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Abstract

The goal of this paper is to propose a coupling between the execution of an image-based visual servoing task and an active

structure from motion strategy. The core idea is to modify online the camera trajectory in the null-space of the (main)

servoing task for rendering the camera motion ‘more informative’ with respect to the estimation of the 3-D structure.

Consequently, the structure from motion convergence rate and accuracy is maximized during the servoing transient. The

improved structure from motion performance also benefits the servoing execution, since a higher accuracy in the 3-D

parameters involved in the interaction matrix improves the image-based visual servoing convergence by significantly

mitigating the negative effects (instability, loss of feature visibility) of a poor knowledge of the scene structure. Active

maximization of the structure from motion performance results, in general, in a deformed camera trajectory with respect to

what would be obtained with a classical image-based visual servoing: therefore, we also propose an adaptive strategy able

to automatically activate/deactivate the structure from motion optimization as a function of the current level of accuracy in

the estimated 3-D structure. We finally report a thorough experimental validation of the overall approach under different

conditions and case studies. The reported experiments support well the theoretical analysis and clearly show the benefits

of the proposed coupling between visual control and active perception.
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1. Introduction

In many sensor-based robot applications, the state of the

robot with respect to the environment can only be par-

tially retrieved from its onboard sensors. In these situations,

state estimation schemes can be exploited for recovering the

‘missing information’ online, then feeding it to any plan-

ner/motion controller in place of the actual unmeasurable

states. When considering non-trivial cases, however, state

estimation must often cope with the non-linear sensor map-

pings from the observed environment to the sensor space.

The perspective projection performed by cameras is a clas-

sical example in this sense (Ma et al., 2003). Because of

these non-linearities, the estimation convergence and accu-

racy can be strongly affected by the particular trajectory

followed by the robot/sensor which, loosely speaking, must

guarantee a sufficient level of excitation during motion

(Achtelik et al., 2013; Cristofaro and Martinelli, 2010).

In the context of structure from motion (SfM), for exam-

ple, a poor choice of the camera trajectory can make the

3-D scene structure non-observable whatever the employed

estimation strategy (Eudes et al., 2013; Grabe et al., 2013;

Martinelli, 2012; Spica and Robuffo Giordano, 2013).

Trajectories with low information content will also result,

in practice, in inaccurate (or noisy) state estimation. This, in

turn, can degrade the performance of any planner/controller

that needs to generate actions as a function of the recon-

structed states, possibly even leading to failures/instabilities

(De Luca et al., 2008; Malis et al., 2010).

The dependence of the estimation performance on the

robot trajectory and of the control performance on the esti-

mation accuracy, clearly creates a tight coupling between

perception and action: perception should be optimized for

the sake of improving the action execution performance

and the chosen actions should allow maximization of the

information gathered during motion for facilitating the

estimation task (Valente et al., 2012).
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In this respect, the goal of this paper is to propose an

online coupling between action and perception in the con-

text of robot visual control. We consider, in particular,

the class of image-based visual servoing (IBVS) schemes

(Chaumette and Hutchinson, 2006) as a representative

case study. Indeed, besides being a widespread sensor-

based control technique (see e.g. Gans and Hutchinson,

2007; Mahony and Stramigioli, 2012; Tahri and Chaumette,

2005), IBVS is also affected by all the aforementioned

issues. On the one hand, whatever the chosen set of visual

features (e.g. points, lines, planar patches), the associated

interaction matrix always depends on some additional 3-D

parameters not directly measurable from the visual input

(e.g. the depth of a feature point). These parameters must,

then, be approximated or estimated online, via a SfM algo-

rithm, with a sufficient level of accuracy for not degrading

the servoing execution or even incurring in instabilities or

loss of feature visibility (Malis et al., 2010). On the other

hand, the SfM performance is directly affected by the par-

ticular trajectory followed by the camera during the servo-

ing (Martinelli, 2012; Spica and Robuffo Giordano, 2013;

Spica et al., 2014a): the IBVS controller should then be

able to realize the main visual task while, at the same time,

ensuring a sufficient level of information gain for allowing

an accurate state estimation.

In this paper, these objectives are met by investigating the

online coupling between a recently developed framework

for active SfM (Spica et al., 2014a) and the execution of a

standard IBVS task. For this purpose, we exploit and extend

the preliminary results obtained by Spica et al. (2014b):

in particular, the main idea is to project any optimization

of the camera motion (aimed at improving the SfM per-

formance) within the null-space of the considered visual

task in order to not affect the servoing execution. For any

reasonable IBVS application, however, a simple null-space

projection of a camera trajectory optimization turns out to

be ineffective because of a structural lack of redundancy.

Therefore, in order to gain the needed freedom, we suitably

extend the redundancy framework introduced by Marey and

Chaumette (2010) to the case at hand, which requires an

action at the camera acceleration level. In addition, an adap-

tive mechanism is also introduced with the aim of activat-

ing/deactivating online the camera trajectory optimization

as a function of the accuracy of the estimated 3-D struc-

ture for minimizing any ‘distorting’ effect on the camera

motion.

The proposed (adaptive) coupling between active per-

ception and visual control constitutes, in our opinion, an

original contribution with respect to the existing literature.

Other works have already studied how to fuse visual mea-

surements and different metric cues (e.g. camera veloc-

ity/acceleration, observed target velocities and so on) to

estimate the geometry of a scene and/or the camera motion

(see e.g. Chwa et al., 2016; De Luca et al., 2008; Eudes

et al., 2013; Grabe et al., 2013; Martinelli, 2012). Some of

these works also identified and discussed the singularities of

the problem, but without proposing any active control strat-

egy to avoid them. There obviously exists vast literature on

the topic of trajectory optimization for improving the identi-

fication/estimation of some unknown parameters/states (see

e.g. Achtelik et al., 2013; Hollinger and Sukhatme, 2014;

Miller et al., 2016; Wilson et al., 2014). In the context of

SfM, the so-called next best view (NBV) problem has also

been addressed before, see Chen et al. (2011); Whaite and

Ferrie (1997) for a classical work and a recent survey on this

topic. However, many of these strategies are meant for an

offline use (a whole trajectory is planned, executed and then

possibly re-planned based on the obtained results), and, in

any case, do not take into account the online realization of

a visual task concurrently to the optimization of the estima-

tion. At the other end of the spectrum, several works have

already investigated how to plug the online estimation of the

3-D structure into a visual servoing loop, see, e.g. Chesi and

Hashimoto (2004); Corke (2010); De Luca et al. (2008);

Fujita et al. (2007); Mahony and Stramigioli (2012); Malis

et al. (2009); Mebarki et al. (2015); Petiteville et al. (2010).

In all of these works, however, the SfM scheme is just fed

with the camera trajectory generated by the IBVS controller

which, on the other hand, has no guarantee of generating a

sufficient level of excitation with respect to the estimation

task.

With respect to this previous literature, our work pro-

vides, instead, an online solution to the problem of concur-

rently optimizing the execution of a IBVS task (visual con-

trol) and the performance of the 3-D structure estimation

(active perception). We also wish to stress that the proposed

machinery is not restricted to the sole class of IBVS prob-

lems presented in this paper: indeed, one can easily gener-

alize the reported ideas to other servoing tasks (e.g. exploit-

ing different discrete/dense/geometric visual features than

those considered in this work), or apply them to pose-based

visual servoing (PBVS) schemes.

The rest of the paper is organized as follows: Sec-

tion 2 describes the theoretical setting of the paper and

summarizes the active SfM framework presented in Spica

and Robuffo Giordano (2013). Then, Section 3 details the

machinery needed for coupling IBVS execution and opti-

mization of the 3-D structure estimation. The proposed

machinery is then validated in Section 4 via a number of

experiments. Subsequently, Section 5 introduces an exten-

sion of the strategy detailed in Section 3 for allowing

a smooth activation/deactivation of the camera trajectory

optimization as a function of the current estimation accu-

racy. This extension is experimentally validated in Sec-

tion 6. Finally, Section 7 concludes the paper and proposes

some possible future directions.

2. Problem description

2.1. Image-based visual servoing

Consider a moving camera that measures a set of visual fea-

tures s ∈ R
m (e.g. the x and y coordinates of a point feature)
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to be regulated at a desired constant value s∗. As is well-

known (Chaumette and Hutchinson, 2006), the following

relationship holds

ṡ = Ls( s, χ ) u (1)

where Ls ∈ R
m×6 is the interaction matrix of the consid-

ered visual features, χ ∈ R
p is a vector of unmeasurable

3-D quantities associated to s (e.g. the depth Z for a point

feature) and u =( v, ω) ∈ R
6 is the camera linear/angular

velocity expressed in the camera frame. By defining e =

s − s∗ as the visual error vector, one also has ė = Lsu.

If the camera/robot system is redundant with respect to

the visual task (rank( Ls) < 6), a control law that exponen-

tially regulates e( t) → 0 can be obtained by solving the

following quadratic optimization problem

min
u

1

2
‖u − r‖2

s.t. Lsu = −λe

(2)

where r ∈ R
6 represents, in general, the gradient of some

suitable scalar cost function representative of secondary

objectives. As is well-known, the resolution of equation (2)

results in the following control law

u = −λL†
s e+( I6 − L†

s Ls) r = −λL†
s e + Pr, λ > 0 (3)

where L†
s denotes the Moore–Penrose pseudoinverse of

matrix Ls and P =( I6 − L†
s Ls) ∈ R

6×6 is used to project the

action of r in the null-space of the main visual task so that

‖u − r‖ is minimized while not perturbing the achievement

of the main task (Siciliano et al., 2009).

Any implementation of equation (3) (or variants) must

deal with the lack of a direct measurement of vector χ .

A common workaround is to replace the exact interaction

matrix Ls( s, χ) with an estimation L̂s = Ls( s, χ̂ ) evaluated

on some approximation χ̂ of the unknown true vector χ . In

this approximated case, assuming for simplicity r ≡ 0, the

closed-loop error dynamics, becomes

ė = −λLsL̂
†

s e (4)

and stability is determined by the eigenvalues of the matrix

Ls( s, χ ) Ls( s, χ̂ )† (Malis and Chaumette, 2002).

Special approximations, such as χ̂ = χ∗ = const, where

χ∗ is the value of χ at the desired pose, can, at best,

only guarantee local stability in a neighborhood of s∗ (see

Chaumette and Hutchinson, 2006) and, in any case, require

some prior knowledge on the scene (the value of χ∗ must be

obtained independently from the execution of the servoing

task). Additionally, estimations of the final χ∗ that are too

rough (or other approximation choices for χ̂) may result in

a poor, or even unstable, closed-loop behavior for the ser-

voing (see Malis et al., 2010 and the illustrative example

in Section 4.3).

In this context, the use of an incremental estimation

scheme, able to generate online a converging χ̂ ( t) → χ( t)

from (ideally) any initial approximation χ̂ ( t0), can repre-

sent an effective alternative. Indeed, such a scheme can

improve the servoing execution by approximating the ideal

control law given by equation (3) also when far from

the desired pose and without needing special assump-

tions/approximations of χ since, as χ̂( t) →χ ( t), one obvi-

ously has L̂s → Ls.

Other factors (e.g. estimation gains) being equal, the con-

vergence rate of a SfM scheme is mainly affected by the par-

ticular trajectory followed by the camera with respect to the

observed scene, with some trajectories being more infor-

mative/exciting than other ones. Therefore, the IBVS con-

troller should select (online) the ‘most informative’ camera

trajectory, among all the possible ones solving the visual

task, for obtaining the fastest possible SfM convergence

during the servoing transient. Section 3 will detail how to

attain this goal.

2.2. Active structure from motion

Excluding degenerate cases (e.g. when a line projects on a

single point or a circle projects on a segment, and so on),

the dynamics of any image-based visual feature vector s

in equation (1) can always be expanded linearly with respect

to the unknown vector χ as follows (see Chaumette, 2004;

Espiau et al., 1992)

ṡ = f m( s, ω) +�T ( s, v) χ (5)

where vector f m( s, ω) ∈ R
m and matrix �( s, v) ∈ R

p×m

are functions of known quantities. As for vector χ , since its

dynamics depends on the particular geometry of the scene,

no special structure is assumed apart from a generic smooth

dependence on the system states and inputs, i.e.

χ̇ = f u( s, χ , u) (6)

Owing to the linearity of equation (5) with respect to χ ,

the sensitivity of the feature dynamics with respect to the

unknown χ is ∂ ṡ/∂χ = �T ( s, v), that is, a function of

only known quantities (the measured s and the ‘control vec-

tor’ v). Therefore, it is possible to act on v in order to

increase the conditioning of the ‘sensitivity’ �T ( s, v) dur-

ing the camera motion. This insight has been exploited by

Spica et al. (2014a) for proposing an active SfM scheme,

built upon the dynamics given by equations (5) and (6), and

yielding an estimation error with an assignable convergence

rate. The machinery of Spica et al. (2014a) is here briefly

summarized.

Let ( ŝ , χ̂ ) ∈ R
m+p be an estimation of ( s , χ ), and define

ξ = s − ŝ as the ‘prediction error’ and z = χ − χ̂ as the

3-D structure estimation error. An estimation scheme for

the system given by equations (5) and (6), meant to recover

the unmeasurable χ( t) from the measured s( t) and known

u( t), can be devised as

{

˙̂s = f m( s, ω) +�T ( s, v) χ̂ + Hξ
˙̂χ = f u( s, χ̂ , u) +α�( s, v) ξ

(7)
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where H > 0 and α > 0 are suitable gains.

By coupling observer equation (7) to equations (5) and

(6), one obtains the following error dynamics

{

ξ̇ = −Hξ + �T ( s, v) z

ż = −α�( s, v) ξ + g( z, t)
(8)

with g( z, t) = f u( s, χ , u) −f u( s, χ̂ , u) being a vanishing

perturbation term (g( z, t) → 0 as z( t) → 0). As discussed

by Spica et al. (2014a), the error system given by equa-

tion (8) can be proven to be semi-globally exponentially sta-

ble provided the p×p square matrix ��T remains full rank

during motion (therefore, the availability of m ≥ p inde-

pendent measurements is needed). Furthermore, the unper-

turbed version of equation (8) (i.e. with g = 0) enjoys a

port-Hamiltonian structure with the associated Hamiltonian

(storage function)

H( ξ , z) =
1

2
ξTξ +

1

2α
zT z (9)

These facts will be important for the developments of

Section 5.

Following Spica et al. (2014a), the transient response of

the SfM estimation error z( t) = χ( t) −χ̂ ( t) can be exactly

characterized and affected by acting online on the cam-

era linear velocity v. Indeed, the convergence rate of z( t)

is determined by the norm of the square matrix α��T

(in particular by its smallest eigenvalue ασ 2
1 ) which plays

the role of an observability measure for the system given

by equations (5) and (6). For a given choice of gain α (a

free parameter), the larger σ 2
1 the faster the error conver-

gence with, in particular, σ 2
1 = 0 if v = 0 (as is well-known,

only a translating camera can estimate the scene structure).

Since � = �( s, v), one also has σ 2
1 = σ 2

1 ( s, v) and

˙( σ 2
1 ) = Jσv v̇ + Jσs ṡ (10)

where the Jacobian matrices Jσv =
∂σ 2

1
∂v

∈ R
1×3 and

Jσs =
∂σ 2

1
∂s

∈ R
1×m have a closed form expression func-

tion of ( s, v) (again, known quantities). It is then possible

to exploit the relationship given by equation (10) for affect-

ing online σ 2
1 ( t) during motion in order to, e.g. maximize

its value and, as a consequence, increase the convergence

rate of the estimation error z( t).

To conclude, we detail the above machinery for the par-

ticular case of point features considered in this paper. Let

s = p =( x, y) =( X/Z, Y/Z) be the perspective projection

of a 3-D point ( X , Y , Z) and thus, χ = 1/Z with m = 2

and p = 1 (note that m > p as required). From the work by

Spica et al. (2014a) we have











σ 2
1 = ��T =( xvz − vx)2 +( yvz − vy)2

Jσv = 2
[

vx − xvz vy − yvz (xvz − vx) x +
(

yvz − vy

)

y
]

Jσs = 2
[

( xvz − vx) vz ( yvz − vy) vz

]

(11)

3. Plugging active sensing in image-based

visual servoing schemes

In the redundant case, the execution of a servoing task

can be naturally coupled with (concurrent) optimization of

the estimation of vector χ by exploiting vector r in equa-

tion (3) for projecting any action aimed at maximizing σ 2
1

in the null-space of the visual task. Equation (10) shows that

the optimization of σ 2
1 ( t) requires an action at the camera

acceleration level. In particular, since

∇uσ
2
1 =

[

JT
σv

0

]

(12)

local maximization of σ 2
1 can be achieved by just following

its positive gradient via a camera acceleration vector

u̇σ =

[

kσ JT
σv

0

]

, kσ > 0 (13)

Being ė = Lsu and thus, ë = Lsu̇ + L̇su, and by

formulating an optimization problem analogous to equa-

tion (2) (Siciliano et al., 2009), one can show that the

second-order/acceleration level counterpart of the classical

law equation (3) for regulating the error vector e( t) to 0 is

simply

u̇ = u̇e = L†
s ( −kvė − kpe − L̇su) +Pr (14)

with kp > 0 and kv > 0. Therefore, by setting r = u̇σ

in equation (14), one would obtain the desired maximiza-

tion of σ 2
1 (i.e. of the convergence rate of the 3-D estima-

tion error) concurrently to the execution of the main visual

task. This straightforward strategy, although appealing for

its simplicity, is unfortunately not viable in most practi-

cal situations because of the structural lack of redundancy

for implementing the action given by equation (13) (or any

equivalent one) in equation (14). Indeed, in most visual ser-

voing applications, the feature set s is purposely designed

to constrain all the camera degrees-of-freedom (DOFs, i.e.

rank( Ls) = 6) and, as a consequence, no optimization of the

camera linear velocity v can be performed via the null-space

projector operator P. This fundamental limitation motivates

the development of the alternative strategy presented in the

following section.

3.1. Second-order visual servoing using a large

projection operator

An alternative control strategy, able to circumvent the

redundancy limitations discussed above, can be devised by

suitably exploiting the redundancy framework originally

proposed by Marey and Chaumette (2010). In this work, it

is shown how regulation of the full visual error vector e (a

m-dimensional task) can be replaced by the regulation of its

norm ‖e‖ (a 1-dimensional task). This manipulation results

in a null-space of (maximal) dimension 6 − 1 = 5 avail-

able for additional optimizations. The machinery presented
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in Marey and Chaumette (2010) (at the first order) can be

exploited as follows: letting ν = ‖e‖, we have

ν̇ =
eT ė

‖e‖
=

eT Ls

‖e‖
u = Lνu, Lν ∈ R

1×6

and, at second-order

ν̈ = Lν u̇ + L̇νu

Regulation of ν( t) → 0 can then be achieved by the fol-

lowing control law analogous to equation (14)

u̇ = u̇ν = L†
ν( −kvν̇ − kpν − L̇νu) +Pνr (15)

with kp > 0, kv > 0

L†
ν =

‖e‖

eT LsL
T
s e

LT
s e

and

Pν = I6 −
LT

s eeT Ls

eT LsL
T
s e

being the null-space projection operator of the error norm

with rank 6 − 1 = 5 (see Marey and Chaumette, 2010).

By implementing the controller given by equation (15) in

place of equation (14) one can still obtain regulation of the

whole visual task error since, obviously, ν( t) = ‖e( t) ‖ →

0 implies e( t) → 0. However, contrarily to equation (14),

the new null-space projector Pν allows implementation of

a broader range of optimization actions including equa-

tion (13) or equivalent ones.

On the other hand, a shortcoming of equation (15) with

respect to equation (14) is that the interaction matrix Lν

is singular for ‖e‖ = 0 and, consequently, the projection

matrix Pν and the pseudoinverse L†
ν are not well-defined

when the visual task is close to full convergence. As dis-

cussed in the work by Marey and Chaumette (2010), this

singularity can be avoided by switching from the controller

given by equation (15) to the classical law given by equa-

tion (14) when ‖e‖ becomes sufficiently small. Unfortu-

nately, however, the ‘first-order’ switching strategy pro-

posed by Marey and Chaumette (2010) is not directly trans-

posable to the second-order case. Section 3.3 details, there-

fore, a suitable ‘second-order’ approach able to guarantee

a proper switching from equation (15) to the classical law

given by equation (14).

Remark 3.1. Note that equation (15) also suffers from

another singularity occurring when e ∈ ker( LT
s ). This cor-

responds, however, to a local minimum for the servoing

itself, also affecting equation (14): if e ∈ ker( LT
s ), no cam-

era motion can instantaneously realize the task. Therefore,

any ‘local’ control action would be equally affected by this

issue and no simple switching strategy could be employed

in this case. Local minima escaping strategies, such as ran-

dom walks or global optimizations are, on the other hand,

out of the scope of this paper.

Fig. 1. A representative graph of the cost function V( v) in equa-

tion (16) for kσ = 1, kd = 0.2, γ = 0.1, ‖ω‖ = 0 and assuming

σ 2
1 = ‖v‖2. Note the presence of a finite upper bound for V( v) as

desired.

3.2. Optimization of the 3-D reconstruction

As discussed in Section 2.2, the convergence rate of the

3-D estimation error z( t) = χ ( t) −χ̂ ( t) is determined by

the eigenvalue σ 2
1 . To improve the estimation performance,

one could attempt to maximize a cost function of the form

V( u) = kσσ 2
1 ( v). This straightforward solution would

result, however, in an unbounded growth of ‖u‖. Indeed,

σ 2
1 ∝ ‖v‖2 (see equation (11) for the point feature case and

the work by Spica et al., 2014a, 2015 for other examples)

and therefore σ 2
1 can be made arbitrarily large by increasing

‖v‖ – the faster the camera motion, the larger the value of

σ 2
1 .

In order to cope with this issue, it is then necessary to

consider a cost function that allows for a finite upper bound

with respect to ‖v‖. Among the many possible solutions

meeting this requirement, we opted for the following cost

function

V( u) = kσγ log

(

γ + σ 2
1 ( v)

γ

)

−
kd

2
‖u‖2, γ > 0

(16)

for which a representative graph is depicted in Figure 1.

This choice is motivated by considering that σ 2
1 ∝ ‖v‖2

and log( x) = o( g( x) ) for any polynomial function g( x).

Therefore, for sufficiently large velocities (‖v‖ → ∞), the

damping term
kd

2
‖u‖2 will be dominant with respect to the

first term in equation (16), thereby ensuring existence of a

finite upper bound with respect to‖v‖.

Maximization of V( u) is then obtained as best as possible

by plugging the following camera acceleration vector into

vector r in equation (15)

u̇V = ∇uV =
kσγ

γ + σ 2
1

∇uσ
2
1 − kdu (17)

3.3. Second-order switching strategy

As explained in the previous section, the first-order switch-

ing strategy proposed by Marey and Chaumette (2010)

does not simply extend to the second-order case and there-

fore, we now detail a suitable second-order switching strat-

egy meant to avoid the singularity of the controller given

by equation (15) when ν( t) = ‖e( t) ‖ → 0. We start by not-

ing that controller u̇ν in equation (15) imposes the following
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second-order dynamics to the error norm

ν̈ + kvν̇ + kpν = 0 (18)

Define ν‖e‖( t) as the solution of equation (18) for a given

initial condition ( ν( t0) , ν̇( t0) ).

Let now t1 > t0 be the time at which the switch from

the controller given by equation (15) to the classical law u̇e

in equation (14) occurs. For t ≥ t1, controller u̇e under the

assumption rank( Ls) = m yields

ë + kvė + kpe = 0 (19)

If rank( Ls) < m, as in the case studies reported in Section 4,

the ideal behavior given by equation (19) can, in general,

only be approximately imposed.

Let e∗( t) be the solution of equation (19) with initial con-

ditions ( e( t1) , ė( t1) ) and let ν∗( t) = ‖e∗( t) ‖ be the corre-

sponding behavior of the error norm. Ideally, one would like

to have

ν∗( t) ≡ ν‖e‖( t) , ∀t ≥ t1 (20)

In other words, the behavior of the error norm should not be

affected by the control switch at time t1, but ν∗( t) (obtained

from equation (19)) should exactly match the ‘ideal’ evolu-

tion ν‖e‖( t) generated by equation (18) as if no switch had

taken place.

While the condition given by equation (20) is easily sat-

isfied at the first-order (Marey and Chaumette, 2010), this

is not necessarily the case at the second-order level. Indeed,

the following result holds (see Appendix B).

Proposition 3.2. For the second-order error dynamics

given by equations (18) and (19), the condition given

by equation (20) holds if and only if, at the switching time

t1, vectors e( t1) and ė( t1) are parallel.

It is then necessary to introduce an intermediate phase,

before the switch, during which any component of ė orthog-

onal to e is made negligible. To this end, let

Pe =

(

Im −
eeT

eT e

)

∈ R
m×m

be the null-space projector spanning the ( m − 1)-

dimensional space orthogonal to vector e. Let also

δ = Peė = PeLsu (21)

The scalar quantity δTδ ≥ 0 provides a measure of the mis-

alignment among the directions of vectors e and ė (δTδ = 0

if and only if e and ė are parallel, ∀e 6= 0, ė 6= 0). One can

then minimize δTδ compatibly with the main task (regula-

tion of the error norm) by choosing vector r in equation (15)

as

u̇δ = −kδ∇u

(

δTδ

2

)

= −kδLT
s PeLsu = −kδJT

δ (22)

where J δ = uT LT
s PeLs and the properties Pe = PT

e = PePe

were used.

Fig. 2. Flowchart representation of the switching strategy.

A possible switching strategy, shown in the flowchart in

Figure 2, consists of the following three different control

phases:

1. Apply the norm controller u̇ν given in equation (15)

with the null-space vector r defined in equation (17) as

long as ν( t) ≥ νT , with νT > 0 being a suitable thresh-

old on the error norm. During this phase, the error norm

will be governed by the closed-loop dynamics given

by equation (18) and the convergence rate in estimating

χ̂ will be maximized thanks to equation (17).

2. When ν( t) = νT , keep applying controller u̇ν , but

replace equation (17) with equation (22) in vector r.

Stay in this phase as long as some terminal condition

on the minimization of δTδ is reached. In our case,

we opted for a threshold δT on the minimum norm of

vector ‖PνJT
δ ‖ as an indication of when no further min-

imization of δTδ is possible in the null-space of the

error norm. Note also that, during this second phase,

ν( t) keeps being governed by the closed-loop dynamics

given by equation (18) since r acts in the null-space of

the error norm (i.e. no distorting effect is produced on

the behavior of ν( t) by the change in r).

3. When δTδ has been minimized, switch to the classical

controller u̇e given in equation (14) until completion of

the task. The minimization of δTδ will ensure a smooth

switch as per Proposition 3.2 (and as also demonstrated

by the experimental results of Sections 4 and 6).

Remark 3.3. We stress again that the main benefit of the

proposed switching strategy is to guarantee a monotonic

decrease of the error norm ν( t) during all phases, in par-

ticular when switching from the norm controller (15) to the
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classical controller (14). Such a monotonic decrease would

not be granted, in general, without a specific action (phase

2) in the flowchart). Guaranteeing a monotonic decrease

of the error norm in all conditions is particularly relevant

for, e.g. ensuring that the features do not leave the camera

field of view (FOV)(since their location will keep on con-

verging towards their desired value) and, in general, avoid

erratic behaviors of the features on the image plane (that

can ease the actual tracking/segmentation of the features

themselves).

3.4. Final considerations

We remark that the proposed scheme (active SfM given

by equation (7) coupled to the second-order visual servoing

given by (14–15), null-space terms given by (17–22) and

associated switching strategy of Figure 2) only requires, as

measured quantities, the visual features s and the camera

linear/angular velocity u =( v, ω). Indeed from the esti-

mated χ̂ , a (possibly approximated) evaluation of all the

other quantities entering the various steps of the second-

order control strategy can be obtained from ( s, χ̂ ) and u

(the only ‘velocity’ information actually needed). We also

note that the level of approximation is clearly a monotonic

function of ‖χ − χ̂‖ (i.e. the uncertainty in knowing χ ):

thus, all quantities will asymptotically match their real val-

ues as the estimation error z( t) = χ ( t) −χ̂ ( t) converges to

zero (the faster the convergence of z( t), the sooner the ideal

closed-loop behaviors given by equations (18) and (19) will

be realized).

Assuming ‖χ − χ̂‖ is small enough, one can also

address the stability of the strategy in Figure 2 in order

to show that no undesired effects may arise due to the

switching among the different control laws. In particular,

it is easy to show that both quantities ν( t) = ‖e( t) ‖ and

‖ė( t) ‖ keep bounded during motion and ultimately con-

verge towards zero. First of all, we note that during all

phases the error norm ν( t) is governed by the closed-loop

dynamics given by equation (18) imposing an exponential

convergence (with assigned poles). This is obviously the

case in phases 1 and 2 (because of the norm controller

given by equation (15)) and also holds when switching to

phase 3 thanks to the previous optimization action of phase

2 (whose role, as explained, is to enforce the condition given

by equation (20) at the switching). Therefore, the error

norm ν( t) will exponentially converge towards zero during

all phases.

As for ‖ė( t) ‖, the norm controller given by equation (15)

used in phases 1 and 2 guarantees again exponential con-

vergence of ν̇ = ėT e/‖e‖, that is, of the component of ė

along the direction of e. The component of ė orthogonal to

e remains bounded during phase 1 (because of the damping

action embedded in equation (17)) and is afterwards driven

to zero during phase 2 byequation (22) (which, indeed, is

meant to minimize ‖δ‖ = ‖Peė‖). Finally, during phase 3

the closed-loop error behavior is governed by equation (19),

which clearly guarantees an exponential convergence of the

whole vector ė( t).

4. Experimental results

This section reports the results of several experiments

meant to illustrate the approach proposed so far for cou-

pling the execution of a visual servoing task with the con-

current optimization of the 3-D structure estimation. All

experiments were run by making use of a grayscale cam-

era attached to the end-effector of a 6-DOFs Gantry robot.

The camera has a resolution of 640 × 480 px and a fram-

erate of 30 fps. The open-source ViSP library (Marchand

et al., 2005) was used to implement all the image processing

and feature tracking in order to obtain a measurement of the

visual features s at the same frequency. To increase numer-

ical accuracy, the SfM estimator given by equation (7) and

motion controller internal states were updated with a time

step of 1 ms. A simple sample-and-hold filter was then

used for s( t), which is only updated at 30 Hz. Finally, the

commands were sent to the robot at 100 Hz.

As a visual task, we considered the regulation of N = 4

point features pi, with, thus, s =( p1, . . . , pN ) ∈ R
m and

Ls =( Ls1
, . . . , LsN

) ∈ R
m×6, m = 8, with Lsi

being

the standard 2 × 6 interaction matrix for a point feature

(Chaumette and Hutchinson, 2006). We then have χ =

( χ1, . . . , χN ) ∈ R
p, p = 4, where χi = 1/Zi as explained

in Section 2.2. The tracked points were black non-coplanar

dots belonging to the surface of a white cube. A stan-

dard pose estimation algorithm was exploited to obtain the

ground truth value of χ( t) from the known object model

and the measured s( t).

Because of the high contrast between black dots and

white cube surface, the segmentation and tracking of the

N points were easily obtained, at video-rate, via the blob

tracker available in ViSP. Besides easing the image pro-

cessing step, this experimental setting also allowed us to

reproduce (practically) identical initial experimental condi-

tions across the several trials illustrated in the following sec-

tions. The results reported in Section 6.2 will instead resort

to a Lucas–Kanade tracker for segmenting and tracking a

generic set of points lying on a much less structured target

object in order to also show the viability of our method in

more realistic situations.

As for what concerns the optimization of the 3-D recon-

struction, we note that each feature point is characterized by

its own (independent) eigenvalue σ 2
1,i. Optimization of the

estimation of the whole vector χ was then obtained by con-

sidering the average of the N eigenvalues σ 2 = 1
N

∑N
i=1 σ 2

1,i

as quantity to be optimized. Being, obviously

∇uσ
2 =

1

N

N
∑

i=1

[

JT
σvi

0

]
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the acceleration command given by equation (17) was then

simply replaced by

u̇V =
kσγ

γ + σ 2
∇uσ

2 − kdu (23)

during phase) of all the following experiments.

We invite the reader to watch the accompanying video in

Extension 1.

4.1. First set of experiments

In this first set of experiments, we aim to illustrate the ben-

efits arising from the coupling between the execution of a

visual servoing task and concurrent active optimization of

the 3-D structure estimation. To this end, we consider the

following four different cases, all starting from the same

initial conditions.

1. Case 1. The full strategy (three phases) illustrated in

Section 3 and Figure 2 is implemented. The estima-

tor equation (7) is run in parallel to the servoing task

for generating the estimated χ̂( t) fed to all the various

control terms. The active optimization of the camera

motion given by equation (23) takes place for the whole

duration of phase 1.

2. Case 2. The classical control law given by equation (14)

is implemented. The estimator equation (7) is still run

in parallel to the servoing task, but no optimization of

the estimation error convergence is performed.

3. Case 3. The classical control law given by equation (14)

is again implemented, but the estimator equation (7)

is not run. Vector χ̂ ( t) is, instead, taken as χ̂ ( t) =

χ∗ = const, as customary in many visual servoing

applications.

4. Case 4. The classical control law given by equation (14)

is again implemented, but by exploiting knowledge of

the ground truth value χ̂( t) = χ ( t) during the whole

servoing execution. This case, then, represents the

‘ideal’ behavior one could obtain if χ ( t) were available

from direct measurement.

The following gains and thresholds were used in the

experiments: α = 2000 in equation (7), kp = 0.0225 and

kv = 0.3 in equations (14) and (15). Moreover, only for

case 1, we used kσ = 20, γ = 0.001 and kd = 18 in equa-

tion (23), νT = 0.21 and δT = 0.004 in the flowchart of Fig-

ure 2 and finally kδ = 100 in equation (22). Furthermore, in

cases 1 and 2, vector χ̂ was initialized as χ̂( t0) = χ∗, that

is, starting from the (assumed known) value at the desired

pose χ∗ also exploited in case 3.

Let us first focus on Figure 3(b), showing the evolution

of the estimation error norm ‖z( t) ‖ = ‖χ ( t) −χ̂ ( t) ‖ for

the four cases. From the plots one can note how the use of

the observer given by equation (7), in cases 1 and 2 (blue

and red lines respectively), makes it possible for the esti-

mation/approximation error ‖z( t) ‖ to converge faster than

in case 3 (green line), where convergence is reached only

Fig. 3. First set of experiments. (a) behavior of the error norm

ν( t) for case 1 (blue), case 2 (red), case 3 (green) and case 4

(dashed black). (b) behavior of the norm of the approximation

error ‖z( t) ‖ = ‖χ ( t) −χ̂ ( t) ‖ with the same color code. (c)

behavior of σ 2( t) when actively optimizing the camera motion

(case 1 – blue line) or not performing any optimization (case 2 –

red line). In the previous plots, the (practically coincident) vertical

dashed blue lines represent the switching times between the vari-

ous control phases used in case 1. (d) 3-D camera trajectory during

case 1 with arrows representing the camera optical axis and square

and circular markers representing the camera initial and final poses

respectively. The three phases of Section 3.3 are denoted by the

following color code: blue – phase 1, red – phase 2 and green

– phase 3. (e) trajectory of the four point features in the image

plane during case 1 using the same color code, and with crosses

indicating the desired feature positions. Superimposed, the initial

and final camera images. Finally, solid lines represent the result of

implementing phase 2, while dashed lines represent the effects of

a direct switch from phase 1 to phase 3.

at the end of the task, when χ( t) → χ̂ = χ∗ (as obvious).

Furthermore, the convergence time of ‖z( t) ‖ is almost three

times shorter in case 1 (blue line) than in case 2 (red line).

Indeed, ‖z( t) ‖ becomes smaller than 5% of its initial value

after about 3.5 s in case 1 with respect to 10.2 s in case 2.

This improvement is due to the active optimization of the

SfM occurring, during phase 1 of case 1, under the action
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of equation (23). Indeed, looking at Figure 3(c), one can

note how the value of σ 2( t) of case 1 (blue line) is approx-

imately 4 times larger than in case 2 (red line) during the

entire phase 1.

The fast convergence of ‖z( t) ‖ → 0 also translates into a

fast accurate evaluation of the interaction matrix L̂s and any

related quantity. Indeed, from Figure 3(a), one can notice

that the behavior of ν( t) for case 1 (blue line):

(a) quickly reaches a good match with the ideal behavior of

case 4 (dashed black line);

(b) more importantly, keeps monotonically decreasing dur-

ing all the various phases.

On the other hand, due to the larger error in estimating χ( t)

(and hence, evaluating L̂s), both cases 2 (red line) and 3

(green line) present an initial increase of the error norm

ν( t). It is worth noting how this initial divergent phase has,

nevertheless, a shorter duration for case 2 with respect to

case 3 thanks, again, to the use of observer (7).

The camera trajectory, depicted in Figure 3(d), is also

helpful for better understanding the effects of active opti-

mization of the camera motion during phase 1 of case 1.

Note, indeed, how the camera initially moves along an

approximately circular path (blue line) because of the

null-space term given by (23) that generates an ‘excit-

ing’ motion for the estimation of the four point depths

Zi. It is also possible to, again, appreciate the bene-

fits of having employed the norm controller (15) during

phase 1: indeed, it is only thanks to the large redundancy

granted by controller (15) that the camera is made able

to follow a quite ‘unusual’ trajectory while, at the same

time, ensuring a convergent behavior for the error norm

ν( t). For completeness, the red line in Figure 3(d) rep-

resents (the quite short) phase 2 of the switching strat-

egy (i.e. the alignment among vectors e and ė), while the

green line represents phase 3, i.e. the use of the classical

controller (14).

As a supplementary evaluation of the theoretical analysis

of Section 3.3, we now report, for case 1 only, an additional

experiment aimed at assessing the importance of having

introduced phase 2 in the switching strategy of Section 3.3

(i.e. of having enforced the alignment of e and ė before

switching to the classical controller given by equation (14)).

To this end, Figure 4(a) shows the behavior of the error

norm ν( t) for the previous case 1 (blue line) together with

the behavior of ν( t) when not implementing phase 2 but,

instead, directly switching from phase 1 to phase 3 (cyan

line). The two (almost coincident) blue vertical lines repre-

sent the switch from phase 1 to phase 2 and then phase 3

for the first experiment, and the direct switch from phase 1

to phase 3 for the second experiment. One can note how, in

the second experiment, the error norm ν( t) has a large over-

shoot when switching to phase 3 because of the misalign-

ment of vectors e and ė at the switching time. This overshoot

Fig. 4. Regulation of four point features. Behavior of the error

norm ν( t) (a) and of ‖δ‖, the measure of misalignment between

vectors e and ė (b). In both plots, the blue lines represent the

behavior of case 1 (full implementation of the switching strategy

of Section 3.3), while cyan lines represent the direct switch from

phase 1 to phase 3 without the action of vector r in equation (22).

The small picture-in-picture plots provide a zoomed view of the

switching phase.

is instead clearly not present in the first experiment where

ν( t) keeps converging during all phases.

A similar overshoot can be observed in Figure 3(e),

where the point feature trajectories on the image, with

phase 2 activated (solid lines) and deactivated (dashed

lines), are reported.

Finally, Figure 4(b) reports the behavior of ‖δ‖

from equation (21), i.e. the measure of misalignment among

vectors e and ė. One can then verify how, in the first experi-

ment, ‖δ‖ is correctly (and very quickly) minimized during

phase 2 thanks to equation (22).

4.2. Second set of experiments

We now discuss a second set of experiments that involve

the same four cases 1 to 4 introduced in the previous

section, but with the camera starting from a different ini-

tial pose and with a different desired configuration s∗

with respect to the previous run. The results are reported

in Figure 5.

As compared to Figure 3, it is worth noting how the

sole case 1 (blue line in Figure 5(a)) results in a success-

ful regulation of the visual task error e( t) thanks again to

the fast convergence of the estimation error ‖z( t) ‖ during

the active optimization of phase 1 (blue line in Figure 5(b)).

The servoing fails instead in case 2 (red line in Figure 5(a)),

i.e. when coupling the classical controller given by equa-

tion (14) with observer (7) but without optimizing for the

convergence rate of ‖z( t) ‖. In fact, in this case, the very

small value of σ ( t) during the camera motion (red line in

Figure 3(c)) makes the estimation task ill-conditioned with
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Fig. 5. Second set of experiments: regulation of four point fea-

tures starting from a different initial camera pose with respect to

the experiments in Figure 3. The plot pattern and color codes are

the same as in Figure 3.

respect to noise and other unmodeled effects (including the

disturbance g( z, t) in equation (8)), resulting in a diver-

gence of the estimation error ‖z( t) ‖ at t ≈ 9 s (red line

in Figure 5(b)). On the other hand, the active optimization

of case 1 is able to increase σ ( t) by approximately a factor

of 40 with respect to case 2; this thus ensures a sufficiently

high level of excitation for the camera motion and, conse-

quently, a quick convergence of the estimation error ‖z( t) ‖.

Failure of the servoing is also obtained in case 3, i.e. when

exploiting the exact final value χ̂( t) = χ∗, because of the

large initial error of the visual task that causes a loss of

feature visibility (green line in Figure 5(a)).

Finally, Figures 5(d) and 5(e) depict the camera and fea-

ture trajectories during case 1. Again, one can appreciate

in Figure 5(d) the initial spiraling motion of the camera

that allows the increase of σ ( t) during phase 1. It is also

worth noting how, in case 1, the error norm ν( t) keeps a

monotonic decrease during the whole motion (as desired)

despite the various switches among the three phases

and the ‘unusual’ initial camera trajectory (blue line in

Figure 5(a)).

Fig. 6. Third set of experiments: visual servoing of four point fea-

tures using a constant approximation χ ( t) = χ∗ where the value

of χ∗ is corrupted by a relative error of 9%. (a) behavior of the

error norm ν( t) for the first (blue line) and second (red line) exper-

iments. (b) image plane trajectory of the four point features during

the first experiment with crosses indicating their desired positions.

The initial and final (i.e. until loss of tracking) camera images are

superimposed.

4.3. Third set of experiments

In this last section, we report the results of two experiments

meant to show how even relatively small inaccuracies in

determining the value χ∗ at the desired pose can cause fail-

ure of the servoing when setting χ̂ ( t) = χ∗, as classically

done in many visual servoing applications. The two experi-

ments presented here involve the same problem considered

in Sections 4.1 and 4.2 (regulation of four point features)

and differ from the starting location of the camera with

respect to the target object: in the first experiment, the cam-

era starts (relatively) far from the desired pose while, in the

second experiment, the camera starts at almost the desired

pose. In both cases, the classical second order control equa-

tion (14) was employed by taking χ̂ = χ∗( 1 + ε) with

ε = ( −0.0333, 0.09, 0.0424, −0.0875) (thus, since |εi| ≤

0.09, simulating an uncertainty of up to 9% in the accuracy

of χ∗).

Figure 6(a) shows the behavior of the error norm ν( t)

for both cases: in the first experiment (blue line), the visual

error starts converging from its initial (large) value but then,

at about t ≈ 8 s, the servoing diverges and the features leave

the camera FOV. An even more interesting result is obtained

in the second experiment (red line): in this case, the error

ν( t) starts at a very small value since the camera is already

quite close to its desired pose. However, the controller given

by equation (14) is not able to impose a stable closed-loop

behavior, and the error norm starts diverging until loss of

tracking of the feature points at about t ≈ 2.5 s.

These results then provide (for the first time, to the best

of our knowledge) an experimental demonstration of the

effects discussed in Section 2.1 and originally introduced

by Malis et al. (2010): a (rather small) error in approxi-

mating χ∗ can be sufficient to move part of the eigenvalues

of matrix −Ls( s∗, χ∗) L̂s( s∗, χ̂ )† to the right-half complex

plane, and thus resulting in unstable closed-loop dynamics

even when starting arbitrarily close to the desired pose. This

demonstrates, once more, the importance of resorting to an

online optimized estimation of χ( t).
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5. Adaptive optimization of the 3-D structure

estimation

We now propose a further improvement to the strategy

detailed in Section 3 and experimentally validated in

Section 4. The goal is to introduce an automatic mecha-

nism for adaptively activating/deactivating the optimiza-

tion of SfM as a function of the accuracy in estimating χ ( t).

This modification is motivated by the following considera-

tions with respect to Figure 2 and the previous experimental

results:

1. The optimization of σ 2 is active during the whole of

phase 1, i.e. as long as the error norm is larger than

some predefined threshold (i.e. ν( t) ≥ νT ). However,

this is obtained at the expense of a possible distortion

of the camera trajectory as clear from, e.g. Figures 3(d)

and 5(d) which depict the camera spiraling motion due

to the action given by equation (23) while approaching

the final pose. Clearly, a more efficient strategy would

implement equation (23) only when strictly needed, e.g.

as long as the estimation error ‖z( t) ‖ = ‖χ ( t) −χ̂ ( t) ‖

is larger than some threshold.

2. Similarly, once in phases 2 and 3, the flowchart of Fig-

ure 2 does not allow any reactivation of the optimization

of σ 2. On the other hand, a reactivation could be nec-

essary in case of unforeseen events such as, e.g. an

unpredictable motion of the target that would make the

estimation error ‖z( t) ‖ abruptly increase.

We now detail a modification of the previous strategy

of Section 3 for addressing these issues. To this end, we

first introduce a way to quantify the uncertainty level in the

estimation of the unknown vector χ ( t). Since the estima-

tion error z( t) is (obviously) not directly measurable, we

consider instead the following measurable quantity

E( t) =
1

T

∫ t

t−T

ξT ( τ ) ξ ( τ ) dτ , T ≥ ε > 0 (24)

where T represents the integration window and ξ = s − ŝ

is the feedback term driving observer (7). Indeed, as dis-

cussed in appendix C, E( t) plays a role comparable with the

unmeasurable z( t): it provides a measure of the uncertainty

of the estimated χ̂ vs. the actual χ . In particular, provided

the camera trajectory is sufficiently exciting (i.e. σ 2
1 ( t) > 0

during motion), E( t) ≡ 0 if and only if ‖z( t) ‖ ≡ 0 (i.e. the

estimation has converged) and E( t) > 0 otherwise.

One can then leverage knowledge of E( t) for, for

example:

(a) automatically switching from phase 1 to phase 2 when

the estimation error becomes smaller than a desired

threshold;

(b) automatically switching from phase 3 back to phase 1

when the estimation error grows larger than a desired

threshold;

(c) adaptively weighting the first term in the action given

by equation (17) for smoothly activating/deactivating

the optimization of σ 2
1 .

Let then 0 ≤ E < E be a fixed minimum/maximum

threshold for E( t) and define

kE( E) : [E, E] 7→ [0, 1] (25)

as a monotonically increasing smooth map with kE( E) = 0

and kE( E) = 1. Function kE( E) can be exploited for suitably

weighting the optimization of σ 2
1 by simply modifying the

cost function equation (16) as

VE( u, E) = kσ kE( E) γ log

(

γ + σ 2
1 ( v)

γ

)

−
kd

2
‖u‖2 (26)

resulting in the new optimization action

u̇VE
= ∇uVE =

kσ kE( E) γ

γ + σ 2
1

∇uσ
2 − kdu (27)

to be plugged in vector r in equation (15). This modification

clearly grants a smooth modulation of the first term in equa-

tion (27) from a full activation, in case of large estimation

inaccuracies (kE( E) = 1 for E ≥ E), to a full deactiva-

tion if the estimation is sufficiently accurate (kE( E) = 0 for

E ≤ E).

Exploiting E( t) and the modified optimization action

given by equation (27), we propose the new (adaptive)

switching strategy depicted in Figure 7. This consists of

the same three phases of Section 3.3, but it now exploits

knowledge of E( t) for implementing an improved switching

policy.

We highlight the following features of this new adap-

tive strategy: first of all, the initial (possible) switch from

phase 3 to phase 1 is performed only if E( t) ≥ E (the

estimation error is large enough for justifying an optimiza-

tion of the camera motion) and ν( t) ≥ νT (the visual error

norm is large enough for preventing singularities in equa-

tion (15)). As an illustration, two scenarios will typically

trigger this switch:

(a) a camera starting far enough from the desired pose and

with a poor enough initial estimation χ̂ ( t0);

(b) an unpredicted motion of the target object during the

servoing task that causes an increase in the error norm

and in the estimation uncertainty.

The experiments of Section 6 will indeed address these two

practical cases. Furthermore, while in phase 1, the opti-

mization of the SfM will be performed only until either

a good enough accuracy has been reached (E( t) < E), or

the controller given by equation (15) is close enough to

become singular (ν( t) < νT ). The new switching condition

E( t) < E will then help in minimizing the distortion of the

camera trajectory by allowing a quick switch to phase 2 as

soon as the estimation accuracy is satisfactory (see again

the experiments in Section 6).
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As a final step, we comment about the choice of the

two thresholds E and E exploited for triggering the various

switches and for modulating the activation of the optimiza-

tion of σ 2
1 in equation (27). Assume the range of possible

values of E( t) during the camera motion can be lower/upper

bounded as 0 ≤ Emin ≤ E( t) ≤ Emax. It would obviously be

meaningful to choose E and E such that Emin ≤ E < E ≤

Emax for properly tuning the adaptive switching strategy.

Concerning the lower bound Emin, being E( t) ≥ 0, a

straightforward choice would be Emin = 0. However, pres-

ence of measurement noise and other non-idealities can,

in practice, prevent E( t) from falling below some mini-

mum value even after convergence of the estimation error

(up to some residual noise). If needed, this minimum value

can be, e.g. experimentally determined by simply averaging

the (steady-state) value reached by E( t) once the estima-

tion has converged across a sufficient number of different

camera trajectories. This is indeed the solution adopted for

the experiments in Section 6. As for Emax, any (arbitrarily

large) positive value would in principle be a valid choice

since, the larger the initial approximation error ‖z( t0) ‖ =

‖χ ( t0) −χ̂ ( t0) ‖, the wider the possible range of E( t). How-

ever, exploiting the properties of observer (7), one can prove

(see Appendix C) that

E( t) ≤
‖z( t0) ‖2

α
(28)

Therefore, if an upper bound ‖z( t0) ‖ ≤ zmax on the ini-

tial estimation error can be assumed (as in most practical

situations), one can exploit equation (28) and set

Emax =
z2

max

α
(29)

For the interested reader, this result can be given an interest-

ing energetic interpretation (Spica, 2015) as a consequence

of the port-Hamiltonian structure of equation (8).

We conclude with the following remarks: since E( t) >

0 as long as the estimation error has not converged, the

adaptive gain kE( E) in equation (27) is also guaranteed

to never vanish during the estimation transient (by prop-

erly placing, if needed, the minimum threshold E). As a

consequence, the optimization of the camera motion (i.e.

of σ 2
1 ( t)) will always be active during phase 1. We also

note that, in general, no special characterization is possi-

ble for the behavior of E( t). Nevertheless, one can show

that, if σ 2
1 ( t) ≈ const > 0 during motion, then the error

system equation (8) behaves as a second-order critically-

damped linear system, with z( t) playing the role of the

‘position variables’ and ξ ( t) that of ‘velocity variables’,

see Spica and Robuffo Giordano (2013). In this situation,

‖ξ ( t) ‖2 (and thus E( t) as well) will approximate a ‘bell-

shaped’ profile with a monotonic increase towards a maxi-

mum value followed by a monotonic decrease towards zero.

Indeed, this is the profile followed by E( t) during the active

phases of all the experiments reported in Section 6, since

Fig. 7. Flowchart representation of the switching strategy exploit-

ing the measurable error energy for triggering changes of status.

maximization of equation (26) does result (as a byproduct)

in σ 2
1 ( t) ≈ const.

As for the stability during the switching strategy of Fig-

ure 7, considerations analogous to what is discussed in Sec-

tion 3.4 hold in this case too. The main differences are the

following: in an ideal condition in which χ̂ ( t0) = χ( t0),

one would have E( t) ≡ 0 and, therefore, the system would

start and remain in phase 3 during the whole task (by always

using the full-error controller given by equation (14)). If

instead an initial (large enough) estimation error is present,

the quantity E( t) would start increasing, triggering a switch

to phase 1. From here on, the same behavior of the previous

(non-adaptive) switching strategy is thus implemented with

a switch to phase 2 followed by phase 3 until completion of

the task. The same would also hold whenever an external

‘disturbance’ (as, e.g. an unmodeled target motion) occurs,

making E( t) temporarily increase.

6. Experimental results of the adaptive

strategy

6.1. First experiment

In this first case study, we considered the same experimen-

tal setup of Section 4. Vector χ̂( t0) was taken coincident
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with the (assumed known) χ∗ at the final pose, resulting

in a bound ‖z( t0) ‖2/α = 5.3e−3 in equation (28). As

for the adaptive strategy thresholds, we set E = 10−5 and

E = 10−4.

At the beginning of the motion (phase 3), the eigenvalue

σ 2
1 is considerably small due to the low information content

of the camera trajectory (Figure 8(c)) and, analogously to

case 2 in Section 4.2, the estimation error z( t) even starts

increasing because of measurement noise, the disturbance

term g in equation (8) and other non-idealities (Figure 8(b)).

At time t ≈ 1.1 s, however, the quantity E( t) increases

over the threshold E, because of the high uncertainty in

the estimated χ̂ (Figure 8(d)); this thus triggers the switch

to phase 1 and the corresponding optimization of the cam-

era motion. The optimization action given by equation (27)

results in a fast increase of the mean eigenvalue σ ( t) (Fig-

ure 8(c)) and, as a consequence, in a fast convergence of the

estimation error z( t) (Figure 8(b)) that practically vanishes

at time t ≈ 4 s. As a consequence, E( t) decreases again

below the minimum threshold E indicating that a sufficient

level of accuracy has been reached. This then triggers the

(very quick) switch to phase 2 and, subsequently, the switch

back to phase 3 at t ≈ 4.4 s.

Note how the adaptive gain kE( E), used in equa-

tion (27), correctly (and smoothly) activates and deactivates

the optimization of σ 2 during phase 1 as is clear from

Figure 8(e).

It is worth noting that the switch from phase 1 to phase 3

occurs when the error norm ν( t) is still well above the

threshold νT , indicating singularity of the controller given

by equation (15). Therefore, the distortion of the camera tra-

jectory (depicted in Figure 8(f) and (g)) needed to maximize

σ 2 lasts considerably less than in the non-adaptive case

where the switch would have occurred only at ν( t) = νT .

Finally, one can also appreciate how the error norm ν( t)

correctly converges monotonically towards zero once the

estimation error z( t) becomes small enough, i.e. for t ≥ 4 s,

see Figure 8(a).

At t ≈ 5.9 s, the target object is purposely displaced

causing both the servoing and the estimation error to grow

with a corresponding increase of E( t) above the threshold

E. This, in turn, triggers the switch to phase 1 at t ≈ 6.1 s

for (re-)activating the optimization of the camera motion

until convergence of the estimation error is, again, reached

at t ≈ 9.1 s. The same pattern then repeats two more times

at t ≈ 10.6 s and t ≈ 17.2 s because of the two addi-

tional displacements of the target object during the camera

motion.

As explained in the previous section, the switch from

phase 1 to phase 3 (and vice-versa) is also a function of

the current value of the error norm ν( t) for avoiding pos-

sible singularities in equation (15). Indeed, this is the case

of the third switch from phase 1 to phase 3 triggered, at

t ≈ 13.3 s, by the error norm falling below the threshold νT

with E( t) still above the minimum value E. Similarly, the

Fig. 8. Regulation of four point features using the adaptive strat-

egy of Section 5. The three phases of Figure 7 are denoted by

the following color code: blue – phase 1, red – phase 2 and

green – phase 3. (a) behavior of the error norm ν( t) with a hor-

izontal dashed black line superimposed indicating the threshold

νT . (b) behavior of the norm of the estimation error ‖z( t) ‖ =

‖χ ( t) −χ̂ ( t) ‖. (c) behavior of the mean eigenvalue σ 2. (d) behav-

ior of E( t) with two dashed horizontal lines superimposed indicat-

ing the minimum and maximum thresholds E and E. (e) behavior

of the adaptive gain kE( E). In all of the previous plots, vertical

dashed lines represent the times at which the target object was

intentionally displaced. (f) and (g) front and side views of the cam-

era 3-D trajectory with arrows representing the camera optical axis

and square and circular markers representing the camera initial

and final poses, respectively.
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fourth switch from phase 3 to phase 1 at t ≈ 17.9 s is trig-

gered only when ν( t) ≥ νT , even though E( t) has already

grown over E.

By looking at Figure 8(d), it is finally worth not-

ing how E( t) always keeps below the theoretical bound

‖z( t0) ‖2/α = 5.3e−3 given in equation (28) despite the

three intentional target displacements that occurred during

the servoing.

6.2. Second experiment

This last experiment is meant to illustrate the feasibility of

our approach in more realistic conditions compared to the

use of simple black dots on a white background as done so

far. To this end, we considered regulation of 10 point fea-

tures belonging to a much less structured object, that is, the

shrunken piece of textured paper shown in Figure 9(g) (and

in Extension 1). Extraction and tracking of the 10 features

was achieved by exploiting the well-known Kanade-Lucas-

Tomasi(KLT) algorithm implemented in OpenCV. Finally,

we made use of the threshold E = 0.0015 and E = 0.03,

and initialized χ̂( t0) = χ∗ as before, with ‖z( t0) ‖2/α =

6.3e−3 for equation (28).

Figure 9 reports the results of the experiment: the robot

starts in phase 3 driven by the classical law given by equa-

tion (14) but, as the mean eigenvalue σ 2 is rather small dur-

ing this phase, the estimation error z( t) does not converge.

Likewise, the error norm ν( t) slightly increases because of

the too rough approximation in χ̂ . However, the quantity

E( t) starts to grow and, at t ≈ 1 s, it exceeds the threshold

E triggering the switch to phase 1 (Figure 9(d)). During this

phase (which lasts until t ≈ 5 s), the optimization of the

camera motion is then able to maximize the eigenvalue σ 2.

This results in a quick convergence of the estimation error

that practically vanishes at t ≈ 4.5 s. Similarly, the quantity

E( t) first reaches a maximum peak value (which is anyway

lower than the theoretical bound equation (28) as expected),

and then starts decreasing back to zero; this thus allows a

smooth deactivation of the optimization action thanks to the

adaptive gain kE (Figure 9(e)). Finally, at t ≈ 5 s, the error

norm ν( t) falls below the threshold νT inducing a quick

switch to phase 2 (alignment of e and ė) followed by a last

switch to phase 3 until completion of the servoing task.

From these results, one can then appreciate how the

behavior of the adaptive strategy is essentially equivalent

to what was obtained in the previous case studies. Thus,

this confirms that the proposed approach can be seamlessly

applied to more complex/realistic situations.

7. Conclusions

In this paper, we investigated how to couple the execu-

tion of a visual servoing task with an active SfM strat-

egy meant to optimize the reconstruction of the 3-D scene

structure. This was achieved by projecting the active SfM

action within the null-space of the considered IBVS task

Fig. 9. Regulation of 10 point features on an unstructured object

using a KLT tracker and the adaptive strategy of Section 5. The

same quantities of the previous Figure 8 are reported here with

the only exception of (g) that depicts the trajectory of the 10 point

features on the image plane with crosses indicating the desired

feature position and, superimposed, two (semi-transparent) camera

screenshots taken at the initial and final robot configuration.

and by suitably extending to the second order framework

originally introduced by Marey and Chaumette (2010) to

grant the needed redundancy for an effective optimization

of the camera motion. A (second-order) switching strategy,

meant to avoid some structural singularities of such frame-

work, was also developed and experimentally validated. As

an additional contribution, we also detailed an adaptive
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strategy able to automatically activate/deactivate the opti-

mization of the SfM as a function of the current estimation

accuracy.

The reported experimental campaign clearly showed the

benefits of the approach in terms of:

(a) obtaining a faster convergence of the structure estima-

tion error during the servoing transient with respect to

non-active cases;

(b) imposing an improved closed-loop IBVS behavior by

significantly mitigating the negative effects of an inac-

curate knowledge of the scene structure;

(c) minimizing the deformation of the camera trajectory

(consequence of the active SfM action) thanks to the

adaptive activation/deactivation of the SfM optimiza-

tion.

Despite the successful results, however, the proposed

coupling between visual control and active perception still

has a number of open points that deserve further devel-

opments. To start with, due to the non-linear nature of

the system dynamics, stability of each individual estima-

tion/control block does not imply, in general, stability of

their composition (the separation principle is only valid for

linear time-invariant systems). While the proposed experi-

mental results show a promising level of robustness in this

sense, a more formal characterization of the convergence

domain is yet to be found.

As discussed in Remark 3.3, guaranteeing a monotonic

decrease of the visual error norm can help avoiding erratic

behaviors of the features on the image plane. However, this

may not be sufficient to ensure that the features will not

leave the camera FOV in all possible situations (e.g. when

the desired feature location is close to the image plane bor-

ders). Similarly, other typical ‘feasibility’ constraints (such

as joint limits or collision avoidance) were also ignored in

the proposed strategy. These issues could be addressed by

considering the observability maximization as an additional

task in a multi-objective constrained optimization problem.

This latter could then be resolved locally by exploiting one

of the several prioritized multi-task resolution frameworks

proposed in the literature (see, e.g. Escande et al., 2014;

Flacco et al., 2015). As is well known, however, local opti-

mization strategies (like the one proposed in this work and

most IBVS schemes) can be prone to local minima and

generate trajectories with sub-optimal observability prop-

erties. In this regard, introducing a planning phase over an

extended time horizon could be beneficial also for what

concerns a better handling of the visibility constraint (see,

e.g. Chesi and Vicino, 2004 for an example in this sense).

Finally, we also plan to apply our machinery to mobile

(ground/flying) robots, equipped with onboard cameras,

and possibly subject to non-holonomic constraints.
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A. Appendix A

Index to multimedia extension

Archives of IJRR multimedia extensions published prior

to 2014 can be found at http://www.ijrr.org, after 2014

all videos are available on the IJRR YouTube channel at

http://www.youtube.com/user/ijrrmultimedia

Table of multimedia extension.

Extension Media type Description

1 Video Video of the experiments

B. Appendix B

Proof of Proposition 3.2

Let 8( t) = [8ij( t) ] ∈ R
2×2 be the state-transition

matrix associated to the linear time-invariant system given

by equation (18). From classical system theory (Kailath,

1998), we have

ν‖e‖( t) = 811( t − t1) ν1 + 812( t − t1) ν̇1, ∀t ≥ t1 (30)

where we set ν1 = ν( t1) and ν̇1 = ν̇( t1) for simplicity.

We also note that equation (19) is governed, component-

wise, by the same dynamics of equation (18). Therefore,

the solution of equation (19) is

e∗( t) = 811( t − t1) e1 + 812( t − t1) ė1, ∀t ≥ t1 (31)

where, again, e1 = e( t1) and ė1 = ė( t1).

If e1 and ė1 are parallel then equation (20) holds: assuming

e1 and ė1 are parallel, vector ė1 can be expressed as

ė1 = ‖ė1‖
e1

‖e1‖
= ‖ė1‖

e1

ν1

(32)
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Therefore, equation (31) becomes

e∗( t) =

(

811( t − t1) +812( t − t1)
‖ė1‖

ν1

)

e1, ∀t ≥ t1

(33)

resulting in an error norm ‖e∗( t) ‖

‖e∗( t) ‖ = ν∗( t) =

(

811( t − t1) +812( t − t1)
‖ė1‖

ν1

)

‖e1‖

=

(

811( t − t1) +812( t − t1)
‖ė1‖

ν1

)

ν1

= 811( t − t1) ν1 + 812( t − t1) ‖ė1‖, ∀t ≥ t1
(34)

Now, being ν = ‖e‖ one has

ν̇1 =
eT

1 ė1

ν1

(35)

which, exploiting equation (32), yields ν̇1 =

‖ė1‖eT
1 e1/ν

2
1 = ‖ė1‖. Plugging ‖ė1‖ = ν̇1 in equation (34)

finally results in

ν∗( t) = 811( t − t1) ν1 + 812( t − t1) ν̇1, ∀t ≥ t1

thus showing that ν∗( t) ≡ ν‖e‖( t), i.e. fulfillment of the

condition given by equation (20) as claimed.

If equation (20) holds then e1 and ė1 are parallel: from equa-

tions (30) and (31) we have (omitting the time dependency

for brevity)

ν2
‖e‖ = 82

11ν
2
1 + 2811812ν1ν̇1 + 82

12ν̇
2
1 (36)

and

‖e∗( t) ‖2 =82
11eT

1 e1 + 2811812eT
1 ė1 + 82

12ėT
1 ė1

=82
11ν

2
1 + 2811812ν1ν̇1 + 82

12ėT
1 ė1

(37)

where equation (35) was used. By imposing the condition

given by equation (20) to equations (36) and (37) we then

have

ν2
‖e‖ ≡ ‖e∗( t) ‖2 =⇒ 82

12ν̇
2
1 ≡ 82

12ėT
1 ė1 =⇒ ν̇1 = ‖ė1‖

(38)

Since ν̇1 is just the projection of vector ė1 along the direc-

tion of e1 (see again equation (35)), the condition given

by equation (38) necessarily requires vectors e1 and ė1 to

be parallel as claimed.

C. Appendix C

Properties of E( t)

Relationship between E( t) and the estimation error z( t):

if σ 2
1 ( t) > 0 during the camera motion then E( t) ≡ 0 if

and only if ‖z( t) ‖ ≡ 0 (i.e. the estimation has converged)

and E( t) > 0 otherwise (i.e. the estimation has not yet

converged).

In order to prove this claim, we start by showing the

following facts:

Proposition C.1. If the camera motion is exciting (i.e.

σ 2
1 ( t) > 0), then ‖ξ ( t) ‖ ≡ 0 ⇐⇒ ‖z( t) ‖ ≡ 0 and

‖ξ ( t) ‖ > 0 a.e. ⇐⇒ ‖z( t) ‖ > 0 a.e.

Proof. Being σ 2
1 the smallest eigenvalue of matrix ��T ,

the hypothesis σ 2
1 > 0 implies full row-rankness of

the (low-rectangular) p × m matrix �. Considering now

the error dynamics given by equation (8), the following

holds

• ‖ξ ( t) ‖ ≡ 0 =⇒ ‖z( t) ‖ ≡ 0: if ‖ξ ( t) ‖ ≡ 0 then

ξ ( t) ≡ 0 and ξ̇ ( t) ≡ 0. The first row of equation (8)

then reduces to �T z ≡ 0 which implies ‖z( t) ‖ ≡ 0

since matrix � is full row-rank by hypothesis;

• ‖z( t) ‖ ≡ 0 =⇒ ‖ξ ( t) ‖ ≡ 0: if ‖z( t) ‖ ≡ 0, the

first row of equation (8) reduces to ξ̇ = −Hξ . Being

the matrix gain H positive definite, it follows that, at

steady-state, the only possible solution is ξ ( t) ≡ 0.

These two implications then prove the first item of the

Proposition, that is, ‖ξ ( t) ‖ ≡ 0 ⇐⇒ ‖z( t) ‖ ≡ 0.

The proof is concluded by noting that the remaining two

(reverse) implications ‖z( t) ‖ > 0 a.e. =⇒ ‖ξ ( t) ‖ > 0

a.e. and ‖ξ ( t) ‖ > 0 a.e. =⇒ ‖z( t) ‖ > 0 a.e. (needed

for proving the second item of the Proposition) are just the

logical negations of the two ones listed above.

Proposition C.1 can now be exploited for proving the ini-

tial main claim. Indeed, since E( t) is defined as the moving

average of signal ‖ξ ( t) ‖2 (see equation (24)), it follows that

E( t) = 0 if ‖z( t) ‖ ≡ 0 over (at least) the integration win-

dow T . Therefore, convergence of the estimation error z( t)

will necessarily make the quantity E( t) vanish as desired.

On the other hand, if ‖z( t) ‖ > 0 a.e. =⇒ ‖ξ ( t) ‖ > 0

a.e., the moving average given by equation (24) over any

non-infinitesimal integration window T ≥ ε > 0 will

necessarily stay positive, this thus implies that E( t) > 0

q.e.d.

Proof of bound equation (28): this bound can be eas-

ily proven by exploiting the port-Hamiltonian interpretation

of the error dynamics equation (8) briefly introduced in

Section 2.2. With reference to Spica and Robuffo Gior-

dano (2013) (where a full analysis can be found), it is

indeed possible to show that the Hamiltonian function equa-

tion (9) decreases over time towards its global minimum at

( ξ , z) =( 0, 0), provided the usual hypothesis of an exciting

camera motion (σ 2
1 ( t) > 0) is satisfied. Therefore, along the

trajectories of equation (8) it is

0 ≤ H( ξ ( t) , z( t) ) ≤ H( ξ ( t0) , z( t0) ) , ∀t ≥ t0 (39)

We now note that, as the feature vector s a measurable

quantity, one can always initialize ŝ( t0) = s( t0) resulting in

ξ ( t0) = 0. By employing this initialization (adopted in all

the reported case studies) and exploiting equations (9) and

(39), the following bound easily follows

1

2
‖ξ ( t) ‖2 ≤ H( ξ ( t) , z( t) ) ≤ H( ξ ( t0) , z( t0) ) =

1

2α
‖z( t0) ‖2

(40)
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The proof is completed by noting that, from standard

calculus

E( t) =
1

T

t
∫

t−T

ξT ( τ ) ξ ( τ ) dτ ≤ max
τ∈[t−T , t]

[

ξT ( τ ) ξ ( τ )
]

≤
‖z( t0) ‖2

α
(41)

We conclude by noting that equation (9) (and consequently

equations (40) and (41)) is no longer valid in the presence

of (unmodeled) perturbations such as the several target dis-

placements discussed in Section 6.1. In this case, an exter-

nal amount of energy could (in general) be injected into the

system given by equation (8) with a consequent increase of

the total energy H( t) and a possible violation of the bound

given by equation (39).




