computes
over time a bounding box of the pose of the robot, taking
image measurements and landmark positions uncertainties
into account.

The contributions of the paper are:
• computation of a domain containing the robot pose,

assuming bounded-error image measurements of known
landmarks, and fusion with attitude and velocity sensors

• landmark tracking failure detection
This paper is structured as follow: In Section II we will
first give a statement of the pose estimation problem and
show the solutions that already exists in the literature, and a
short recall of how uncertainty can be propagated. Section III
will introduce interval analysis as a tool for bounded-error
set-membership estimation. We will present the proposed
method in Section IV based on the notion of set inversion
and contractors. We will finish this article by presenting the
results obtained with real data obtained from a quadcopter
in Section V.

II. CLASSICAL APPROACHES FOR POSE ESTIMATION

This section is devoted to the description of pose esti-
mation problem which consist in computing the position
and orientation of a calibrated camera with respect to a
given set of correspondences between 3D features and their
projection in the images plane [4], [5]. Firstly, theoretical
aspects of the problem are recalled and linked to robot pose
estimation. Then, a short survey of the existing solutions
to compute a point pose estimate is introduced and finally
classical approaches to quantify uncertainty are reviewed.

A. Problem statement

Considering the movement of a camera in a world (as
depicted in Fig. 1), we can define the camera frame Fc

attached to the camera optical center and the world frame
Fw attached to the origin of a local coordinate system. In
this context, the pose estimation problem rely on determining
the transformation between the frames Fw and Fc. In other
words, determine the position of the camera in the world
frame. Lets denote cTw the transformation from Fw to Fc;
it is defined as follows:



cTw =

(
cRw

ctw
03×1 1

)
(1)

where cRw and ctw are respectively the rotation matrix (de-
pending on the camera’s orientation) and translation vector
that represents the position and attitude of the camera in
the world frame. To solve this problem, the perspective
projection equation of a 3-D point (in the world frame) on
the image frame (a 2-D point) is used. The pinhole camera
model is expressed as follows:

x̄ = K Π cTw
wX (2)

where :
• wX = (X,Y, Z, 1)> the homogeneous coordinates of a

3-D point in the world frame;
• x̄ = (u, v, 1)T are the homogeneous coordinates (in

pixel) of the projection of wX in the image;
• K is the camera intrinsic parameters matrix given by:

K =

 px 0 u0
0 py v0
0 0 1


where px and py are the meter/pixel scale factor and u0
and v0 the image principal point’s coordinates;

• Π is the perspective projection matrix given by:

Π =

 1 0 0 0
0 1 0 0
0 0 1 0



Fig. 1. Perspective projection of an object in the image plane

The intrinsic parameters can be easily obtained through
an off-line calibration step (e.g. [9]). Therefore, when con-
sidering a localization, we shall consider image coordinates
expressed in the normalized metric space x = K−1x̄. Let us
note that we consider here only a pure perspective projection
model but it is clear that any model with distortion can be
easily considered and handled. From now, we will always
consider that the camera is calibrated and that the coordinates
are expressed in the normalized space.

If we have N points wXi, i = 1..N whose coordinates
expressed in Fw are given by wXi = (Xi, Yi, Zi, 1)>, the
projection xi = (xi, yi, 1)> of these points in the image
plane is then given by: xi = Π cTw

wXi. Knowing 2D-3D
point correspondences, xi and wXi, pose estimation consists
in solving the system of equations for cTw. This is an inverse
problem that is known as the Perspective from N Points
problem or PnP (Perspective-n-point).

The problem stated above is the camera pose estimate
while in this article we aim at estimating a robot’s pose. If
we consider a camera mounted on a robot, a third frame has
now to be taken in account which is the robot frame denoted
by Fr. In this case, the problem consists in determining
the transformation rTw that fully defines the position of Fr

in Fw. Knowing cTr from calibration, the world-to-camera
transformation is expressed by cTw = cTr

rTw(q).

B. Solving the PnP

Many solutions exist to solve the PnP problem. As far as
the P3P is concerned, the points depth are first estimated by
solving a fourth order polynomial equation [10]. Once the
three points coordinates are known in the camera frame, the
second step consists in estimating the rigid transformation
cTw that maps the coordinates expressed in the camera frame
to the coordinates expressed in the world frame.

Other PnP (with n > 3) methods exist and are generally
adopted due to the fact that more points increase pose
accuracy. The Direct Linear Transform (DLT) is certainly
the oldest one [4] nevertheless, being over-parameterized,
this solution is very sensitive to noise and a solution that
explicitly considers the non-linear constraints of the system
should be preferred. An alternative and very elegant solution,
which takes these non-linear constraints into account, has
been proposed in [11]. When complexity is of interest, non-
iterative PnP algorithms with a linear complexity have been
proposed. A first accurate O(n) solution to the PnP was
EPnP [12]. Later, other O(n) solutions such as OPnP, GPnP,
UPnP were proposed.

The ”gold-standard” solution to the PnP consists in es-
timating the six parameters of the transformation cTw by
minimizing the norm of the reprojection error using a non-
linear minimization approach such as a Gauss-Newton of
a Levenberg-Marquardt technique. Denoting q ∈ se(3) a
minimal representation of cTw (q = (ctw, θu)> where θ
and u are the angle and the axis of the rotation cRw), the
problem can be formulated as:

q̂ = argmin
q

N∑
i=1

d
(
xi,Π

cTw
wXi

)2
(3)

where d(x,x′) is the Euclidean distance between two points
x and x′. The solution of this problem relies on an iterative
minimization process such as a Gauss-Newton method.

We will see that our approach to pose estimation is very
different and does not rely on the direct computation or
estimation of the pose by solving equation (3).

C. Uncertainties propagation

When estimating the camera or robot pose from im-
age measurements, a common concern is to quantify the
uncertainty of the estimate. Measurements are generally
noisy and/or biased, and the observation model and its
parameters are also tainted with uncertainty. Quantifying
uncertainty usually consists in back-propagating observation
error through the uncertain model to get an estimate of the
uncertainty on the estimated quantity.



Probabilistic approaches are classically considered for this
purpose: simulation-based techniques like Monte Carlo [13]
or importance sampling [14] can deal with a large class
of problems but don’t scale well with problem dimension;
methods based on Taylor series, like first-order second-
moment (FOSM) are well suited when the nonlinearity is
moderate over the range of the considered uncertainties,
which often restricts them to small uncertainties. Other
methods like Karhunen-Loeve expansion can be employed
for a better handling of nonlinearity (see [15] for a more
detailed comparative study of theses methods).

Using probabilistic approaches generally requires prior
knowledge about the error distribution. A common assump-
tion when using FOSM for propagation is that the error
vector follows a centered multivariate normal distribution of
known covariance matrix. In the lack of such information,
the independent and identically distributed errors assumption
is often taken.

Non-probabilistic approaches like interval analysis [16]
or fuzzy theory [17] rely on different representations of
the uncertainty. Interval analysis assumes that the errors are
bounded, and that these bounds are known. It enables to
represent and propagate worst-case uncertainty conditions,
thus providing bounds on the estimation error. The only
assumption made about the error probability distribution is
that its support is bounded.

III. INTERVAL ANALYSIS

This section presents basic concepts and tools of Interval
Analysis, which is a non-probabilistic tool for bounded error
estimation. It puts an emphasis on the use of Contractor
Programming and Set Inversion via Interval Analysis (SIVIA)
to perform set-membership estimation, i.e computing the set
of solutions that are compatible with the measurements and
their uncertainty.

A. Interval Analysis

Interval analysis relates to computations with intervals and
their multidimensional extension which are interval vectors
or boxes. Unlike exact representation of sets, intervals and
boxes are easy to manipulate. The set of real intervals is
denoted IR and the set of n-dimensional boxes is IRn.

Like in [8], in this article we denote an interval or a box
[x] = [x, x] with the bracket notation, where x and x denote
the lower and upper bounds of [x].

The width of an interval [x] is x − x and the width of a
box is the largest width of its interval components.

Interval arithmetic enables computations with intervals
thanks to the interval extension of classical real arithmetic
operators +,−, × and ÷. For non-empty closed intervals,
[x] + [y] = [x+ y, x+ y] and [x]− [y] = [x− y, x− y]. Let
us show an example:
[1, 3] + [0, 5] = [1 + 0, 3 + 5] = [1, 8]
[0, 3]− [0, 3] = [0− 3, 3− 0] = [−3, 3]

Similarly, elementary functions (sin, cos, exp, etc.) can
be extended to intervals. This is done by returning the
smallest interval that covers the range of the input through

the function. The image of a box by a Rn −→ Rm is
generally not itself a box, but an arbitrary set. This is solved
using inclusion functions.

Let [f ], an interval function from IRn to IRm. [f ] is an
inclusion function for f if the image of [x] by f is included
in the image of [x] by [f ], meaning that :

∀[x] ∈ IRn, f([x]) ⊂ [f ]([x]). (4)

If an inclusion function [f∗] for a function f returns the
smallest box that contains f(x) i.e.[f ]([x]) = f([x]), then
this inclusion function is minimal and is the interval hull of
f([x]) [8]. The natural inclusion function for f is obtained
by replacing each operator in the expression of f by its
interval counterpart. If each variable occurs only once in
the expression of f and f is a composition of elementary
functions, then the natural inclusion function is minimal [16].
In this article, we will use this natural inclusion function as
the inclusion function for the nonlinear model.

B. Contractor Programming

When the components of a vector x are linked by relations
or constraints, a Constraint Satisfaction Problem (CSP) can
be defined. It consists in finding the solution set S = {x ∈
[x] | g(x)=0}, where [x] is the domain of the variables and
g(x)=0 represents the constraints. These constraints can also
represent inequalities by introducing slack variables [8].

A contractor is a mapping from IRn to IRn such that
• ∀[x] ∈ IRn, C([x]) ⊆ [x] (contraction)
• (x ∈ [x], C(x) = x)⇒ x ∈ C([x]) (consistency)
• C(x) = ∅ ⇔ (∃ε > 0,∀[x] ⊆ B(x, ε), C([x]) = ∅)

(continuity), where B(x, ε) is the ball centered on x
with radius ε.

As illustrated in Fig. 2, contraction gives a sub-domain of the
input domain [x]. In this figure, the solution set S of points
satisfying the constraint is represented in red, the contraction
of [x] by C1 is represented in dashed.

S [x]

Cmin([x])

C1([x])

Fig. 2. Box before and after contraction

A contractor is minimal if the box resulting from the
contraction is equal to the smallest interval that contains
S ∩ C([x]). In Fig. 2, Cmin([x]) is the minimal contractor
for [x] with respect to the constrain of belonging to S. From
this example, we can see that different contractors can be
defined for a CSP.

The most straightforward way to contract with respect
to numerical constraints is by using the forward-backward
algorithm. HC4 [18] is the classical constraint propagation
loop found in the literature. It allows to contract with respect



to a system of constraints, by propagating constraints in an
optimal order, as shown in the example of Fig. 3.
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C. Set Inversion Via Interval Analysis

Set inversion consists in computing the solution set X =
f−1([y]) = {x|f(x) ∈ [y]}, i.e the preimage of a box [y]
by an arbitrary function f . The Set Inversion Via Interval
Analysis (SIVIA) algorithm, introduced by Jaulin et al.
in [8], employs a branch and bound strategy to approximate
the solution set by a subpaving of an initial search domain.
A subpaving is the union of non-overlapping and non-empty
subboxes.

Computation of an outer approximation X of the solution
set inside the initial domain [x0] is presented in Alg. 1. The
algorithm starts from an arbitrarily big initial box [x0], and
successively applies contractions and bisections to refine an
outer approximation of solution set. SIVIA uses a working
list of boxes L generally implemented either as a stack for
depth-first solution exploration, or as a queue for breadth-
first computation. The contractor Cf is used to apply the
constraint f(x) ∈ [y] on each box. Each part of the box
that has been discarded by contraction is guaranteed to
be outside of the solution-set. The contractor may return
an empty box if the current box is incompatible with the
measurements. The sharpness of the outer subpaving X
is controlled the parameter ε. Boxes larger that ε after
contraction are bisected and enqueued to be processed again.
The choice of ε is a trade-off between the tightness of the
solution-set approximation and the computation time.

Algorithm 1 OuterSIVIA(in: [x0], Cf , ε)
X := ∅ // empty subpaving
put the box [x0] into the list L
while L is not empty

[x]← get the first box of L
[x]← Cf ([x]) // contract the box
if width([x]) < ε then

X ← X ∪ [x]
else if x 6= ∅ then

([x1], [x2])← bisect([x])
put [x1] in L; put [x2] in L

endif
end
return X

IV. INTERVAL BASED POSE ESTIMATION

To solve the pose estimation problem addressed in Sec-
tion II-A, instead of computing the pose by solving equa-
tion (3), our approach rely on seeking the domain of all the
feasible poses q such that, xi = Π cTw(q)wXi, i = 1..N
according to uncertain 2D-3D point correspondences xi and
wXi. The width of this domain will quantify the uncertainty
on the pose with respect to that of the measurements. To
achieve this goal, we define our problem as a Constraint
Satisfaction Problem (CSP), and then use SIVIA with con-
tractors to characterize the pose uncertainty domain.

A. Pose Estimation from Image measurements

The projection transformation stated in Section II is a
function of the robot’s position in the world frame q. In this
article, we use Euler angle ZY X(φ, θ, ψ) parameterization
for the rotation matrix due to its minimal number of param-
eters to estimate (three) and also its suitability to represent
a domain of angle uncertainty. With thus consider the pose
vector q = (x, y, z, φ, θ, ψ), where φ, θ, ψ are respectively
the roll, pitch and yaw angles.

The projection equation (Eq. 2) and the use of a front
looking camera give rise to 3 constraints associated to each
pair of measurements; making the whole problem to have
3N constraints.
• The two constraints Cproj expresses the correspondence

between the image and world points. Recalling that our
points are represented in homogeneous coordinates, and
the image point coordinates in the normalized vector
space, this constraints can be viewed as the set of robot
states q that verifies the perspective projection relation.
Let

(cX, cY cZ, 1)T = cTr
rTw(q)(X,Y, Z, 1)T (5)

we have,

(u, v, 1)T = K Π(cX, cY cZ, 1)T (6)

where (cX, cY cZ, 1)T are the coordinates of the world
point in the camera frame. Cproj is expressed as follow:

Cproj = {u = pxxi + u0, v = pyyi + v0}

with xi =
cX,
cZ,

, yi =
cY,
cZ,

.

• The constraint Cfront expresses the fact that having
a front-looking camera, all the points in the camera
frame have the cZ, coordinate positive (in other words,
observed points are situated in the front half-space).
This leads to:

Cfront = {cZ,> 0}

Let Ci = {Cproj,i, Cfront,i} be the set of all these con-
straints for the all the image-world pair (xi,

wXi), with
i ∈ 1...N , we can formulate the problem as a CSP H :

H :
(

q ∈ [q],xi ∈ [xi] ,
wXi ∈ [wXi] , {Ci, i ∈ 1...N}

)
,

(7)



where [q] represents prior knowledge of the pose, [xi]
represents bounded-error measurements of the landmarks in
the image, and the width of [wXi] represents the uncertainty
about world coordinates of the landmarks.

B. Pose uncertainty domain computation

To compute the robot pose uncertainty domain, our al-
gorithm takes the static 3D landmarks points present in
the world frame which are visible by the camera, and
their 2D image correspondents given by an image points
features tracker. Considering bounded error measurements,
each image point xi and world point wXi can be represented
as an interval vector, such that xi ∈ [xi] and wXi ∈ [wXi].
The pose solution-set is computed as a subpaving, by using
the OuterSIVIA set-inversion algorithm (Alg. 1). It employs a
forward-backward contractor (HC4) built with the constraints
of Eq. (7). The IBEX C++ library is employed for interval
computations and contractors design.

The initial domain [q0] of the pose before set-inversion
is defined by prior available information. Since horizontal
position is unknown, [x0] and [y0] are set to [−∞,+∞]. The
altitude is given by a barometer altimeter and is therefore
known to belong to an interval [z0] whose width corresponds
to altitude uncertainty. Moreover, the embedded inertial
measurement unit (IMU) provides reliable measurement of
the roll and the pitch thanks to gyro and accelerometers, thus
giving tight intervals for [φ0] and [θ0]. Prior knowledge of
the yaw is unavailable due to the lack of a compass, thus the
initial domain [ψ0] = [−π, π].

C. Prediction between images

As the robot is equipped with linear and rotational ve-
locity sensors, the computed pose domain can be prop-
agated from time to time by integrating the evolution
equation. Assuming bounded measurement errors, measured
velocities are represented by an interval vector [v] =
([vx], [vy], [vz], [ωx], [ωy], [ωz]). The upper (lower) bounds of
the intervals are obtained by adding (subtracting) the sensor
bounded error specification to the measured values.

Prediction then consists in integrating the following differ-
ential inclusion, where f denotes the robot evolution function

q̇ ∈ f(q, [v]).

Guaranteed integration techniques [19] can be employed to
compute the domain of [q](tk+1) starting from the initial
condition q(tk) ∈ [q](tk).

Prediction from epoch to epoch of the pose uncertainty
domain not only enables high-rate continuous positioning
between camera acquisitions, but it also tightens the initial
domain used for SIVIA, thus increasing computation speed.
Figure 4 summarizes the flow of information used for pose
domain computation at successive epochs.

D. Fault detection and restart

A constraint satisfaction problem may have no solution. In
the case of pose estimation, this happens when measurements
are inconsistent, i.e when there is no feasible pose in the

Fig. 4. Estimation and Prediction principle

Fig. 5. Left: UAV in the experiment room. Right: Onboard camera view

initial domain from which the current set of measurements
could be obtained. The result of SIVIA is then an empty
set. Such a situation arises either from modeling errors, un-
derestimation of measurement error bounds, or the presence
of spurious measurements. In real world situation, there is
always a tradeoff when choosing error bounds, as it is not
generally possible to fix a tight error bound that will cover
even rare events.

In our implementation, if the set inversion with image
measurements returns an empty pose domain, a “fault de-
tected” flag is raised, and the next pose estimation will restart
from the initial domain [q0]. Indeed, it is safer to fully restart
estimation after fault detection to avoid propagating possible
previously undetected faults through the prediction.

V. EXPERIMENTAL VALIDATION

This section presents the results of an experimental
trial, conducted with a quadcopter UAV MK-Quadro from
MikroKopter (left image of Fig. V-A). This quadcopter is
equipped with an onboard camera for image acquisition.

A. Experimental setup

Six cubes, whose position is known in the reference
frame are set in the room, for use as landmarks. They
present a 20 cm white square on a face for the purpose of
image tracking. The center of the squares are considered for
landmark coordinates. A Vicon motion capture system tracks
the quadcopter’s pose and the landmarks position.

A 77 seconds flight of the quadcopter has been done,
including takeoff, a 3 m lateral movement and 50° rotation,
returning home and landing, acquiring a total of 545 image
frames. Square landmarks are tracked using a blob tracker,
yielding rather noisy results. The tracking error, computed
with respect to re-projected landmarks using the ground-truth
pose from the motion capture system, is less than 4.5 px for
98% of the measurements. These errors are plotted in Fig. 6.
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Fig. 6. Tracking error

Fig. 7. View of the computed pose subpaving at t=0 s.
Left: projection on the x, y plane. Right: projection on the ψ, y plane.

There are some clearly noticeable spurious measurements of
a few tenths of pixels during the try (see spikes in Fig. 6,
e.g. at t=16 s and t=20 s). These correspond to failures
of the landmark tracking algorithm. Smaller tracking errors
of a few pixels are also present, they are mostly due to
more complicated configurations when the landmarks are not
easily distinguishable from the background.

B. Pose domain computation

The pose domain computation is run over the whole trial.
We set landmark tracking errors bounds to ±4.5 pixels in
the image. This is consistent with 98% of the measurements
as previously explained. Velocity measurement errors bounds
are set to ±0.1 m/s linear and ±0.005 rad/s rotational. Land-
marks positions are known within ±1 mm (Vicon precision).

The pose uncertainty domain subpaving computed from
image measurements at time t=0 s is represented in Fig. 7.
Figure shows x, y plane and ψ, y plane projections of this 6-
dimensional domain. The z, φ, θ components are not shown,
since their bound are set as prior and are not modified during
the set inversion. Indeed, this prior attitude and altitude
information acts as a constraint on x, y and ψ.

Figure 8 presents the results of the pose domain computa-
tion over the whole trial, for the x, y and the ψ components,
and at image measurements epochs. The plotted values are
relative to the ground truth, meaning that 0 is the ground
truth. The blue lines are the upper and lower bounds of the
domain. The sawtooth aspect of the yaw bounds (between
t=30 s and t=40 s) corresponds to epochs when the set
inversion process is not able to reduce the predicted yaw
domain. It can be seen that computed uncertainty domain
for x lies within a radius of ±30 cm, y within approximately
±20 cm and the yaw domain radius corresponds to ±5°.

The center dark line in Fig. 8 represents the midpoint of

TABLE I
COMPARISON OF OUR METHOD AND EKF: HORIZONTAL POSITION AND

YAW ABSOLUTE ERRORS.

Error mean median 95% max
Ours: yaw (deg) 0.45 0.34 1.26 2.21

Ours: 2D horizontal (cm) 3.65 3.15 7.76 11.89
EKF: yaw (deg) 0.64 0.51 1.60 5.03

EKF: 2D horizontal (cm) 5.10 4.33 11.84 28.33

TABLE II
MEAN ERROR AND DOMAIN WIDTH W.R.T HEIGHT MEASUREMENT

UNCERTAINTY

height uncertainty ±1 mm ±1 cm ±5 cm ±10 cm
mean 2D error (cm) 3.65 3.75 4.14 4.43

mean yaw error (deg) 0.45 0.45 0.46 0.50
x domain width (cm) 54.2 55.9 59.8 61.8
y domain width (cm) 40.8 43.0 47.6 49.8

yaw domain width (deg) 10.9 11.3 12.1 12.6

the computed pose domain. It can be used as a point estimate
of the pose. Table I reports horizontal position and yaw error
using this estimate. Results of an Extended Kalman Filter
(EKF) on the same data are also shown for comparison. The
point estimate of our method outperforms the EKF: this is
in part due to the fault detection and restart implemented in
our interval estimate.

There are two important things to notice in these results.
First, there some blanks in the the curves. They correspond
to empty solution sets. An empty solution indicates inconsis-
tency between the measurements, the error bounds and the
model. These empty solutions occur when actual tracking
error in the image is so large that the actual position of the
landmark in the image is no more inside the domain [xi].
Detecting such inconsistencies enable fault detection. Fault
detections are shown in Fig. 9. They clearly correspond to
large tracking errors in Fig. 6. Over the whole trial, 2.6% of
the epochs lead to fault detection (empty set).

The second remark concerns undetected faults. These
missed detections occur when measurements errors are larger
than the specified error bounds, but not enough to cause
inconsistency with other measurements. This may lead to
misleading information, as the computed uncertainty domain
is no more guaranteed to contain the true robot pose in the
missed detection case.

C. Influence of altitude measurements uncertainty

There are various ways to measure altitude for an UAV.
The most common are barometric sensors, ultrasonic range
finders and laser telemeters. As those sensors give different
uncertainties on the altitude measurement, we study in the
sequel how altitude uncertainty affects the computed pose
domain.

The proposed method has been tested with ±1 mm,
±1 cm, ±5 cm and ±10 cm altitude measurement intervals.
The obtained mean pose errors and the mean domain width
of the x, y and ψ components are shown in Table II.
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Fig. 8. Blue: error bounds of the [x], [y] and [ψ] components of the
computed pose domain. These are plotted relative to ground truth, i.e ground
truth is 0.
Black: pose estimation error, using the center of the computed domain
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Fig. 9. Fault detection results

The results in Table II show that reducing uncertainty on
the altitude measurements reduces the size of the computed
pose domain. It can also be seen that not only pose un-
certainty is reduced, but also the midpoint of the domain
becomes a better point estimate. This clearly enlightens the
benefit of a good onboard altitude sensor.

VI. CONCLUSIONS

An interval based set-membership approach to pose esti-
mation has been presented in this paper. It enables to com-
pute a domain that contains the pose of an unmanned aerial
vehicle (UAV), from uncertain bounded-error measurements
of known landmarks in the image. Attitude and altitude
information from onboard sensors are used as additional
constraints on the pose uncertainty domain. Bounded error
speed measurements enable prediction of the pose domain
until the next image measurement epoch.

The proposed method relies on interval analysis and con-
straint propagation techniques to rigorously back-propagate
the errors through the non-linear observation model. While
interval methods provide guaranteed results as long as the
measurement errors bounds are not violated, setting guar-
anteed measurement error bound in practice is generally
impossible or very pessimistic. A fault detection system is
thus implemented, in order to cope with inconsistencies due

to spurious measurements (that do not respect the bounded
error model).

Our method had been tested on a quadcopter flight, with
noisy video tracking of landmarks. Fault detection enabled
to handle tracking errors without returning a misleading pose
domain. The center of the domain is a rather good point pose
estimate, with a mean horizontal position error of less than
4 cm, and performs better than an EKF on the test data.
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