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Résumé en Français

Introduction

Cette thèse, intitulée «suivi temps-réel de cibles dans des séquences de volumes écho-
graphiques», propose plusieurs contributions permettant d’estimer la position de structures
anatomiques dans des images échographiques 3D. Ces contributions sont liées à plusieurs
domaines de recherches tels que la vision assistée par ordinateur, la simulation physique
et le traitement d’image médicale. Cette thèse a été réalisée au sein de l’IRT b<>com et
a impliqué la collaboration du centre hospitalier universitaire de Rennes, et des centres de
recherche Irisa et Inria Rennes-Bretagne Atlantique. L’application visée consiste à améliorer
la visualisation permettant de guider des interventions mini-invasives dédiées au traitement
du cancer du foie.

Avec près de 800.000 décès par an, le cancer du foie est le sixième le plus mortel dans le
monde. Au cours des dernières années, la prise en charge de ce cancer a évolué et plusieurs
stratégies de traitements sont aujourd’hui envisageables telles que l’ablation partielle et la
greffe. De nos jours, les interventions mini-invasives sont de plus en plus utilisées, car elles
permettent un traitement plus local. Ainsi, ces procédures ont l’avantage de réduire le temps
de rémission des patients et les risques de complication. Parmi ces traitements, l’ablation par
radio-fréquence, la cryothérapie et l’injection percutanée d’éthanol sont les interventions les
plus courantes. Ces techniques sont généralement basées sur l’insertion d’une aiguille perme-
ttant la destruction thermique ou chimique des tissus cancéreux. Afin d’assurer un placement
correct de l’aiguille par rapport aux tissus, ces interventions sont généralement guidées par
différents types d’imagerie tels que le scanner, l’imagerie par résonance magnétique, la
fluoroscopie, ou l’échographie. Cependant, l’imagerie échographique est souvent préférée
car cette modalité est non-invasive, bas coût et portable. De plus, elle permet d’obtenir un
retour visuel temps-réel des tissus au cours de l’intervention. Elle est donc très adaptée
pour des applications cliniques nécessitant de visualiser la cible clinique et les instruments
médicaux tout au long de l’intervention.
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Malgré le fort développement des traitements mini-invasifs, leur efficacité est toujours
limitée par plusieurs problèmes liés à la précision de l’intervention. En effet, contrairement à
la chirurgie classique, ces thérapies ne peuvent délivrer qu’un traitement local autour de la
pointe de l’aiguille. Ainsi, un mauvais placement de l’aiguille par rapport aux tissus peut
compromettre le succès de l’intervention. Un autre problème est lié aux déplacements et aux
déformations des tissus liés aux mouvements physiologiques du patient et à la manipulation
d’instruments médicaux. Enfin, malgré les différents avantages de l’imagerie échographique,
cette modalité présente plusieurs limitations compliquant la visualisation de l’aiguille et
des structures cliniques visées. En effet, l’imagerie échographique présente un champ de
vue limité et est généralement perturbée par plusieurs artefacts tels que le bruit de type
«speckle », les effets d’ombres et de réverbérations. Afin de pallier ces problèmes, de
nombreuses équipes de recherches ont proposé des travaux permettant d’estimer la position
de structures anatomiques dans les images échographiques. Ce travail vise à proposer de
nouvelles contributions permettant une estimation plus précise et plus robuste des structures
d’intérêts.

Etat de l’art

Dans cette section, nous présentons différentes approches permettant de suivre des régions
d’intérêts dans une séquence d’images échographiques. Ces méthodes ont pour objectif de
déterminer successivement la transformation permettant d’aligner une image de référence
et une image courante. Elles reposent généralement sur l’optimisation d’une fonction
de coût dépendante de plusieurs caractéristiques. Dans la suite de cette section, nous
présentons les contributions principales de ce domaine selon trois caractéristiques: le modèle
de transformation, le critère de similarité et le terme de régularisation.

Modèle de transformation

Selon les tissus observés par l’imagerie échographique, une structure d’intérêt peut subir
différents types de mouvements allant du simple déplacement rigide à la déformation. En
conséquence, plusieurs modèles de transformation ont été étudiés afin de représenter l’espace
des déplacements possibles. Parmi les plus simples, le modèle translationnel (Veronesi et al.,
2005), le modèle rigide (Rothlubbers et al., 2014) et le modèle affine (Wein et al., 2008b)
sont souvent utilisés. Cependant, on peut noter que ces modèles de transformation ne sont
pas adaptés au suivi de structures déformables. Pour pallier ce problème, des modèles de
transformation plus sophistiqués ont été utilisés. Par exemple, certaines approches reposent
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sur le modèle de type «block-matching »permettant d’estimer le déplacement d’une cible
en décomposant son mouvement en plusieurs blocs rigides (Basarab et al., 2008; De Luca
et al., 2013; Touil et al., 2010; Yeung et al., 1998). En revanche, ce type de transformation
ne permet pas de représenter des déformations très localisées puisqu’il considère que le
mouvement est constant à l’intérieur d’un bloc. Pour résoudre ce problème, des modèles
déformables ont été proposés tels que les transformations de type plaque mince (Lee and
Krupa, 2011) et les modèles de déformation de forme libre (Heyde et al., 2012; Ledesma-
Carbayo et al., 2001; Pennec et al., 2001). Alors que ces transformations permettent de
représenter correctement différents types de mouvement, elles sont généralement associées à
un grand nombre de paramètres ce qui les rend particulièrement sensible aux problèmes de
minima locaux. Certaines méthodes de suivi sont basées uniquement sur des méthodes de
segmentation permettant de définir un contour autour de la région d’intérêt. Ces contours sont
généralement représentés par des fonctions implicites (Dietenbeck et al., 2014) ou explicites
(Nascimento and Marques, 2008).

Critère de similarité

Le critère de similarité permet de mesurer l’alignement entre une image de référence et
une image courante transformée. L’optimisation de ce critère a pour but de définir les
paramètres optimaux de la transformation alignant deux images. Généralement, les mesures
de similarité peuvent être décomposées en deux catégories. Le premier type évalue la
distance entre différentes caractéristiques extraites dans les images telles que des points
d’intérêts (Schneider et al., 2012), des contours 2D (Angelova and Mihaylova, 2010), des
surfaces 3D (Papademetris et al., 2002). Pour mesurer cette distance, la plupart des approches
utilise la norme Euclidienne (Häme et al., 2012). Cependant, d’autres types de mesure ont
aussi été étudiés tel que la distance Mahalanobis permettant d’être plus robuste aux valeurs
aberrantes (Comaniciu et al., 2004). La deuxième catégorie permet d’évaluer l’alignement
entre deux images à partir de la mesure de correspondance d’intensité. La plupart de
ces approches considèrent des critères monomodales tel que la Somme du Carrée des
Différences (SSD) (Lubke and Grozea, 2014; Royer et al., 2015; Yeung et al., 1998), la
somme des Différences Absolues (SAD) (Touil et al., 2010), ou la Corrélation Croisée (CC)
(Basarab et al., 2008; De Luca et al., 2013). Ces critères ont l’avantage d’être très robustes
lorsque l’intensité de la cible reste constante au cours du temps. En revanche, des variations
d’intensités peuvent être observées durant les interventions à cause de plusieurs artefacts liés
à l’imagerie échographique. Afin de pallier ce problème, différentes approches se sont basées
sur des mesures de similarité spécifiques à l’imagerie échographique (Baumann et al., 2012;
Cohen and Dinstein, 2002). Ces dernières ont l’avantage d’être très robustes aux variations
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d’intensité globales et au bruit de type «speckle »affectant les images échographiques. En
revanche, ces mesures n’ont pas été validées sur des séquences contenant de fortes variations
d’intensité locales introduites par la présence d’ombres dans l’imagerie ultrasonore. Afin de
contourner ce problème, différentes approches se sont appuyées sur l’utilisation de critères
multimodaux tel que l’information mutuelle (Elen et al., 2008; Shekhar and Zagrodsky, 2002)
et la somme de variance conditionnelle (Masum et al., 2014). Malgré la performance du
critère d’information mutuelle, cette mesure n’est pas adaptée à des applications de suivi
temps-réel déformable car elle requiert un fort temps de calcul. En revanche, la somme de
variance conditionnelle a l’avantage d’être rapide, mais sa performance est impactée lorsque
des variations d’intensité locale sont prises en compte.

Terme de régularisation

Lorsqu’un critère de similarité est bien défini, il doit en principe permettre d’obtenir une
transformation optimale alignant l’image de référence et l’image courante. Cependant,
plusieurs problèmes, liés aux bruits et aux minima locaux, peuvent conduire à la mauvaise
estimation de cette transformation. Afin de pallier ces limitations, différentes approches
utilisent un terme de régularisation permettant de pénaliser les transformations non réalistes
suivant des mouvements non-continus, des repliements, ou des étirements ou rétrécissements
brutaux. Ces régularisations peuvent être basées sur des contraintes spatio-temporelles
permettant d’assurer le lissage du champ de déplacements (Mukherjee et al., 2011). D’autres
méthodes utilisent une contrainte de cohérence d’inversion permettant d’assurer que la
composition de la transformation par son inverse est proche de l’identité (Baumann et al.,
2012; Vijayan et al., 2013). D’autres méthodes permettent d’assurer que la région d’intérêt
ne subit pas de variation de volume au cours du temps (Elen et al., 2008). Afin de fournir des
résultats robustes au cours de l’acquisition, certaines méthodes sont basées sur la prédiction
temporelle grâce à l’utilisation de filtre de Kalman (Orderud et al., 2007), ou de filtre à
particules (Angelova and Mihaylova, 2010). La prédiction temporelle est particulièrement
adaptée à la détection de caractéristiques, car ces dernières ne sont pas toujours visibles
au cours du temps. Enfin, quelques approches proposent une régularisation basée sur une
détection de champs de déplacement aberrants. Par exemple, Banerjee et al. (2015) propose
une méthode permettant d’inhiber certains mouvements selon des contraintes de géométrie
et d’apparence.
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Limitations et verrous technologiques

Malgré le nombre de contributions proposées dans ce domaine, il est toujours difficile
de déterminer l’approche permettant d’obtenir les meilleurs résultats pour une application
précise. En effet, ces approches sont généralement évaluées sur des quantités de données
inégales obtenues à partir de systèmes d’imagerie différents. De plus, certaines ne sont pas
évaluées sur données réelles humaines. Un autre problème est lié à la complexité entre les
différentes bases de données d’images échographique utilisées. En effet, nous avons remarqué
que très peu d’approches sont validées sur des images d’évaluations affectées par différents
artefacts de l’imagerie échographique tel que les zones d’ombres et les effets miroirs. Afin de
pallier ces problèmes, nous proposons plusieurs contributions permettant d’estimer de façon
robuste la position de structures d’intérêts au cours du temps. Elles incluent un nouveau
critère de similarité, une nouvelle stratégie de suivi, ainsi qu’une méthode basée sur la
simulation physique. La performance de ces contributions est évaluée sur différentes bases de
données acquises par simulation, sur maquettes simulant des tissus mous et sur volontaires.
De plus, nous avons comparé notre approche par rapport à certaines méthodes de l’état de
l’art en évaluant sa précision sur différentes bases de données 3D fournies par les challenges
MICCAI CLUST 2014 et 2015.

Approche de suivi déformable basée sur modèle physique

Dans cette section, nous proposons une approche temps-réel permettant d’estimer la position
de structures d’intérêts dans une séquence de volumes échographiques. L’approche repose
sur l’utilisation conjointe de l’information visuelle dense (intensité des pixels de l’image)
et d’une méthode de simulation physique. Afin d’évaluer la performance de cette méthode,
différentes expériences ont été réalisées sur données acquises sur maquettes simulant des
tissus mous et sur volontaires humains.

Description de la méthode

L’approche proposée permet de calculer les déplacements d’un modèle représentant la struc-
ture d’intérêt. Ces déplacements sont obtenus en sommant itérativement des déplacements
internes estimés à partir d’une approche mécanique et des déplacements externes calculés
grâce à une approche utilisant l’intensité des pixels/voxels de l’image. Cette méthode peut
être décomposée en trois étapes:

• Génération du modèle: Dans un premier temps, un modèle représentant la structure
d’intérêt est généré dans le premier volume de la séquence échographique. Pour ce
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faire, nous réalisons une segmentation manuelle délimitant la surface de la cible sur
chaque coupe du volume échographique. A partir de cette segmentation, nous générons
un modèle 3D composé de cellules tétraédriques et de sommets. Ce modèle permet de
définir la position de chaque voxel par rapport à la position des sommets des tétraèdres.

• Estimation des déplacements externes: Une fois que le modèle initial est obtenu,
les déplacements de ses sommets sont estimés successivement au cours du temps.
Pour cela, l’approche calcule premièrement les déplacements externes à partir d’une
méthode permettant de minimiser la différence d’intensité entre une image courante et
une image de référence. À cette fin, une fonction de coût basée sur le critère SSD est
minimisée grâce à l’algorithme de la plus forte pente.

• Estimation des déplacements internes: Dû à la présence de certains minima locaux,
une mauvaise estimation des déplacements externes peut entrainer une transformation
non réaliste. Afin de pallier ce problème, notre méthode estime les déplacements
internes à partir de la simulation d’un modèle masse-ressort-amortisseur lié au modèle
3D décrit précédemment. A partir de ce modèle mécanique, nous calculons les forces
internes appliquées sur chaque sommet du modèle. Ensuite, les déplacements internes
sont finalement obtenus par l’intégration des forces grâce à un schéma d’intégration
d’Euler.

Résultats

Grâce à une implémentation sur technologie GPGPU, le temps de calcul de notre méthode
atteint 350 ms pour l’obtention de la transformation entre deux images. Afin de valider notre
approche, deux types de résultats ont été générés. Les premières expériences, réalisées sur
données acquises sur une maquette simulant des tissus mous, ont permis d’évaluer notre
approche sur différents types de mouvements. Ces expériences ont été réalisées grâce à un
système robotique permettant de déplacer la sonde à la surface d’une maquette contenant
un objet organique déformable. La vérité terrain est obtenue grâce à l’odométrie permettant
de mesurer les déplacements du robot. Sur la figure 1, nous avons illustré l’estimation de
la trajectoire de la cible durant l’une des expériences réalisées. Nous pouvons observer que
seule l’approche combinant la méthode de simulation physique permet de suivre correctement
la trajectoire définie par l’odométrie.
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Fig. 1 Estimation de la position de la cible. (Odometry) Vérité terrain. (with MS) Approche
combinée à la simulation physique (without MS) Approche non combinée.

Dans un second temps, nous avons comparé notre approche à différentes méthodes de
l’état de l’art sur données réelles. Pour réaliser ces expériences, nous avons utilisé les bases
de données réelles fournies par les challenges MICCAI CLUST 2014 et 2015. Ainsi, notre
approche a été évaluée sur le suivi de 34 structures anatomiques différentes acquises à partir
de 22 séquences de volumes échographiques. Les résultats de précision sont présentés dans
le tableau 1.

Participants Moy ET 95% Challenge

Our method 1.62 2.19 4.81 CLUST 2014
Somphone et al. (2014) 2.55 2.46 7.98
Rothlubbers et al. (2014) 2.80 2.96 7.94
Lubke and Grozea (2014) 4.63 4.03 12.44

Our method 1.74 0.92 3.65 CLUST 2015
Banerjee et al. (2015) 1.80 1.64 3.41

Table 1 Résultats de l’erreur de suivi exprimés en millimètre sur les bases de données CLUST
2014 et 2015. (Moy) Erreur de suivi moyenne. (ET) Ecart-type. (95%) 95eme centile de
l’erreur de suivi.
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Critère de similarité

A partir des résultats de la section précédente, nous avons démontré que l’approche proposée
est performante et propose un suivi précis sur différents types de structures. Les expériences,
réalisées sur maquettes et volontaires, ont permis de prouver que l’approche était robuste au
bruit lié à l’acquisition. Cependant, cette méthode n’a pas été évaluée sur des séquences com-
prenant d’autres artefacts tels que des ombres et des changements de gains dans l’imagerie
ultrasonore. Ces derniers peuvent fortement perturber la performance de l’approche car ils
introduisent de fortes variations d’intensité dans l’image. Dans cette section, nous proposons
un nouveau critère de similarité ainsi qu’une nouvelle stratégie pour résoudre les problèmes
précédents. La pertinence de ces deux contributions est évaluée sur données simulées et
données acquises sur maquette.

Description de la méthode

Afin d’améliorer la robustesse de notre approche, nous proposons un critère spécifique à
l’imagerie échographique basé sur la mesure de similarité dénommée "Somme de Variance
Conditionnelle". Cette dernière, proposée par Pickering et al. (2009), mesure la différence
d’intensité entre une image courante et une image de référence adaptée. Elle a l’avantage
d’être robuste aux variations d’intensité globale affectant la séquence d’image au cours
du temps. L’image de référence adaptée est générée à partir d’un opérateur d’espérance
qui compense les changements d’intensité entre l’image courante et l’image de référence
originale. Différentes expérimentations, proposées par Richa et al. (2011) et Richa et al.
(2014), ont permis de démontrer la performance de ce critère par rapport à d’autres mesures
de similarité telles que la SSD, ou l’information mutuelle. De plus, la performance de
cette mesure de similarité sur l’imagerie échographique a été montrée par Masum et al.
(2014). Malgré ses performances, ce critère reste sensible aux ombres générées par ce type
d’imagerie. En effet, ce type d’artefact peut créer de forts changements d’intensité locaux
générés par la réflexion de l’onde échographique à travers les tissus. Pour pallier ce problème,
nous proposons de modifier la mesure de similarité précédente afin d’y inclure une matrice de
pondération calculée à partir d’une étape de détection d’ombre. Cette matrice de pondération
est introduite dans le calcul de:

• la fonction de coût permettant de mesurer la différence d’intensité entre l’image de
référence adaptée et l’image courante. L’introduction de la matrice de pondération
permet de limiter l’effet des voxels présents dans des zones ombrées en leur associant
un poids de pondération faible.
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• l’opérateur d’espérance basé sur le calcul de la fonction de densité de probabilité
jointe entre l’intensité de l’image de référence et l’image courante. L’introduction de
cette matrice de pondération dans cette fonction permet de limiter la perturbation des
voxels présents dans des zones d’ombres lors de la génération de l’image de référence
adaptée.

Résultats

Afin d’évaluer la performance de notre critère, nous proposons de le tester sur des séquences
contenant des images fortement perturbées par des variations d’intensité et l’introduction de
zones d’ombres. Pour cela, nous utilisons premièrement des données acquises sur maquettes
contenant des artefacts synthétiques. La génération de ces artefacts est obtenue en modifiant
l’intensité des voxels au cours de la séquence afin de simuler des ombres et des changements
de gains. Dans un deuxième temps, nous proposons de valider notre approche sur des
séquences réelles acquises sur des maquettes contenant des tissus mous. Les changements de
gains et les ombres sont générés par l’utilisateur durant l’acquisition. Dans ces différentes
expériences, nous proposons de comparer la précision de notre critère, intitulé somme des
variances conditionnelles de confiance (SCCV) par rapport à d’autres mesures de similarité
telles que la somme des carrés des différences (SSD), la somme pondérée des carrés des
différences (WSSD) et la somme des variances conditionnelles (SCV). Dans les figures et le
tableau suivants, nous illustrons quelques résultats de précision obtenus lors de différentes
expériences réalisées. Nous pouvons observer que seul notre critère a l’avantage d’être précis
et robuste car son erreur reste faible sur toutes les séquences.
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Fig. 2 Évaluation de la distance d’Hausdorff au cours de deux séquences simulées.
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Sequence SSD WSSD SCV SCCV

PHA_1 10.6 ± 11.7 5.8 ± 6.8 22.9 ± 31.1 2.48 ± 2.18
PHA_2 - 5.36 ± 6.01 – 2.0 ± 1.7
PHA_4 – – 31 ±41 2.4 ± 2.2

Table 2 Évaluation de l’erreur moyenne de suivi sur trois séquences acquises sur maquette.

Stratégie hybride

Dans la section précédente, nous avons proposé un critère robuste aux variations d’intensité
locales et globales générées lors de l’acquisition d’images échographiques. Cette mesure de
similarité permet de mesurer la différence d’intensité entre une image de référence et une
image courante acquise au cours du temps. En revanche, le choix de l’image de référence peut
perturber la performance de l’approche. Pour résoudre ce problème, différentes stratégies
ont été étudiées:

• Les stratégies par paire sont basées sur l’optimisation d’une fonction de coût clas-
sique comparant successivement des paires d’images. Ces approches peuvent être
subdivisées en deux types. Un premier type d’approche permet de comparer une image
de référence fixe à une image courante acquise au cours du temps. Ce type d’approche
est donc sensible au choix de l’image de référence car cette dernière peut induire de
mauvais résultats si sa qualité n’est pas suffisante. Un deuxième type d’approche
permet de comparer l’image courante à son image précédente ce qui peut provoquer
une accumulation de l’erreur au cours du temps.

• Les stratégies par groupe sont basées sur l’optimisation d’une fonction de coût
comparant toutes les images de la séquence. Ainsi, à chaque nouvelle image acquise,
ces approches prennent en compte toute la séquence afin de fournir un résultat de suivi
plus robuste. La principale limitation de ces stratégies est liée à la complexité. Ainsi,
ce type de stratégie n’est pas adapté pour des applications temps-réel car elle requiert
une quantité importante de temps de calcul et de mémoire.

Description de la méthode

Afin de pallier les problèmes des stratégies décrites ci-dessus, nous proposons une approche
hybride basée sur les stratégies par paire. Dans cette approche hybride, nous sélectionnons
une image de référence correspondant à l’image initiale de la séquence. Mais contrairement
aux approches existantes, la méthode proposée permet de remplacer uniquement les zones
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d’ombres dans l’image de référence. Ainsi, cette technique assure que la qualité de l’image
de référence est maximale au cours du temps. La méthode proposée a l’avantage d’être plus
rapide que les méthodes de suivi par groupe. De plus, cette méthode n’est pas sensible à
l’accumulation de l’erreur puisqu’elle ne remplace uniquement que les structures de l’image
dont la qualité n’est pas suffisante.

Résultats

Afin d’évaluer cette approche, nous avons utilisé des données simulées contenant des artefacts
synthétiques, ainsi que des données acquises sur maquette. Cette validation nous permet de
comparer les résultats de précision entre différentes stratégies par paire. Dans les figures
suivantes, nous illustrons quelques résultats obtenus lors de la validation. Ces résultats
montrent l’erreur de suivi entre les différentes stratégies. Nous pouvons observer que seule
notre nouvelle stratégie de suivi permet d’obtenir une évolution de l’erreur faible. De plus,
son temps de calcul reste constant contrairement aux stratégies par groupes.
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Fig. 3 Évaluation de l’erreur de suivi sur deux séquences. (Selected) Stratégie par paire où
l’image de référence est fixe au cours du temps. (Iterative) Stratégie par paire où l’image de
référence représente l’image précédente. (Hybrid) Stratégie proposée.

Application pour la visualisation multi-modale

Grâce aux contributions présentées dans les sections précédentes, nous avons proposé
une approche permettant de suivre des régions d’intérêts dans des séquences de volumes
échographiques. Cette méthode a l’avantage d’être robuste à différents artefacts liés à
l’imagerie échographique. Dans cette section, nous présentons une application permettant
d’améliorer la visualisation à partir de la fusion de l’imagerie échographique et de l’imagerie
par résonance magnétique (IRM). Cette application a été évaluée dans un contexte clinique
sur une plateforme liée au Centre Hospitalier Universitaire de Rennes.
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Acquisition

Nous avons réalisé consécutivement l’acquisition d’une image IRM et d’une séquence de
volumes échographiques sur un volontaire sain. Les volumes échographiques ont été obtenus
à partir d’une station Ultrasonix connectée à une sonde 3D motorisée. Le volume IRM
a été acquis à partir d’un système d’imagerie 3T Siemens Verio. De plus, un système de
localisation, permettant de définir la position du patient par rapport aux repères liés aux
différents types d’imagerie, a été utilisé.

Description de la méthode

Dans cette section, nous proposons un système permettant d’améliorer la visualisation
échographique en remplaçant les zones ombrées de l’image par des structures visibles dans
l’imagerie pré-opératoire. Notre méthode peut être décomposée en trois étapes:

• Recalage multi-modal: cette étape consiste à trouver la transformation permettant
d’aligner le volume IRM et le volume échographique initial de la séquence. Cette
transformation est obtenue à partir d’un recalage externe basé sur un système de
localisation optique. Ce dernier permet de relier la position du patient par rapport à la
position des systèmes d’imagerie. La transformation est ensuite affinée en utilisant un
recalage manuel basé sur l’annotation de points de repères dans les images.

• Suivi de région d’intérêt: A partir de l’étape précédente, la transformation permettant
d’aligner le premier volume échographique et l’image IRM est obtenue. La seconde
étape de la méthode permet de définir une région d’intérêt à partir d’une segmentation
dans l’image IRM. Ensuite, nous utilisons l’approche décrite précédemment afin
d’estimer la position de la région d’intérêt au cours de la séquence échographique.

• Visualisation Améliorée: La dernière étape permet d’améliorer la visualisation en
combinant l’imagerie échographique et IRM. Pour ce faire, les régions ombrées de
l’image sont premièrement identifiées dans l’imagerie échographique à partir de l’étape
de détection d’ombres. Ces zones correspondent aux régions de l’image affectées par
des ombres occultant les structures anatomiques. Ensuite, l’intensité de ces régions est
remplacée par l’intensité des structures visibles dans l’imagerie IRM.

Résultats

Afin de réaliser ce système, le calibrage des différents systèmes d’imagerie est requis. Ainsi,
le système échographique est calibré en adaptant la méthode dénommée N-wire Lasso et al.
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(2014). Le calibrage du système IRM est basé sur la détection de marqueurs déposés sur
la peau du patient qui sont à la fois visibles dans l’IRM et palpés à partir d’un système de
localisation externe. Grâce au système de localisation, un recalage initial approximatif est
défini. En revanche, ce type de recalage génère une erreur importante induite par plusieurs
facteurs incluant le mouvement respiratoire et la pression de la sonde sur le patient. De tels
effets ne peuvent être compensés par le recalage externe lié au localisateur optique. Afin de
pallier ce problème, le recalage manuel permet de réduire l’erreur en dessous de 2 mm et
permet d’obtenir une bonne initialisation du système de visualisation.

Une fois que le recalage multi-modal est obtenu, nous proposons d’améliorer la visualisa-
tion d’une région d’intérêt le long d’une séquence échographique. Afin de fournir la vérité
terrain, la position d’un point de repère représentant la bifurcation d’une veine hépatique est
annotée sur chaque volume par un expert. La précision des différents critères de similarité
est évaluée durant cette tache de suivi. Grâce à l’approche de recalage et de suivi basée
sur les contributions précédentes, nous pouvons mettre en place une approche permettant
d’améliorer la visualisation en remplaçant les structures ombrées dans l’image échographique
au cours du temps. Un exemple de visualisation au cours du temps est illustré sur la figure
suivante.

(a) (b) (c)

(d) (e) (f)

Fig. 4 Exemple du système de visualisation. (a-b-c) Ces images représentent les coupes d’un
volume échographique original à différent temps. (d-e-f) Ces images représentent les coupes
d’un volume combinant l’imagerie échographique et IRM aux temps associés.
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Conclusion

Avec le développement des technologies médicales, les thérapies permettant de traiter le
cancer du foie ont considérablement évolué au cours des dernières années. Parmi ces
dernières, les interventions mini-invasives sont considérées comme les plus prometteuses car
elles permettent un traitement plus localisé. Cependant, leurs succès est toujours impacté par
des limitations réduisant la précision de ces interventions. Pour contourner ces problèmes,
de nombreuses méthodes, permettant d’estimer la position de structures sous imagerie
échographique, ont été étudiées. Dans cette thèse, nous avons proposé une approche reposant
sur plusieurs contributions robustes à différents artefacts de l’imagerie échographique. La
première contribution combine une approche utilisant conjointement l’information visuelle
ultrasonore dense et la simulation physique. Nous avons aussi proposé un nouveau critère de
similarité spécifique à l’imagerie échographique basé sur une étape de détection d’ombre.
Enfin, la dernière contribution est liée à une stratégie de suivi innovante permettant d’aligner
une image courante avec une image de référence dynamique.

Malgré les résultats prometteurs liés à ces contributions, d’autres investigations permet-
traient de les enrichir et d’en faciliter l’usage en routine clinique. En effet, l’approche repose
actuellement sur une segmentation manuelle. Ainsi, une telle méthode ne peut être utilisée
en pratique car cette étape requiert un temps d’interaction important. D’autres approches de
segmentation peuvent être utilisées telles que des méthodes semi-automatiques et automa-
tiques (Heimann et al., 2009). Alors que la méthode de suivi a montré d’excellents résultats,
une perspective intéressante serait d’évaluer sa performance durant l’intervention. En effet,
la nécrose des tissus via l’aiguille peut influencer la précision du suivi car elle génère des
variations d’intensités liées à l’apparition de zones hyper-echogeniques et de zones d’ombres.
Afin de pallier ce problème, Seo et al. (2011) a proposé une approche permettant d’utiliser ces
zones comme des points de repères au cours du suivi. Dans cette thèse, nous avons montré
que l’approche montre certaines limites lorsque les structures anatomiques subissent de fortes
déformations. Afin de contourner cette limitation, une première solution peut consister à
remplacer le modèle masse-ressort-amortisseur par un modèle plus réaliste (Haouchine et al.,
2013). Une autre solution serait d’adapter dynamiquement les paramètres mécaniques de ce
modèle grâce aux données élastographiques extraites à partir de l’imagerie échographique.
Une autre limitation est liée au temps de calcul qui ne permet pas de fournir une méthode
temps-réel sur des systèmes échographiques rapides. Pour pallier ce problème, une approche
intéressante pourrait considérer des méthodes d’optimisation plus performantes. Par exemple,
Delabarre and Marchand (2014) ont proposé une méthode de suivi déformable performante
où les déplacements sont calculés dynamiquement grâce à un algorithme de composition
inverse permettant un fort gain de temps de calcul.
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Chapter 1

Introduction

This thesis, entitled "Real-time Tracking of Deformable Targets in 3D Ultrasound Sequences"
has been performed in the Augmented Healthcare Laboratory of IRT b<>com. It has also
involved the collaboration of several partners including the University Hospital Centre of
Rennes and IRISA/Inria research institutes. In this work, we propose several contributions
that allow estimating the position of anatomical structures in ultrasound imaging over the
time. These contributions rely on the combination of methods from physical simulation,
computer vision, and medical image processing.

Liver cancer is the sixth most common type of cancer with approximately 800 000 deaths
annually worldwide (Torre et al., 2015). It is generally caused by hepatitis B, hepatitis C, or
excessive alcohol consumption. While surgery is still the recommended treatment, most of
the patients are not surgical candidates. To cope with that issue, minimally-invasive therapies
are promising as they aim at locally eliminating malignant lesions from needle insertion.
Examples of such interventions are Radiofrequency Ablation (RFA), Cryotherapy and Per-
cutaneous Ethanol Injection (PEI). These therapies have the advantage of reducing patient
pain, risk of infection, and length of hospital stay. They can be guided by different imaging
modalities such as Ultrasound (US), Computed Tomography (CT), Magnetic Resonance
(MR), or Fluoroscopy imaging. However, US imaging is the most used since it provides
both low-cost and real-time visual feedback. Despite the benefits of minimally-invasive
therapies, their efficiency still depends on the accurate needle placement with respect to
targeted structures (Chagnon et al., 2001).

To improve the precision of these therapies, several research groups focused on computer-
assisted interventions that involve the processing of multi-modal patient data. This area
has gained significant importance over recent years as it allows obtaining more accurate
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diagnosis and delivering treatment with greater surgical precision. Therefore, a wide va-
riety of interventions has been impacted by this research field. A few examples of major
contributions closely related to our work are highlighted below:

• Multi-modal Image Fusion: To improve surgeon visualization, multi-modal registra-
tion approaches have been proposed in order to fuse images acquired from different
imaging devices. Such methods allow obtaining high resolution and high contrast
images. For example, Kadoury et al. (2012) proposed an approach that registers ultra-
sound images with magnetic resonance data in order to ensure the correct placement of
the needle in the liver. Wein et al. (2008b) introduced a method that allows automatic
fusion between CT and US imaging in order to improve percutaneous needle biopsy or
ablation.

• Motion Estimation: To facilitate diagnosis and placement of medical tools, tracking
methods have been proposed since they allow following the positions of different
structures in consecutive medical images. For example, Baumann et al. (2012) intro-
duced a clinical protocol for prostate biopsy assistance based on the fast and accurate
estimation of prostate tissue motion in 3D ultrasound images. Salles et al. (2012)
proposed to quantify heart deformation from phase based optical-flow method in order
to detect cardiovascular diseases.

• Robotized Interventions: Several methods have been proposed in order to improve
treatment by automatically guiding medical tools with robotic systems. For instance,
Seo et al. (2011) used a motion compensation method for high-intensity focused
ultrasound (HIFU) that allows keeping the target and the treatment beam aligned. Wei
et al. (2005) proposed a 3D transrectal ultrasound guided robotic assisted system for
prostate brachytherapy.

The objective of this thesis consists in improving the surgeon guidance during minimally-
invasive therapies for liver tumor ablation. As these interventions are generally ultrasound-
guided, we proposed several contributions that allow tracking the motions of anatomical
structures in 3D US images. This chapter is organized as follows. In Section 1.1, we describe
the challenges related to ultrasound-guided minimally-invasive therapies for liver tumor
ablation. Then, Section 1.2 aims at providing a brief description of each key contribution of
this thesis. Finally, the thesis organization is detailed in Section 1.3.
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1.1 Challenges

In minimally-invasive therapies for tumor ablation, the main objective is to position medical
tools with respect to targeted clinical structures in order to produce tissue necrosis. These
procedures are generally guided by intra-operative ultrasound imaging in order to detect
the positions of different lesions in real-time. However, several problems may perturb the
treatment success since they induce incorrect positioning of medical instruments regarding
targeted structures:

• US imaging shortcomings: Ultrasound imaging has the advantage to be low-cost,
portable and real-time contrary to Computed Tomography (CT) or Magnetic Resonance
(MR) imaging. However, such imaging system proposes limited field of view due to
small acoustic windows, and therefore reduces considerably the surgeon visualization.
Additionally, targeted structures and medical instruments are not always clearly visible
in US images due to different sources of artifacts, e.g speckle noise, shadows and
mirroring effects. Such issues may cause the destruction of healthy tissues due to
mis-estimation of targeted structures localization.

• Target motions: During the intervention, the targeted structures may undergo large
motion that complicates the needle placement. These motions can be caused by
physiological motions, because liver is an organ affected by respiratory motion. In
addition, medical tools manipulations, such as ultrasound probe pressure and needle
insertion, may also generate the deformation of soft tissues. Such problem might force
the surgeon to readjust the needle position over the time, and has therefore a significant
impact on both the intervention time and on the positioning accuracy.

• Required accuracy: Contrary to surgery, minimally-invasive therapies for tumor
ablation do not allow treating large regions. Therefore, the intervention has to be
accurate in order to be effective. For example, in RFA applications, a particular
attention is given to the placement of the needle tip because multiple treatment sessions
are required if the target size exceeds 3 cm (Chagnon et al., 2001). Such accuracy
constraint may have strong impact on the therapy success.

To solve the different issues, we propose several contributions that can open novel
perspectives in computer-assisted interventions based on US imaging and where deformable
organs and structures are involved. These contributions aim at improving the surgeon
visualization during ultrasound-guided minimally invasive therapies.
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1.2 Contributions

The contributions of this thesis are organized into two parts. In the first part of this work, we
propose a US tracking method on 3D ultrasound sequences. The contributions on this part
include:

• A piece-wise affine mechanical-based approach: The proposed method aims at ac-
curately tracking the displacements of a deformable target in ultrasound images. This
method consists in three steps. The first step generates a mesh model associated to the
target. Once this model is defined, we estimate the target motions over consecutive
images or volumes. For this purpose, the model displacements are computed by itera-
tively summing the internal displacements estimated from a mechanical component,
and the external displacements computed from an intensity-based approach. We also
propose an adaptation that considers only the information acquired on the scanlines
of the ultrasound probe. This approach allows avoiding too much interpolation by
considering the ultrasound raw data.

• An in-depth validation and robustness evaluation: The method is first validated on
simulated ultrasound data by using simulated rigid and non-rigid motions. Then, our
method is evaluated on phantom data where the ground truth is provided by odometry
and manual annotations. We also performed a comparison of our method with respect
to state-of-the-art techniques on real-data by using the 3D databases provided by
MICCAI CLUST’14 and CLUST’15 challenges. Thus, the proposed approach has
been tested by tracking 34 different anatomical features from 22 3D US sequences. The
ground truth is given by using the manual annotations of landmarks from three experts
of target positions over each frame. Finally, several experiments are performed in order
to show the method robustness regarding mechanical model parameters, segmentation
error, and model mesh quality.

The second part of this work focuses on new image similarity criterion and tracking
strategy that we proposed. The contributions on this part include:

• An ultrasound specific similarity criterion: The proposed criterion aims at correctly
tracking structures that are affected by different ultrasound shortcomings including
imaging gain change, shadows and beam-angle variations. This criterion improves an
existing criterion called "Sum of Conditional Variance" (Pickering et al., 2009) by min-
imizing the influence of shadowed image regions. The method consists in combining
the computation of the joint probability density function of the image intensity with
the quality measurement of US images. The proposed criterion has the advantage to
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be invariant to local and global intensity shifts and is not computational demanding.
Experimental results reveal that the new criterion shows good performance even if
large shadows significantly occlude the target or large ultrasound gain modifications
are applied.

• A hybrid tracking strategy: Tracking methods can be divided into pairwise and
groupwise tracking methods. The first type of approach consists in comparing the
current image with a selected image, while the second registers the current image
with all previous images. The main drawback of pairwise tracking methods is that
their performance strongly depends on the quality of the selected image. The second
approach solves this issue at the expense of a high computational cost for long US
sequences. We propose an hybrid method that consists in improving the selected image
if its quality is not good enough. To do so, unconfident voxels of the selected image are
replaced by voxels of the consecutive images if their associated confidence is greater.
Experimental results show that our method is more accurate than pairwise strategies
with the same computation time.

1.3 Thesis organization

Chapter 2 aims at presenting the medical context associated to the thesis. Section 2.1
gives background information about the liver including its anatomy, its physiology, and
its pathology. Section 2.2 then describes the medical imaging technologies that allow
representing the liver for clinical analysis and medical interventions. Section 2.3 describes
the minimally invasive therapies for treating liver diseases.

Chapter 3 provides background information in order to understand this thesis and its
contributions. Section 3.1 describes the main components for both tracking methods and
registration algorithms. Section 3.2 focuses on the existing approaches in the literature for
target tracking in ultrasound sequences, and for registering ultrasound imaging of the liver to
pre-operative CT/MRI imaging.

Chapter 4 describes the first part of our contributions, dedicated to the ultrasound tracking
method based on the combination of a mechanical approach and an intensity-based approach.
Section 4.1 and 4.2 describe the proposed method and its performance for 3D ultrasound
sequences. Finally, Section 4.3 demonstrates the method robustness regarding target elasticity,
target velocity and mesh properties.

Chapter 5 focuses on the second part of our contributions that includes a novel ultrasound-
specific criterion as well as an hybrid tracking strategy. Section 5.1 describes the proposed
Sum of Confident Conditional Variance (SCCV) criterion and compares its performance
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regarding both classical and confidence-based similarity measures. Section 5.2 provides a
description of the proposed hybrid tracking strategy combining the existing pairwise strategy
with quality measurement of US images. To demonstrate the performance of the novel
strategy, the proposed method is tested on simulated data and phantom data.

Chapter 6 describes our last work, which focuses on multi-modal application in order to
improve the surgeon visualization. In this chapter, we propose a specific protocol that allows
registering 3D US imaging and IRM acquired from University Hospital Center of Rennes.

Chapter 7 concludes this document. The current issues and thesis objectives are first
reminded in Section 7.1. In Section 7.2, we summarize how the proposed contributions help
to solve the issues. The perspectives and potential improvements are finally addressed in
Section 7.3.

Finally, appendix A lists the publications and patent applications published during the
thesis.



Chapter 2

Medical context

This chapter aims at describing the medical context of the thesis in order to better understand
the motivations and the issues associated to percutaneous minimally-invasive therapies of the
liver. The liver is responsible for many vital functions and liver cancer has a significant impact
on the survival rate of the patient. Depending on the stage and the speed of tumor growth,
several treatment options may be proposed including surgery, tumor ablation, radiation
therapy and chemotherapy. Although surgery is still the most efficient treatment, the majority
of the patients are not surgical candidates since they may have not enough healthy liver
to cope with the resection. Indeed, there is a risk that the cancer could come back in the
future after a liver resection. this thesis, we focus on minimally-invasive therapies for tumor
ablation as they represent safe and effective treatment alternatives. As we focus on minimally-
invasive therapies for tumor ablation, the other treatment options of the liver cancer, e.g.
resection, transplantation, and chemotherapy, are not reviewed in this chapter. This latter is
organized as follows. Section 2.1 focuses on the liver organ by describing its macroscopic
anatomy, microscopic anatomy and its pathology. Section 2.2 describes the different imaging
modalities that may be used in order to guide interventions or to determine the diagnosis. As
each imaging system has strength and weakness, we also discuss about the performance of
each system. Section 2.3 aims at providing a description of the different minimally-invasive
interventions that allow treating liver tumors. We also discuss about current limitations
associated to these treatments.

2.1 Liver

In biology, an organ is a collection of tissue joined in a structural unit that allows serving
a common function. The main function of the liver consists in secreting bile that aids the
digestion of lipids in the small intestine. However, many others vital functions are performed
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by the liver such as the filtration, synthesis of bio-medical substances, and storage of chemical
compounds. The liver tissue contains mainly hepatic cells, also called hepatocytes, which
are responsible for liver functions. However, it is also composed of others cells, including
sinusoidal hepatic endothelial cells, Kupffer cells and hepatic stellate cells, that have the
ability to regenerate the liver.

2.1.1 Macroscopic anatomy

Fig. 2.1 Lower gastrointestinal anatomy.1 Fig. 2.2 Couinaud Classification.2

The liver is the largest organ of the human digestive system with brown color and
smooth surface. It has three surfaces including superior, inferior and posterior surfaces. The
superior surface is linked to the diaphragm by the falciform ligament. The inferior surface
is in relation with the stomach and the duodenum, while the posterior surface is in direct
contact with the diaphragm. As illustrated in Fig. 2.1, the liver is located in the upper-right
portion of the abdominal cavity and is composed of two main lobes. From the Couinaud
classification shown in Fig. 2.2, we can observe that the liver anatomy can be divided into
eight functionally independent segments delimited by hepatic venous. As each segment has
its own vascular flow, an entire segment can be removed without damaging the vascular
system during resection intervention. The liver is responsible for over 20 percent of the
oxygen consumption, and is considered as a portal organ because it is located between the
portal circulation and the vena cava.

1http://www.anatomy-diagram.info/normal-anatomy-of-the-liver/
2http://www.intechopen.com/books/hepatic-surgery/liver-resection-for-hepatocellular-carcinoma
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2.1.2 Microscopic anatomy

At microscopic scale, the liver is organized into lobules composed of millions of hepatics cells
linked together. Each lobule has hexagonal shape centered on a central vein corresponding
to a branch of hepatic vein. Each lobule corner allows supplying blood to the lobule from
branches of the hepatic artery and the portal vein. The blood is then mixed in the hepatic
vessels and routed out to the central vein branch. Inversely, the bile is synthesized and is
drained away from the central vein toward bile duct branch. Then the bile is routed out of
the liver via the common hepatic duct leading to the intestine. Due to the number of liver
functions, this organ is involved in a variety of pathological processes that can affect the
microscopic appearance of the liver. In this thesis, we focus only on primary and secondary
liver cancer.

2.1.3 Liver cancer

Liver cancer, also known as hepatic cancer, corresponds to single or multiple tumors that
spread into the liver affecting the hepatic cells with different growth patterns. Two main
categories of cancer may affect the liver including primary and secondary liver cancers.

Primary cancer

Primary liver cancer corresponds to cancer that starts from the liver. It is mainly caused by
cirrhosis that may be induced by several factors including:

• Alcohol consumption: During excessive alcohol consumption over a long period of
time, normal liver functions may be interrupted. Such problem leads to the destruction
of liver cells. It is worth mentioning that certain individuals are more affected by
alcoholic cirrhosis, because alcohol metabolization of the liver depends on several
parameters, including gender, age, and weight.

• Viral hepatitis: Several forms of hepatitis viruses may attack the liver and may cause
liver inflammation and cirrhosis. The two most commons form of viral hepatitis are
hepatitis B and C that are contracted by infected blood and body fluids.

• Genetic disorders: Inherited disorders, such as Haemochromatosis and Wilson’s
diseases, may cause cirrhosis as they induce accumulation of toxic substances in the
liver. For example, Haemochromatosis is a inherited disease causing an excessive
amount of iron in the body. With Wilson disease, the mutation of an abnormal gene
introduces accumulation of copper in the tissues.
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• Autoimmune disorders: Immune system disorders may also cause cirrhosis. Exam-
ples of autoimmune liver diseases are primary biliary cholangitis (PBC), and autoim-
mune hepatitis. PBC is responsible for destruction of the small bile ducts within the
liver. Such disease therefore limits the bile flow inducing progressive inflammation,
scarring, and the toxic effects of accumulating waste products. Autoimmune hepatitis
is another immune disorder, where the immune system considers hepatic cells as
foreign and destroys them.

• Non-alcohol related fatty liver disease (NAFLD): NAFLD occurs when fat is de-
posited in the liver tissues due to other causes than excessive alcohol consumption.
Several factors may introduce such effect including medication consumption and soft
drinks containing high concentration of fructose.

Secondary cancer

The secondary liver cancers, also called cancer metastases, spread into the liver from another
part of the body. This is caused when cancer cells break away from the primary cancer and
move to other body parts through the bloodstream or lymph system. It is worth mentioning
that secondary liver cancers are more prevalent than primary liver cancers. Secondary liver
metastases are generally caused by cancers of the colon, pancreas, stomach, lung or breast.

Liver cancer diagnosis

To determine the presence of liver cancer, several tests may be conducted such as imaging and
blood tests. Imaging tests consist in finding suspicious areas by using Ultrasound, Computed
Tomography or Magnetic Resonance imaging. The different technologies of these imaging
systems are described in the next section. Different bloods tests may also be used since
liver cancer modifies levels of certain substances in the blood. These tests may include viral
hepatitis tests, Alpha-fetoprotein blood tests.

2.2 Medical imaging

2.2.1 Computer tomography

Computer tomography, also called CT, refers to computerized X-ray imaging that produces
cross-sectional images of the patient. It is based on the principle that the tissue density,
passed by an X-ray beam, can be retrieved from the measurements of X-ray attenuation. Such
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imaging system therefore consists in taking several X-rays images obtained from different
angles. Image reconstruction algorithms allow obtaining 3D CT volume that shows the
skeleton, organs, and soft-tissue of the patient. The first CT device has been created in 1972
by Godfrey Newbold Hounsfield and Allan MacLeod Cormack. The original prototype was
able to generate CT image of the brain in less than 2.5 hours. Several improvements have
been performed regarding the speed acquirement, image quality, and image resolution. Today,
new generations of scanner allow taking CT image in less than 1 second.

Acquisition system: CT scanners are composed of two elements including an X-ray source
and X-ray sensors. The source allows generating the X-ray beam that passes through the
patient tissue, while the X-ray sensors measure their X-ray attenuation coefficients. X-ray
sensors are positioned on the opposite side from the X-ray source, and they rotate around the
studied patient in order to measure the attenuation of the whole volume.

Image characteristics: CT image has the advantage to provide images of high quality.
Furthermore, contrast materials may be used in order to highlight structures such as blood
vessels that would be difficult to delineate from their surroundings tissues. However, CT
system exposes the patient to an amount of radiation that may produce adverse effects.

2.2.2 Magnetic resonance imaging

The Magnetic Resonance Imaging, also called MRI, refers to a medical imaging technique
that allows imaging the human body. It relies on the physical principle of Nuclear Magnetic
Resonance discovered by Isidor Rabi in 1938. This principle induces that hydrogen atoms in
a magnetic field may absorb and emit radio-frequency (RF) signals. Magnetic field allows
aligning protons within the hydrogen atoms, while radio-frequency waves knock them from
their positions. The re-alignment of the protons produces radio-frequency signal that can
be measured by MRI acquisition system. As these protons are re-aligned at different rates
depending on the tissue density, the emitted RF signal is also different. This characteristic
therefore allows distinguishing and delineating the different tissues in order to create an
image. The first MRI medical device was created in 1969 by Paul C. Lauterbur.

Acquisition system: The MRI acquisition system is composed of three elements including
magnet, coils, and R.F antenna. The magnet allows generating a constant and permanent
magnetic field across the studied volume. The coils introduce linear variation of the magnetic
field along specific axis and therefore allow retrieving the spatial direction of the RF signal.
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Finally, the antennas allow generating the radio-frequency signal that is absorbed and re-
emitted by the hydrogen atoms.

Image characteristics: The MRI imaging has the advantage to present good imaging quality
that depends on the magnetic field strength. The greater is the magnetic field intensity,
the better is the imaging quality. Contrast agents may be injected in order to improve
the contrast between different tissues. Furthermore, the contrast of different anatomical
structures or pathologies can be emphasized by exploiting the different relaxation properties
of the hydrogen atoms. By doing so, different MRI imaging types can be obtained such as
T1-weighted imaging and T2-weighted imaging.

2.2.3 Ultrasound imaging

Ultrasound imaging, also called ultrasonography, is a intra-operative imaging technique that
produces either 2D or 3D images of the human body. It relies on the physical principle that
ultrasound waves are partly reflected whenever a change in acoustic impedance is encountered
between two media. Therefore, we can determine the limits between soft-tissues by emitting
ultrasound waves through tissues and measuring their reflection. US waves correspond to
acoustic waves whose frequency is higher than those audible by human. They have been
discovered by Spallanzi in 1794 by deducing that bats use ultrasound in order to navigate
by echolocation. In 1880, ultrasonic waves have been reproduced by Pierre Curie when he
discovered the piezo-electric effect. However, its first application for medical purpose was
proposed by Dussik in 1941 in order to obtain brain imaging.
Acquisition system: The ultrasound probe, also called transducer, is the main element of
an ultrasound system and has two functions. Its first function consists in emitting US signal
through human tissues, while the other function allows receiving the US signal reflected by
tissues interfaces and converts it into electric signal. This transformation is performed from
piezo-electric elements attached to the ultrasound probe. The image is formed by analyzing
both the time and the strength ratio between the emitted and the reflected ultrasound wave.

Image characteristics: The ultrasound systems have the advantage to render real-time
images with non-ionizing energy. Furthermore, they are relatively affordable compared
to other imaging systems. Consequently, this imaging modality is very well suited for
interventions requiring image guidance. However, as illustrated in Fig. 2.3, US imaging may
produce bad quality images due to the presence of bones or gas as they have high acoustic

3 http://www.prweb.com/releases/2011/5/prweb8377014.htm
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(a) (b)

Fig. 2.3 (a) Illustration of US machine and probes3. (b) Illustration of 2D US image.

impedance. In addition, speckle noise can also perturb significantly the visualization due to
the interference of the returning wave at the transducer aperture.

2.3 Percutaneous minimally-invasive therapies

In this section, we describe the main minimally-invasive therapies used for hepatic tumor
treatment including radiofrequency ablation, cryotherapy, and percutaneous alcohol ablation.
These interventions are generally guided by ultrasound imaging since they require accurate
placement of needle with respect to anatomical structures. It is worth mentioning that others
invasive treatments can be used instead. For example, resection is considered as the most
curative treatment but is feasible for only 20 % of the patients. Liver transplant can also be
recommended for end-stage liver disease. However, this intervention is not always carried
out due to the small number of available liver donations. Chemotherapy is used to disrupt the
cancer growth, or reduce symptom, but can not completely cure liver cancer.

2.3.1 Radiofrequency ablation

The radiofrequency ablation (RFA) is a treatment technique that is used to destroy tumors in
the liver. During this intervention, a needle is inserted within the tumor, and delivers a high
frequency alternating electrical current that generates heat burning out the adjacent tissue. As
illustrated in Fig. 2.4, this treatment causes necrosis of the tissue whose the diameter around
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the needle increases with intervention time. Generally, the surgeon has to maintain in place
the needle for about 10 to 15 minutes per nodule.

Fig. 2.4 Illustration of radio-frequency ablation procedure guided by ultrasound imaging
(Chagnon et al., 2001). (Left) image representing liver tumor before treatment. The hy-
perechoic area represents liver metastases. (Right) image representing liver tumor during
treatment. The RFA needle is inserted (black arrows). The hyperechoic is larger due to the
necrosis of tissues.

2.3.2 Cryotherapy

The cryotherapy is a local percutaneous treatment used to kill malignant cells. The principle
of this technique consists in destroying the tumor by using a cryoprobe that delivers low
temperatures. Argon gas, or nitrogen liquid are the most commonly used agents to destroy
the tissue. The intervention time is estimated to 20 minutes per nodule. Regarding Chagnon
et al. (2001), the complications are more important with the cryotherapy compared to the
RFA described in the previous section.

2.3.3 Percutaneous ethanol injection

The Percutaneous Ethanol Injection (PEI) is a local percutaneous treatment that injects
ethanol directly into the malignant tissue of the liver. The alcohol kills the malignant cells
by dehydrating the tissue, and stopping its blood supply. This method is well suited when
the patient has a small number of little tumors. Regarding Chagnon et al. (2001), the RFA
intervention shows better results than the PEI.
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2.3.4 Current limitations

Minimally-invasive therapies for tumor ablation are increasingly used since they reduce risks
of complication, patients pain, and length of hospital stays. Despite the benefits of these
treatments, there are still some unresolved technical limitations that reduce their accuracy
and their effectiveness. In this section, we detail different types of limitations related to
imaging shortcomings, treatment characteristics, and soft-tissue movements.

Ultrasound imaging shortcomings

As stated before, the minimally-invasive interventions are generally performed under ultra-
sound guidance. However, several US imaging shortcomings may affect the visualization of
the surgeon. Among these shortcomings, ultrasound shadow is one of the most perturbing
since it may occlude targeted structures during the procedure. This artifact is caused by strong
reflections of ultrasound waves due to bad contact between skin and probe, or gas production
during the ablative process (Künzli et al., 2011). Furthermore, US shadows can also be
introduced by solid structures such as bones or calculus. Another common drawback of US
imaging is related to speckle noise introduced by the presence of micro-structures within
soft-tissues. This noise generates granular intensity variation in the sequence of ultrasound
images and complicates the accurate localization of medical tools such as the needle tip
position. Finally, it is worth mentioning that ultrasound imaging has small field of view and
limited acoustic window due to chest size and rib spaces of patients. As a consequence, the
structures of interest may be only partially visible. In Fig. 2.5, we illustrate different US
shortcomings.

SpeckleShadow

(a)

(b)

(c)
Fig. 2.5 Illustration of ultrasound shortcomings. (a) US image that represents partial view of
the liver. (b-c) Speckle noise illustrations.
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Treatment characteristics

The success of minimally-invasive therapies can also be affected by issues related to treatment
characteristics. Indeed, these interventions can only treat small regions around the needle
tip. Higgins and Berger (2006) provide a study that shows that the tumor can be completely
removed if its size is less than 5 cm. As a consequence, the size of malignant tissues may
have an impact on the treatment effectiveness. The tumor localization may also play a
significant role since minimally-invasive thermal procedures, such as RFA or cryotherapy,
can not be applied to liver regions close to large vessels. These regions are protected by
heating and cooling effects provided by the temperature of the blooding flow. To cope with
that issue, percutaneous ethanol injection can be used instead but its effectiveness depends
on the heterogeneity of alcohol distribution within the soft tissues.

Dynamic structures

During minimally-invasive therapies, the accurate needle placement can be perturbed by the
dynamics of soft-tissues that cause displacement of targeted structures over the time. These
motions are generally caused by physiological movements such as respiratory or cardiac
motions. However, medical tools manipulation, such as ultrasound probe pressure on skin,
may also introduce displacements and deformation of soft tissues. Such issue makes the
surgeon readjust the needle position in order to ensure success of the therapy and avoid
eliminating healthy tissues. The problem becomes even worse if the acquisition rate of
the US probe is not sufficient in order to ensure a continuous visualization of soft tissue
displacement.

2.4 Conclusion

In this chapter, we described the medical context of the thesis related to mini-invasive
interventions for liver cancer treatment. Compared to classical surgery, these therapies are
promising since they significantly reduce pain and recovery time of the patient. However, the
effectiveness of these procedures depends on their accuracy since these interventions rely
on highly localized surgery. To improve their precision, several research groups proposed
different approaches that allow determining the position of targeted structures over the time.
In the following chapters, we describe the different components and the principle of these
approaches. We also propose several novel contributions that aim at improving both accuracy
and robustness of the tracking.
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Related work

During minimally-invasive therapies of the liver, such as RFA, an accurate positioning of
needle is required in order to treat malignant tissues. However, such task may necessitate
considerable time and efforts of the surgeon due to motions of structures of interest. Fur-
thermore, the visualization of different tissues may also be perturbed by different ultrasound
imaging artifacts described in the previous chapter. To cope with that issue, registration and
tracking methods may be employed as they allow determining both the displacement and the
deformation of targeted structures between two images.

This chapter describes the different components and related work associated to registration
and tracking methods. Only approaches dedicated to US images are reviewed since this
imaging modality is the most used technology in order to guide minimally-invasive per-
cutaneous interventions. We also detail the performance of different registration methods
that allow aligning US imaging to other pre-operative imaging.

The chapter is structured as follows. In Section 3.1, we give an overview of the main
components of registration techniques. In Section 3.2, we detail some work related to the
tracking and registration techniques. Section 3.3 concludes the chapter by detailing possible
future research directions.

3.1 Tracking/Registration components

The objective of registration methods is to define the geometric transformation that aligns
reference and moving images. The optimal geometric transformation is found by minimizing
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the following cost function expressed as:
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represent respectively the intensity vector of the reference image and the
moving image. Throughout this thesis, we interchangeably use the terms moving image
and current image. T � I
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denotes the intensity vector of the aligned image representing the
moving image transformed by the geometric transformation T . Any registration technique
also depends on:

• Similarity criterion term S: The similarity criterion allows measuring the alignment
between the reference image and the current image. Ideally, this criterion has a single
global optimum when both images are aligned.

• Transformation Model T : The transformation model aims at representing the space
of possible displacement ensuring alignment between two images. Transformations
are generally categorized into rigid and non-rigid models.

• Regularization term R: The objective of the regularization term is to penalize unreal-
istic properties of the transformation, such as non smooth deformations, target volumes
changes and folding.

• Optimization strategy: The optimization strategy allows finding the optimal param-
eters of the transformation that aligns the reference image to the current image by
minimizing the cost function described above.

The tracking approaches also depend on these components because they are strongly related to
registration methods. Indeed, the tracking objective is to define the geometric transformation
relating the target position over a set of consecutive images. The major difference is that
tracking methods generally require fast algorithms in order to handle real-time image stream.
It is worth mentioning that tracking and registration techniques may also be categorized
regarding several other criteria, e.g. imaging modality, type of anatomical structure and type
of user interaction. However, they are not discussed in this section since it is out of the scope
of this thesis.

3.1.1 Matching criteria

The matching criterion quantifies the level of alignment between a reference image and a
moving image. They are often categorized into intensity-based and feature-based matching
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criteria (De Luca et al., 2015). The first class aims at determining the alignment between
images from intensity correspondence measurements. These methods have the advantage
to provide good accuracy and robustness. However, they are generally computationally
demanding due to the high number of pixels or voxels in the image. Feature-based methods
are based on the extraction of features, e.g. points, edges, local intensity statistics, between
reference and moving images. Therefore, their matching criteria are generally formulated as
distance between the feature locations. Feature-based methods are generally faster as they do
not use the intensity of the whole image. However, the main drawback is they may provide
incorrect results when features are not well detected.

Sum of Squared Distance (SSD)

In tracking and registration applications, the Sum of Squared Distance criterion is the most
used criterion due to its simplicity (Yeung et al., 1998). It can be expressed as follows:
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are vectors that represent respectively the image intensity at time index
t0 and at time index t. p and p

t0 represent respectively the considered points positions in
the images I
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. As it can be seen from previous equation, the SSD cost function
directly represents the squared difference between reference intensity and current intensity.
Consequently, this matching criterion is well suited when the intensity of physical point is
constant between the reference and current images.

Sum of Absolute Distance (SAD)

As proposed by Touil et al. (2010), some work are also based on the use of Sum of Absolute
Distance in order to define the intensity correspondence between images. This criterion can
be expressed as follows:
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As it can be seen from previous equation, the SAD cost function directly represents the
absolute difference between two images. As for SSD, this criterion is adapted when the
intensity of interest structure remains constant over the time. SAD cost function provides
better results than SSD in the presence of Laplacian noise. However, SSD provides more
accurate results than SAD with Gaussian noise.
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Normalized-Cross Correlation (NCC)

As it can be seen from previous equations, SSD and SAD criteria are well-suited if there is
no intensity shift between reference and current images. However, this assumption is not
always valid. To cope with this issue, cross-correlation criteria, assuming linear relationship
between the intensity distributions, have also been proposed (Irani et al., 1992). A typical
example is the normalized cross-correlation criterion that can be expressed as follows:
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Mutual Information (MI)

As the intensity relationship is not necessarily linear, more sophisticated approaches based
on theoretical measurements from probability theory and statistics have been studied. These
criteria are generally well-suited for multi-modal application, where images are acquired
from different imaging devices with specific physical properties. Among them, the mutual
information, as proposed by Elen et al. (2008), has been the most widely used similarity
criterion. It measures the amount of information that can be obtained about one variable by
observing another. This gives an indication about the quantity of information that is shared
between two variables. The mutual information criterion (MI) can be expressed as follows:

S

MI

=

N

vX

k=1

p

I

t

I

t0
log

✓
p

I

t

I

t0

p

I

t0
p

I

t

◆
(3.5)

where p

I

t0
and p

I

t

are respectively the probabilities associated to the reference and current
images. p

I

t

I

t0
denotes the joint probability density function between reference and current

images normalized by the number of pixels.

Feature-based distance

In feature-based registration approaches, the matching is performed by measuring the distance
between feature locations. It is worth mentioning that feature-based methods may also use
matching criterion in order to determine the correspondence between features from reference
image to moving image. This is performed by comparing the pairwise distances between
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feature descriptors that allow characterizing feature. To do so, several distance measurements
can be used such as:

• Euclidean distance: It corresponds to the norm of the difference of vectors expressed
as follows:

D

e

= ||x� y||2 (3.6)

where x and y represent vectors of the feature locations in the reference image and in
the current image. As it can be seen from previous equation, all the vector components
contribute equally to the Euclidean distance.

• Mahalanobis distance: it corresponds to another distance that takes into account the
variability between two vectors (Mahalanobis, 1936). It can be expressed as follows:

D

m

= ||(x� y)TS�1
(x� y)||2 (3.7)

where S represents the covariance matrix between descriptor vectors of the features in
the reference image and in the current image.

3.1.2 Transformation model

The transformation model allows defining spatial correspondence by mapping point locations
from reference image to moving image. In the literature, different transformation models
have been proposed in order to represent several type of displacements from rigid to non-rigid
motions. Therefore, different numbers of parameters may help to characterize transformation
models.

Rigid/Affine transformation

A number of tracking approaches, as proposed by (Masum et al., 2014), are based on rigid
model since it provides constant displacement field without any deformation. It can be
expressed by translation and rotation parameters as follows:

T (p
t0) = Rp

t0 + t (3.8)

where R and t represent respectively the rotation matrix and translation vectors. T (p
t0) rep-

resents the transformed pixel/voxel positions. Such model is well-suited for rigid anatomical
objects such as bones. Affine transformation, as proposed by Wein et al. (2008a), slightly
differs from rigid model by replacing the rotation matrix by affine matrix combining shear,
scale and rotation parameters.
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Block-matching transformation

As mentioned earlier, the rigid transformation model can not correctly represent deformable
structures. To cope with that issue, block matching transformation models, introduced
by (Jain and Jain, 1981), can be used since they allow estimating the displacements by
subdividing the whole image into small image blocks. Then, the displacement field is
obtained by computing the translation displacement of each block. As illustrated in Fig. 3.2,
deformable implementation of block-matching transformation models can also be designed
by smoothing the displacement field between the blocks (Basarab et al., 2008).

Thin plate splines

The thin plate splines (TPS), as proposed by Bookstein (1989), is a technique based on
the radial basis functions in order to represent non-rigid deformation. This transformation
model interpolates the whole displacement field by using a set of control point x

l

. It can be
expressed as follows:

T (p
t0) = Ap

t0 + t+
NX

i=0

w

i

�(||p
t0 � x

l

i

||) (3.9)

where � denotes a distance function which is �(r) = r

2
log(r) in the 2D case, and �(r) = r

in the 3D case. The matrix A denotes respectively the affine transformation combining shear,
scale, and rotation parameters. w

i

represents the weight of each control point from linear
equation system. N represents the number of known control points. The thin plate splines
transformation is considered as global transformation since each control has a influence on
the whole displacement field of the image.

Free-form deformation

The Free-Form Deformation (FFD), as proposed by Sederberg and Parry (1986), is com-
monly used as transformation model in medical imaging registration. In contrast to TPS, the
displacement of a control point provided by FFD has only local influence on the displace-
ment field, and therefore allows representing highly localized deformation. The free-form
deformation defines a rectangular grid of controls points which is superimposed upon the
image whose dimension is lower than the image dimension. The displacement field of the
whole image expressed in the following equation is then locally interpolated from the known
value by using splines functions:
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u(x) =
3X

l=0

3X

m=0

3X

n=0

B

l

(u)B

m

(v)B

n

(w)d
lmn

(3.10)

where B

l

, B
m

and B

n

denote the B-spline functions. d
lmn

is the displacement of a
specific node of the grid. The coordinates u, v and w represent the normalized coordinates of
specific point within a grid block.

Contour model

The ultrasound tracking methods are also often based on segmentation methods providing
transformation model that defines a contour around the region of interest. These transforma-
tion models can be categorized into explicit (Nascimento and Marques, 2008) and implicit
(Osher and Fedkiw, 2003) warping functions. The explicit representation allows defining
the contour from a set of control points and spline equations as shown in Fig. 3.1a. The
implicit model represents the contour from signed distance map function around the object.
These models have the advantage to be robust to topology changes, intersection and splitting
operation. A typical implicit transformation is the level-set framework where the distance
map is encoded from a grid of points. As illustrated in Fig. 3.1b, the curve is defined by the
isolevel of value 0.

P1 P2 P3

P4

P6

P7
P5

P9

Q1

Q2

Q3

Q4

Q5
Q6

Q7

Q8

(a)

ϕ<0

ϕ>0
ϕ=0

(b)

Fig. 3.1 Explicit and implicit contour models. (a) Spline contour defined by the control points
Q

i

and passing through the points P
i

. (b)Implicit contour model defined by isolevel of value
0. � denotes the signed distance map function.

3.1.3 Regularization

In tracking applications, non-rigid transformation may provide non-physically plausible
deformations such as folding, large local stretching or shrinking. To cope with that issue,
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regularization terms can be added as post-processing steps. They allow providing realistic
tracking results by constraining the deformation field. The most used regularization terms
are the following:

• Volume preservation: In registration methods, volume preservation regularization
term can be used in order to ensure that some visualized tissues are incompressible
(Tanner et al., 2000). A simple example is a rigid part of the body such as a bone
structure.

R(T ) =

1

N

v

N

vX

k=1

| log(det(J
T

(p
t

)))| (3.11)

where J
T

denotes the Jacobian transformation representing the spatial derivatives of
the transformation. N

v

represents the number of voxels affected by the transformation
T .

• Spatial smoothness: The spatial smoothness constraint, as introduced by Heyde et al.
(2012), is based on the assumption that the displacement field between two neighboring
voxels does not involve sudden local changes. It can be expressed as follows:

R(T ) =

1

N

v

N

vX

k=1

|ru(p
t

)|2 + |rv(p
t

)|2 + |rw(p
t

)|2 (3.12)

where ru, rv, and rw represent the vectors containing spatial derivative of the
displacement field.

• Inverse Consistency: Interchanging the order between reference and current images
may produce slightly different transformations due to the existence of several optimums.
Such drawback may significantly impact the algorithm precision and may produce
biased results. To cope with that issue, the inverse consistency regularization, as
proposed by Christensen and Johnson (2001), allows penalizing inconsistent inverse
transformations. This can be expressed as follows:

R(T, T

b

) =

1

N

v

N

vX

k=1

||T
b

(T (p
t

))� p
t

||2 (3.13)

where T represents the normal forward transformation that aligns reference image to
current image. T

b

denotes the inverse transformation ensuring alignment from current
image to reference image.
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• Time Prediction: As the ultrasound images are acquired consecutively, several track-
ing methods assume that the evolution of the transformation model can be retrieved
from past images. Therefore, such approaches aim at predicting the optimal trans-
formation from dynamic systems. Generally, the prediction is performed by using
either Kalman filter (Kalman, 1960) or Particle filter (Gordon et al., 1993). It is worth
mentioning that Kalman filter is well-suited when the relationship between motions
and measurements is linear. However, particle filter provides better prediction when
this relation is non-linear.

3.1.4 Optimization strategies

The optimization problem aims at finding the optimal parameters by minimizing the cost
function defined in the Eq. (3.1). They are generally categorized into continuous strategies
and discrete strategies. It is worth mentioning that the first class of methods is the most used.
Therefore, we do not review discrete methods as they are rarely used for ultrasound tracking
application.

Continuous strategies

The main principle of continuous optimization methods is to estimate the parameters from
previous estimation. The update rule can be expressed as follows:

qk+1
= qk

+ ↵

i

gk

(qk

) (3.14)

where qk and qk+1 represent respectively the parameters values estimated at iterations k

and k + 1. gk represents the search direction obtained from the optimization strategy. ↵
i

denotes the optimization gain. In order to compute the search direction gk, several methods
are proposed including:

• Gradient descent: This method, as described by Moré and Thuente (1994), allows
considering the search direction to be proportional to the first-order derivative function
at the current point such that gk

= r
q

(qk

).

• Conjugate gradient descent: This method, as introduced by Fletcher and Reeves
(1964), expresses the search direction as a linear combination of previous calculated
first-order derivative functions. Therefore, the search direction can be defined with a
linear combination which can be expressed as gk

= r
q

(q) + �gk�1, where � is an
optimization gain.
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• Powell’s method: Powell’s method, as described by pre (2007), is a zero-order opti-
mization method minimizing the cost function thanks to a set of initial search vectors
that depend on the number of parameters. The minimization is performed along each
search vector iteratively. At each iteration, the displacement vector can be expressed as
a linear combination of the search vectors and is added to the end of the search vector
list. When the search has been executed for each N vector, the search vectors are shifted
gi

t

= gi+1

t�1

. And the last search vector can be computed as gi

t

= qk � q0. Despite its
computational inefficiency compared to others methods, Powell minimization has been
used by several authors such as Gee (1999).

• Newton-type methods : This method is based on the computation of second-order
derivatives by computing the inverse of the Hessian matrix H in order to determine the
update step g

t

. The search direction can be therefore defined as gk

= �H�1r
q

(q).
Several variants, approximating the Hessian matrix ˆH, have been presented. For
instance, the Gauss-Newton method allows replacing the Hessian Matrix H from its
first order derivative by using ˆH = 2rT

q

r
q

.

• Levenberg-Marquart: As used by Ledesma-Carbayo et al. (2001), Levenberg-
Marquart optimization scheme can be seen as a combination between Gauss-Newton
and Gradient Descent methods. The search direction can therefore be written as
gk

= �((H�1
) + � I)r

q

(q). The term � allows automatically regulating the Gauss-
Newton term (speed) and the Gradient Descent term (stability). When the estimated
parameters are far from their optimum, the � parameter increases and the optimization
strategy can be seen as gradient descent strategy. Inversely, the coefficient � is decreased
when the parameters are close to their optimum and the optimization strategy can be
seen as Gauss-Newton strategy.

3.2 Existing methods

From the previous section, we can observe that tracking or registration methods depend on
different components, i.e. the matching criterion, the transformation model, the regularization
term and the optimization strategy. In this section, we describe related work dedicated to
motion estimation in ultrasound images. As ultrasound tracking methods are closely related
to multi-modal registration, we also present different registration approaches that allow
aligning ultrasound and pre-operative images.
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3.2.1 US tracking methods

As stated by Sotiras et al. (2013), registration and tracking methods are often categorized
into intensity-based and feature-based approaches (De Luca et al., 2015). In this section, we
relate the different tracking approaches and we present a classification of tracking methods
according to their main features in tables 3.1 and 3.2.

US intensity-based approaches

In this section, we present different tracking methods dedicated to the position estimation
of 2D and 3D anatomical structures from intensity correspondence measurements. The
following approaches are presented chronologically:

• Yeung et al. (1998) introduced a 2D US tracking method that follows muscle con-
traction motion in consecutive ultrasound images by exploiting the spatial temporal
coherence of ultrasound speckle noise. Their approach retrieves deformable motions
by using block matching model and SSD criterion. To constrain the displacement field,
the authors proposed a regularization scheme based on elastic operator. Their method
is validated through simulation, phantom and real data representing muscle contraction
motion.

• Pennec et al. (2001) proposed a method that allows tracking brain deformations in
3D consecutive ultrasound images. This approach estimates the displacement field by
minimizing the similarity energy from Local Cross-Correlation (LCC) criterion and
regularizing the transformation from Gaussian filtering. The method has been tested
from US images of a pig brain at a post-lethal status and from phantom studies.

• Cohen and Dinstein (2002) presented a 2D tracking method combining classical block
matching model and ultrasound specific similarity measure. This criterion assumes
that the US images are degraded by Raleigh distribution multiplicative noise based
on maximum likelihood motion estimation schemes. The approach has therefore the
advantage to be well suited to high speckle noise. The method was validated on six
in-vivo ultrasound sequences of fetuses.

• Basarab et al. (2008) introduced an approach that allows estimating 2D motion of
structures in order to compute ultrasound elastography. The proposed method aims at
handling highly localized motions by introducing multiscale bilinear deformable block
matching models as illustrated in Fig. 3.2. The displacement of each block is estimated
by using cross-correlation similarity criterion. Such method has been validated on two
ultrasound sequences of the thyroid gland.
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Fig. 3.2 Bilinear deformable block matching proposed by Basarab et al. (2008)

• Elen et al. (2008) developed a 3D tracking method in order to estimate the strain of the
left ventricle from 3D US images. This approach is based on the estimation between
free-form deformation and mutual information. In order to ensure tracking robustness,
the displacement field is regularized by combining spatial smoothness and volume
conservative constraint. The method was validated on in-vivo images acquired from 3
volunteers and one patient.

• Wein et al. (2008b) proposed an approach in order to compensate internal liver motion
based on tracking sensors attached to both probe and skin. This method aims at register-
ing 2D ultrasound slice to 3D volume acquired by sweeping the probe over the whole
liver during a breath-hold. To do so, the image registration method combines affine
model, local normalized cross correlation matching, and Powell-Brent optimization
scheme. Their approach has been evaluated on liver sequences acquired from four
volunteers.

• Mukherjee et al. (2011) provided a method that allows computing myocardial motion
over 3D US sequence. This approach relies on the coarse to-fine displacement estima-
tion of free-form transformation model obtained from SSD criterion. The validation
was performed from 3D transesophageal echocardiography ultrasound images acquired
on real patients.

• Lee and Krupa (2011) introduced a method that allows compensating of deformable
soft tissue structures by controlling a 3D probe held by a robot arm. Such technique
relies on the motion estimation of thin-plate spline model estimated from SSD criterion.
Then, the robotic system compensates tissue deformation by extracting rigid motion
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part from TPS motion model. This method has been validated by using two types of
phantom.

• Metz et al. (2011) and Vijayan et al. (2013) proposed a new groupwise tracking
strategy aligning all the US images of sequence at the same time. Each US image is
taken into account in the computation of the cost function. In this approach, both spatial
and temporal smoothness of the transformations are enforced by using a free-form
B-spline deformation model. Some results of this method are illustrated in Fig. 3.3. In
Vijayan et al. (2013), the method was validated on nine 3D ultrasound datasets of the
liver of patients.

(a) Input image (b) Registration results

Fig. 3.3 Registration results obtained from group-wise registration method from Metz et al.
(2011). The sub-figures (a) right top and right bottom represent the intensity of the initial
image at the position of the dotted lines over the time. The sub-figures (b) right top and right
bottom represent the intensity of the registered image at the position of the dotted lines over
the time.

• Bell et al. (2012) introduced a 3D tracking approach based on rigid model where the
displacements are computed from NCC matching criterion. Their study shows that
volume rates as high as 8–12 Hz are needed for respiratory-dominated liver motion
with 3D ultrasound speckle tracking in order to avoid speckle decorrelation.

• Heyde et al. (2012) presented an approach that estimates cardiac deformation within
2D US images. Such method relies on the improvement of free-form deformation
model. As it can be seen in Fig. 3.4(left), free form deformation is generally repre-
sented by regular grid. The authors propose to update this formulation by integrating
anatomical free-form deformation (AFFD) model where the basis functions are locally
oriented along the left ventricle as shown in Fig. 3.4(right). This technique has the
advantage to be very well-suited for cardiac motion. The displacements of the AFFD
model are computed by optimizing the SSD criterion. The proposed method has been
evaluated on five anesthetized sheeps.
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• Baumann et al. (2012) presented a 3D ultrasound tracking method that allows re-
trieving prostate deformation from coarse-to-fine registration framework. Indeed, the
method first allows retrieving the rigid motion from rigid model. Then, it allows
computing the residual elastic motion from combination of ultrasound correlation-
based criterion and elastic operator. The proposed matching criterion deals with local
ultrasound intensity shift that may occur when the angle of US beam changes. These
intensity shifts are compensated by using Gaussian convolution operators. The pro-
posed approach was validated on a large set of 687 registered volumes obtained from
40 patients.

Fig. 3.4 Anatomical free-form deformation model proposed by Heyde et al. (2012)

• De Luca et al. (2013) introduced an approach that allows tracking liver vessels in
long 2D US sequences. This method enhances the classical block matching method by
introducing a strategy that allows adapting automatically block size. In addition, the
proposed technique aims at improving the robustness by using a learning strategy that
updates the reference image over the time. This method was validated on 9 sequences
of the liver of volunteers under free breathing.

• Masum et al. (2014) presented an approach that allows measuring motion of the
knee bones using tri-plane B-mode ultrasound. This method combines rigid model
displacement and the Sum of Conditonal Variance criterion as this latter showed better
results than Mutual Information, cross-cumulative residual entropy as demonstrated in
Richa et al. (2011). No regularization term is required since rigid model constrains the
displacement to be constant.

• Banerjee et al. (2015) proposed a new regularization framework inspired from game
theory approach. This technique relies on the displacement estimation from classical
block-matching methods. Then, the regularization framework removes false block
matches from geometry and appearance constraints. The appearance constraint ensures



3.2 Existing methods 31

that the intensity error between matched block is not too high, while the geometric
constraint allows removing blocks that show large displacement.

In table 3.1, the previous methods are classified according to their main components. We
can observe that the majority of these approaches use mono-modal similarity metrics and
therefore may provide incorrect results due to intensity variation produced by ultrasound
shortcomings. To overcome this limitation, multi-modal similarity criteria have also been
proposed such as Mutual Information (MI) (Elen et al., 2008), or Sum of Conditional Variance
(SCV) (Masum et al., 2014). However, MI calculation is computationally expensive and is
therefore not well suited for real-time tracking applications in 3D ultrasound images. The
SCV has the advantage to be fast but it is not robust against local intensity variation that
can be introduced by shadows. To cope with specific shortcomings of ultrasound imaging,
US-specific similarity measures have also been evaluated by Baumann et al. (2012) and
Cohen and Dinstein (2002). While these measures are well-suited to speckle noise and
global intensity variation, they provide inaccurate results when US images are affected
by shadows. To compensate the noise sensitivity of these criteria, most of the tracking
methods are based on the usage of regularization terms. Several types of regularization can
be identified such as spatio-temporal operators (Mukherjee et al., 2011), inverse consistency
constraint (Baumann et al., 2012) and outlier rejection (Banerjee et al., 2015). Mechanical
regularization has also been proposed despite its high computational cost (De Luca et al.,
2015). However, such operator is not adapted for 2D tracking applications due to the presence
of out-of-plane motions. From table 3.1, we can notice that these regularization terms can
be combined in order to ensure better tracking results as proposed by Metz et al. (2011).
Additionally, we can also notice that several approaches do not use any regularization since
their transformation models sufficiently constrain the displacement field. However, such
methods are not dedicated to the tracking of deformable targets. To improve the tracking
accuracy, specific models have also been introduced since they are more adapted to targeted
structures (Heyde et al., 2012) or US images (Basarab et al., 2008).
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Feature-based methods

Feature-based methods aim at providing the spatial transformation between reference and
current images by aligning key features, e.g. surfaces (Papademetris et al., 2002) or keypoints
(Schneider et al., 2012). In this section, we introduce chronologically some approaches that
rely on feature detection:

• Papademetris et al. (2002) have designed an approach that allows estimating motion
of regional cardiac structure from three-dimensional image sequences. This method is
based on shape tracking that is performed on interactively segmented images. In order
to constrain the deformation field, the proposed algorithm used linear elastic operator.
This method was validated on 3D in-vivo US images obtained from 4 dogs.

• Comaniciu et al. (2004) introduced an approach that allows tracking myocardial
surface in 2D real-time images. In this method, the target is represented by b-spline
curve and its position is estimated by using dynamic prediction obtained from Kalman
filter. The motion estimation is performed by using optical flow algorithm on a
sparse set of control points. To ensure robustness, a regularization term, combining
adapted principal component analysis and uncertainty measure, is also introduced. The
approach was validated on 32 ultrasound sequences acquired from patients.

• Xiao et al. (2007) presented a method for tracking anal canal in 2D ultrasound images.
This technique is based on Mumford-Shah formulation that aims at combining an edge
detection and an intensity-based approach. The displacement field is smoothed by
using a regularization term based on curvature energies. The proposed method has
been validated in a sequence of real anal ultrasound images evaluated by three experts.

• Nascimento and Marques (2008) also proposed an approach that allows tracking
left ventricle of the heart from dynamic prediction. The main contribution consists
in using multiple dynamic models in order to predict different abrupt motions of the
heart (systole and diastole). The curve displacements are estimated by searching edge
features along its normal. Outlier rejection process allows removing false edge features
depending on their length and their distance from predicted contour. The approach
was validated with 10 2D ultrasound sequences of the heart acquired from different
patients.

• Hu et al. (2008) proposed a method that allows registering ultrasound images during
prostate interventions. This approach has the advantage to provide robust tracking
results by generating a patient-specific statistical motion model (SMM) of the prostate
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from the combination of bio-mechanical simulation and boundary conditions such as
the position of the TRUS probe/balloon and position and size of the pelvis relative to
the prostate gland. However, its main drawback is related to the manual identification
of landmark over each frame in order to perform registration. The method was validated
on data obtained from 7 patients with prostate cancer.

• Ni et al. (2008) introduced a method initially dedicated to 3D ultrasound mosaicing.
The proposed approach aims at combining intensity-based and feature-based matching.
To do so, the initial registration is performed by using feature detection from Laplacian
of Gaussian (LoG) filter. Then, the matching is locally refined by using block-matching
that optimizes mutual information similarity measure. Furthermore, outlier rejection
process allows removing block in shadowed regions. The method was validated from
three ultrasound sequences obtained from phantom and real patient.

• Angelova and Mihaylova (2010) proposed a tracking method that allows providing
lesion segmentation in 2D ultrasound sequence. The approach aims at evaluating the
lesion contour from polyline model. The contour position is robustly estimated from
dynamic prediction obtained from particle filter. The motion estimation is performed
by an edge detection algorithm regularized by gradient norm. The approach was
evaluated from several ultrasound sequences of breast cyst, thyroid and pancreas.

• Schneider et al. (2012) proposed a method that allows tracking heart motion in US
volumes based on keypoint detection. To do so, potential features are extracted from
3D US volumes by using the LoG filter. Then, the descriptors of each feature are
compared by minimizing Euclidean distance in order to find corresponding features
between reference and current images. Outlier features are removed by using sym-
metric matching and Ransac algorithm. The method was validated with 34 ultrasound
sequences of the mitral or aortic valve in a beating heart.

• Häme et al. (2012) introduced a method dedicated to the endocardium tracking in 3D
US images. The proposed approach consists in estimating the motion of contour model
represented by level-set formulation. The displacement estimation is performed by
minimizing a cost function composed of several energy terms including image-based
and curvature energy. The image-based energy allows following the displacement
from edge detection. The second energy term regularizes the deformation from mean
curvature constraint. The validation was performed with ten 3D sequences acquired
from dogs.
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• Dietenbeck et al. (2014) also proposed a tracking algorithm based on level-set formu-
lation. The main contribution of this approach consists in finding the optimal contour
position by adding different regularization constraints. To do so, the authors introduced
cost function that includes motion estimation term, anti-collision term and shape prior
term. The method was validated with 15 echocardiographic sequences acquired from
patients.

In table 3.2, we propose to classify the previous methods according to their main charac-
teristics. Contrary to the intensity-based approaches, these methods rely on the prior detection
of features. The features are generally extracted from edge detection step (Häme et al., 2012)
or Laplacian of Gaussian (LoG) maps generation (Ni et al., 2008). Once the detection is
performed, the majority of these approaches are based on euclidean similarity measure in
order to define the alignment between features. This criterion can define either the similarity
between keypoint descriptors or the distance between sampled points of the contours. As the
features are not always clearly visible, feature-based tracking approaches are often based
on time prediction by using Kalman and Particle filters. Such regularization schemes allow
providing better tracking results as it allows relying on prior knowledge. From this table,
we can also observe that the choice of transformation model depends on the feature type.
Generally, contour features are represented by either level-set or splines warping functions
(Nascimento and Marques, 2008), while keypoints approaches propose to use rigid models
(Schneider et al., 2012). To ensure accurate tracking, several hybrid methods have been
proposed that combine intensity-based similarity criteria such as MI (Ni et al., 2008), SSD
(Comaniciu et al., 2004), or monogenic phased matching (Dietenbeck et al., 2014).
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3.2.2 Multi-modal registration methods

In previous section, we described different tracking approaches that allow defining the target
position over the time. In this section, we present some related work that allows registering
pre-operative images of other modality to US imaging. These methods can be divided into
two main categories, i.e. simulation-based and feature-based approaches. Simulation-based
approaches consist in simulating a modality from another. Feature-based approaches allow
mapping the different imaging modalities by extracting common features such as surface and
vessels.

• Roche et al. (2001) introduced an approach for rigidly register real US and simulated
US images obtained from MR volume. The simulation is performed by defining
a function that estimate US intensities from MR intensities and MR gradient. The
registration method is based on the optimization of bivariate correlation ratio (BCR)
criterion that allows measuring alignment between real and simulated images. The
proposed method aims at rejecting bad intensity matches from S-estimator. This
approach was validated from data obtained from brain images of baby and patient.

• Porter et al. (2001) proposed an approach that registers MRI and US volumes from the
extraction of common features. To do so, the liver vessels are detected from different
images by using 3-D region growing segmentation algorithm. Then, the displacements
of rigid model are estimated from maximization probability maps representing liver
vessels. The method is evaluated on two set of in-vivo data.

• Penney et al. (2004) presented an approach that aligns 2D US images and MR volume
of the liver. Their method is also based on vessels alignment from the US images
where vessels are extracted by analyzing intensity level and intensity dips. Then,
rigid motions are obtained by optimizing normalized cross-correlation criterion. The
validation was performed between different data collected from five volunteers.

• Lange et al. (2008) introduced a method that registers 3D US and CT images of the
liver based on thin-plate spline model. The displacements are computed by optimizing
a cost function that combines intensity-based and feature-based terms. The intensity-
based approach aims at finding the optimal transformation by using normalized gradient
field, while feature-based is based on the alignment of manually annotated landmarks.
The method was validated on data obtained from three patients.

• Wein et al. (2008a) introduced a method that allows registering real and simulated
US images obtained from CT volume. The simulation is performed by mimicking
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ultrasound ray-tracing scheme from acoustic impedance parameters estimated from
CT. Then, the registration is based on combination between affine model and Linear
Correlation of Linear Combination (LC2) matching criterion. The LC2 measure aims
at evaluating the correlation between US intensities and different signals extracted
from CT. The proposed approach was validated on ultrasound and CT data obtained
from 19 patients.

• Wein et al. (2010) proposed a deformable method that provides dense-field deformable
registration of CT and 3D ultrasound. It is also based on the simulation of US images
from CT images. Nevertheless, this approach provides more robust results since it
relies on the optimization of Local Cross-Correlation used in a variational formulation.
The validation of the method was performed on 12 different patients with liver lesions.

• Lee et al. (2011) presented a non-rigid registration approach that aligns 3D ultrasound
and CT images of the liver. This method allows retrieving the transformation by
aligning surfaces and vessels from a cost function that combines mutual information
criterion and Euclidean distance between surfaces. Furthermore, the displacement is
regularized by using volume preservation constraint. The method was evaluated on 5
patients.

• Kuklisova-Murgasova et al. (2012) presented a method that registers MRI and US
volume of fetal brain. This approach consists in simulating US images from pre-
operative images. However, the simulation is based on a simplified model since
the acoustic properties of the fetal skull can not be retrieved from MRI. The rigid
displacements are computed by optimizing NCC matching criterion between images.
The validation was performed on five datasets of fetal head.

• Kadoury et al. (2012) proposed a model-based rigid registration method that allows
aligning 3DUS and MR images of the liver. This approach is based on liver surface
extraction obtained from confidence based region algorithm. Then, surfaces are aligned
by using a weighted Iterative Closest Point (ICP) algorithm that minimizes the distance
between two set of points. To ensure robustness, a regularization term is introduced
in order to penalize implausible transformation candidates that map probe positions
further away from skin surface. The validation was performed on abdominal data
obtained from four patients.

• Nazem et al. (2013) proposed a method that rigidly registers 2D ultrasound and CT
images of the liver. This approach is based on the detection and the extraction of
vessels and surface of the liver. The combination of ICP algorithm and Kalman Filter
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allows extracting and predicting the motions of rigid model over each frame. The
method was validated on a phantom study.

In table 3.3, we summarized the previous approaches with respect to their main compo-
nents. Contrary to US tracking approaches, we can observe that most of these methods are
not based on the usage of classical similarity measures such as sum of square difference,
mutual information, or correlation ratio. Indeed, these criteria may not provide accurate
results to register pre-operative and US images (Coupé et al., 2012). To cope with that issue,
several approaches introduced novel similarity measures such as bivariate correlation ratio
(Roche et al., 2001) or linear correlation of linear combination (Wein et al., 2008a). These
similarity measures allow measuring the alignment between real US images and simulated
images obtained from pre-operative data. They provide good performance with respect to
shortcomings of US imaging. Another type of methods relies on identification of common
features between US and pre-operatives images such as liver vessels and surfaces (Nazem
et al., 2013). Despite the good performance of multi-modal registration approaches, we
can also notice that they are not implemented in real-time due to their high computational
cost (Lee et al., 2011). Furthermore, their transformation models are generally limited
to rigid (Porter et al., 2001) and affine (Wein et al., 2008a) warping functions in order to
strongly constrain the displacement field. As a consequence, the registration methods do
not necessarily rely on the combination of regularization terms as their displacement field is
already constrained by rigid or semi-rigid transformation models.
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3.3 Conclusion

In this chapter, we presented different approaches which aim at robustly estimating the
position of anatomical structures in ultrasound images. Generally, these methods consist
in improving different tracking components, e.g. matching criterion, transformation model,
regularization operator and minimization strategy. Therefore, a first type of methods aims at
introducing novel similarity criteria that are invariant to ultrasound imaging shortcomings
such as speckle decorrelation and intensity variation (Cohen and Dinstein, 2002). To ensure
robustness, another category of approaches is based on combination of different regularization
terms in order to constrain the space of possible displacement field. These latter ensure
spatio-temporal smoothness, target volume preservation, and inverse consistency of the
transformation (Metz et al., 2011). Finally, several methods focused on novel transformation
models in order to better represent the motions of targeted structures (Heyde et al., 2012).

Despite the number of contributions in this field, there are still some limitations that prevent
determining the best components of the optimal tracking approach. A first issue is related
to the lack of common validation dataset that makes the comparison between approaches
difficult. Indeed, these latter are generally evaluated on different amounts of clinical images
obtained from various imaging systems. A second limitation is associated to the dataset
complexity. As stated previously, US images can be affected by different shortcomings in-
cluding large shadows and speckle decorrelation. However, most of tracking and registration
methods are evaluated on ideal conditions with US images that do not contain the previous
shortcomings.

In the following chapters, we present different contributions in order to provide accurate
tracking along 3D US sequences. We first propose a real-time approach that combines
intensity-based method and physically-based model simulation. Then, we present a novel
similarity criterion and tracking strategy that are specific to ultrasound imaging. These
contributions have the advantage to be invariant to US imaging shortcomings. The proposed
contributions are evaluated through simulated data, phantom data, and real-data. Furthermore,
we compare our approach with respect to state-of-the-art techniques by evaluating our method
on the 3D databases provided by MICCAI CLUST’14 and CLUST’15 challenges.





Chapter 4

Physically-based Deformable Tracking

In this chapter, we present a real-time approach that allows tracking deformable structures
in 3D ultrasound sequences. Our method consists in obtaining the target displacements by
combining dense motion estimation and mechanical model simulation. We also demonstrate
that this approach can be adapted to raw data representing the voxel intensities along scanlines
of the ultrasound probe.

As it can be seen from previous chapter, several methods have been proposed in order to
track a target in 2D and 3D ultrasound images. To ensure robustness, multiple regularization
terms have been evaluated such as incompressibility constraint, spatio-temporal smoothness
and inverse consistency. Mechanical regularization has also been proposed as it allows
removing non-physically plausible motions. For example, Yeung et al. (1998) and Marami
et al. (2014) propose to combine intensity-based approach and mechanical simulation in
order to follow target displacement in 2D sequence. However, such regularization may not be
well-suited when out-of-plane motions are involved. To cope with that issue, Baumann et al.
(2012) proposed an efficient 3D approach dedicated to prostate interventions by associating
elastic and rigid registration from kinematic model of endorectal probe. Hu et al. (2012)
proposed to improve the registration by using statistical motion model obtained from principal
component analysis. However, their approach can not be used for real-time interventions as
it relies on the manual identification of landmarks.

The chapter is structured as follows. In section 4.1, we provide a description of the
proposed method. In section 4.2, we evaluate the method through phantom data and real data.
Furthermore, we show the good performance of our method with respect to state-of-the-art
techniques by testing on the 3D databases provided by MICCAI CLUST’14 and CLUST’15
challenges. In section 4.3, we further evaluate the method robustness regarding several
parameters including model properties, the initial segmentation error, and the target velocity.



44 Physically-based Deformable Tracking

4.1 Method description

The objective of our approach is to track the motions of an anatomical target in a sequence of
3D ultrasound images. The first step of our method consists in generating a 3D tetrahedral
mesh model associated to the target (section 4.1.1). This model is composed of a set of
tetrahedral cells and a set of vertices. Once this model is defined, we estimate the target
motions over the consecutive 3D images. For this purpose, the vertices displacements are
computed by iteratively summing the internal displacements estimated from a mechanical
component, and the external displacements computed from an intensity-based approach. The
computational flow of the method is summarized in Fig. 4.1.

Model
 generation

Reference 
ultrasound

 image

Current 
ultrasound

 image

Intensity-based
approach

+

Mechanical
simulation

external displacements: !q Internal displacements: !d

Final displacements:
qk (t)= qk-1 (t)  +  hi	!q   +  !d

Real-time
Tracking

Fig. 4.1 Computational flow of the method. The different steps of the method are represented
by white squares. The input and output data are characterized by grey ellipses.

As it can be seen from Fig. 4.1, the vertices positions q
k

(t) of the model are computed
by using the following equation:

q
k

(t) = q
k�1(t) + h

i

�q+�d (4.1)

where �d is the internal displacements obtained by integrating mechanical forces. �q

represents the external displacements estimated from the intensity-based approach. The
computation of �d and �q are respectively described in sections 4.1.2 and 4.1.3. q

k�1(t)

denotes the estimation of the previous vertice positions at time index t at iteration k � 1 of
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the optimization algorithm. h
i

represents a coefficient that balances the contribution between
image forces and internal mechanical forces. In section 4.1.4, we propose an adaptation that
allows computing external displacements �q from ultrasound raw data.

4.1.1 Model generation

In 3D US images, an anatomical target can be represented by a continuous set of N
v

voxels
that is delimited by a visible border. In order to define a model representing the target, we
first extract its shape in the initial 3D frame of the US sequence by performing segmentation.
The segmentation is performed manually by segmenting the target within each 2D slice of the
3D volume. However, automatic segmentation methods can also be used (Chang et al., 2005).
A smoothing step is performed on the 3D segmented surface in order to remove sharp edges
and discontinuous shapes. Then, a corresponding fitted tetrahedral mesh model containing
N

c

vertices is defined on the segmented shape. Once the model is defined, we propose to use
a piece-wise affine warp function that is parameterized from both the vertices positions and
an affine interpolation using barycentric coordinates. In this way, we can relate all the voxel
positions p with all the vertices q as follows:

p = M.q (4.2)

where M is a (3 ·N
v

)⇥ (3 ·N
c

) constant matrix defining the set of barycentric coordinates.
Each 3-line of M defines the set of barycentric coefficients regarding the x, y and z axis. p is
a (3 ·N

v

) vector defining all the voxels positions, and q is a (3 ·N
c

) vector containing all the
vertices positions. It is worth mentioning that p represents only the voxels in the mesh model.
Thanks to Equation (4.2), we can update the positions of the target when the vertices of the
model are displaced. To compensate the lack of smoothness as well as the poor estimation
of vertices positions in US images, we combine a mechanical model to the estimation of
displacement. The model generation step is illustrated in Fig. 4.2.

4.1.2 Estimation of internal displacements

Our approach combines a mechanical model based on mass-spring-damper system to the
mesh previously described. Thus, the vertices displacements are constrained by linking
each connected vertex pair with a spring and a damper ensuring physically-plausible and
coherent displacements of the vertices. Furthermore, the mass-spring-damper system can
be specifically characterized by setting a mass value to each vertex, together with elastic
and damping coefficients on each spring depending on the soft-tissues homogeneities. From
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(a) Original Image (b) Voxel positions (c) Vertices positions

Fig. 4.2 Illustration of the model generation step. (a) An anatomical region is identified in
the first frame. (b-c) The associated voxel positions p and the vertices positions q are shown.
For sake of clarity, tetrahedral cells are represented by triangular cells in this 2D illustration.

this model, we can compute the force f
i,j

= [f

x

ij

f

y

ij

f

z

ij

]

T applied on a vertex q
i

from a
neighbor vertex q

j

. This force can be expressed as follows:

f
i,j

= K

ij

(d

ij

� d

init

ij

)(q
i

� q
j

) +D

ij

(

˙q
i

� ˙q
j

) � (q
i

� q
j

) (4.3)

where d
ij

and d

init

ij

respectively represent the distances between the vertices q
i

and q
j

at their
current positions and at their initial positions. The � operator expresses the element-wise
matrix product, K

ij

is a scalar value denoting the stiffness of the spring that links the two
vertices while D

ij

is the damping coefficient value. By combining the previous equation for
all the vertices, we can express the total amount of forces f

i

exerted on each vertex q
i

of the
mesh model as follows:

f
i

=

N

iX

r=0

f
i,r

+G

i

˙q
i

(4.4)

N

i

denotes the number of neighbors vertices connected to the vertex q
i

. G
i

represents the
velocity damping coefficient associated to the vertex q

i

. In order to obtain the internal
displacements �d associated to the mass-spring-damper system, we integrate the forces
expressed in Eq. (4.4) with a semi-implicit Euler integration scheme such that:

�d = �

t

(

˙q+�

t

f int
) (4.5)

where �d is the internal displacement vector of the vertices. ˙q and f int
= {f0 f1 · · · fN

c

}
represent respectively the first time derivative of q and the internal forces vector. �

t

denotes
the integration time step. Such mechanical constraint can ensure the smoothness of the
piece-wise affine warping function.
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4.1.3 Estimation of external displacements

Let us recall that the main objective of our approach is to iteratively estimate both the external
and internal displacements of the mesh. To compute the external displacements, we use an
intensity-based method that consists in minimizing the cost function C expressed as follows:

ˆq = arg min

q

C(q) = arg m

q

in E(I

t

(p(t)), I
t0(p(t0))) (4.6)

where I

t

is a vector representing the US intensity of the volume acquired at time index t.
I

t0 is a vector representing the US intensity of the initial volume. ˆq denotes the optimal
positions of vertices. p(t

i

) represents the voxel positions at time index t

i

. E expresses the
dissimilarity measure. In this chapter, we only evaluated the performance of Sum of Squared
Differences (SSD) matching criterion. However, it is worth mentioning that other criteria are
assessed in the following chapter such as Weighted Sum of Squared Differences (WSSD),
Sum of Conditional Variance (SCV) and the proposed Sum of Confident Conditional Variance
(SCCV). The SSD criterion allows defining the cost function C as follows:

C(q) =
�
I

t

(Mq
t

)� I

t0(Mq
t0)

�2 (4.7)

where q
t

i

denotes the vertices positions at time index t

i

. Once the cost function is defined,
the objective is to iteratively estimate the vertices displacements of the mesh model by
minimizing the cost function C. To do so, we perform a Taylor expansion of the previous
equation:

C(q) ⇡ �J�q+ (I

t

(Mqk�1
t

)� I

t0(Mq
t0))

�2 (4.8)

where qk�1
t

represents the estimation of the parameters at time t at iteration k � 1 of the
optimization algorithm. �q are the external vertices displacements. J denotes the Jacobian
matrix associated to the cost function. This matrix relates the variation of the parameters �q

with the intensity variation of I
t

. Each coefficient of the Jacobian matrix can be computed
analytically as follows:

J(u, v) = rI

t

(u+ wN

v

) M(u+ w, v) with w = v mod 3 (4.9)

where u and v denote respectively a specific row and a specific column of the Jacobian matrix.
rI

t

represents the gradient vector of the current 3D US image I

t

. It can be expressed such
that rI

t

= {rI

t

x

rI

t

y

rI

t

z

} where rI

t

x

,rI

t

y

,rI

t

z

are respectively the image gradients
regarding the x, y and z axis obtained from 6 ⇥ 1 spatial derivative filters. In order to
obtain the optimal displacements of the vertices, we chose to use a forward-additive steepest
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gradient strategy. It is worth mentioning that more complex strategies like Gauss-Newton
or Levenberg-Marquardt methods may provide better results (Baker and Matthews, 2004).
However, they can not be implemented in real-time since they require the pseudo-inverse
computation of large Jacobian matrix. From the steepest gradient method, the external
displacement can be obtained as follows:

�q = �↵JT

[I

t

(Mqk�1
t

)� I

t0(Mq
t0)] (4.10)

where ↵ > 0 denotes the step size of the minimization strategy. JT represents respectively
the transpose of the matrices J. The interested reader could refer to the appendix B that gives
the full detail about the computation of external displacements.

4.1.4 Raw data adaptation

In the previous section, the external displacements were obtained from complete 3D recon-
structed images. In this section, we introduce an adaptation of the method that allows dealing
with ultrasound raw data. As illustrated in Fig. 4.3, raw data represent intensity of voxels
located along ultrasound scanlines and does not involve interpolation. Touil et al. (2010)
demonstrates that raw data use may help improving the tracking accuracy. Furthermore,
its rectangular structure allows reducing the size of input information and better defining
the limits of ultrasound images. Such characteristic is particularly well-suited for tracking
partially visible targets that are not completely within the field of view. However, these
benefits do not come without shortcomings since raw data is not geometrically correct when
the transducer has curved shape. Furthermore, as illustrated in Fig. 4.3, raw data is not
represented by a continuous set of voxels. Thus, to adapt the intensity-based approach, a
conversion function  is required in order to rearrange the raw data. As shown in Fig. 4.3,  
is the transformation that maps a point p0 of the raw volume into the point p in the rearranged
raw volume. From this conversion function, we can rewrite the Eq. (4.7) as follows:

C(qk

t

) =

�
I

r

t

( (p0
im

(t)))� I

r

t0
( (p0

im

(t0))
�2 (4.11)

where p0
im

represents the voxel positions of the target in raw data. I

r

t

and I

r

t0
denote the

rearranged raw US intensity volume at time t and t0. In the previous cost function, the points
p0

im

(t0) are located along the scanlines. However, during tracking task, the intensity of
their corresponding points p0

im

(t) may be unknown since these points may be displaced
between scanlines. To overcome this limitation, we used a method that interpolates the
unknown intensity of a point p by using the inverse distance weighting (IDW) interpolation
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of neighboring points. It can be expressed as follows:

˜

I

r

(p) =

P
N

n

v=0 �v(p)I(pv

)

P
N

n

v=0 �v(p)
(4.12)

where ˜

I

r

(p) represents the unknown intensity value associated to the point p. p
v

denotes the
set of neighbors of p that are on ultrasound scanlines. N

n

expresses the number of neighbors
points. �

v

is the inverse distance between p and its neighbors p
v

. This distance is evaluated
from rearranged raw data which presents a correct geometry. To adapt the method described
in the previous section, we also need to design a new spatial derivative filter adapted to raw
data. As previously stated, the image gradient of a voxel p is computed from 6⇥ 1 filters
and takes into account the intensity value of nearest neighbors. Thus, by using the IDW
interpolation technique, the image gradient of a voxel p0 in raw data can be expressed as :

rI( (p0
)) =

3X

j=�3

w

j

˜

I

r

(p
j

) (4.13)

where p0 represents a point in the raw volume. w
j

depicts the filter coefficients, and ˜

I

r

(p
j

)

represents the intensity of nearest neighbors of p within rearranged raw volume along the filter
direction. By combining the previous equations, the computation of external displacements
can be expressed as follows:

�q = �↵JT

[I

r

t

( (Mqk�1
t

))� I

r

t0
( (Mq

t0))] (4.14)

As stated previously, one main shortcoming of US imaging is its small field of view that
may prevent visualizing the complete target. This issue may have a significant impact on
the tracking accuracy. However, thanks to the rectangular geometry of the raw data, we can
easily detect which part of the target is within the field of view. Then, these positions can be
ignored by removing them from the previous cost function. The rest of the method remains
unchanged.

4.2 Results

In this section, we first describe the implementation details by specifying the parameters
values of the method and the software libraries we used to implement our algorithm. Then,
two types of experiment were conducted. The first type is performed on phantom data and
consists in demonstrating the relevance of the combination between mechanical model and
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2D postscan frame

Scanline

Probe

Interpolated
data

p1

p2

Scanline

2D Raw data (rearranged)

Scanline

IDW 

interpola�on

points

2D Raw data

p1

p2

p2

p1

IDW 

interpola�on

points

ψ

Fig. 4.3 Acquisition of raw data and postscan data. (left) Illustration of US image acquisition
containing US scanlines and interpolated data. (right) Illustration of original rectangular raw
data and rearranged raw data.  represents the conversion function.

intensity-based approach. We also propose to evaluate the adaptation that allows using the
method on raw data. The second type of experiments aims at assessing the relevance against
different state-of-the-art approaches. For this purpose, our method is tested on real-data
provided by MICCAI CLUST’14 and CLUST’15 databases.

4.2.1 Implementation details

Our approach is implemented with C++/cuda code by using Cublas (Nickolls et al., 2008)
and VTK (Schroeder et al., 2002) libraries. The code was executed on a Windows 7 machine
with an Intel core i7-3840qm(2.80GHz) and achieves 350 ms for a tracking task between
two consecutive 3D images. The initial segmentation and the tetrahedral mesh generation
are performed respectively with ITK-SNAP (Yushkevich et al., 2006) and tetGen (Si, 2015)
software. We set the elastic and damping parameters such that K

ij

= 3.0 and D

ij

= 0.1 for
all the springs, along with G

i

= 2.7 for all vertices. The step size of the steepest gradient
method and the balancing coefficient have been respectively set to ↵ = 2⇥ 10

�6 and h

i

= 1.
The number of iterations of the optimization algorithm has been set to 100 in order to ensure
convergence. These parameters have been found empirically and are kept constant for the
tracking tasks of all ultrasound sequences. In the section 4.3, we discuss the robustness of
the approach regarding the properties of the model and its parameters.
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4.2.2 Results on phantom data

As a first step of validation, we used the experimental setup illustrated in Fig. 4.4. The ultra-
sound images are acquired at frame rate of 0.8 vol/s from an Ultrasonix station (SonixTablet)
with a motorized probe (4DC7-3/40). Each volume contains 44 2D images with an angular
step of 1.4� representing a total field of view of 64.4�. The ultrasound volumes respectively
consist of 128 ⇥ 120 ⇥ 44 voxels. The voxel size represents a cube with 1.33 mm length
sides. As illustrated in Fig. 4.4, the ultrasound probe is mounted on the end effector of a 6
degrees-of-freedom robot (Viper 650, Adept). The probe is located on the surface of a home-
made phantom composed of gelatin and animal tissue. Thanks to this experimental setup, we
can apply rigid motion and deformation to the phantom by displacing the probe regarding
the x-y-z axis. In the following experiments, the validation of the approach is performed by
using several metrics including barycenter displacement, intensity error, volume evolution of
the model, and visual assessment. Furthermore, as the probe is mounted on the robot, we
can compare our tracking results with the measurements of the robot displacements by using
odometry.

Fig. 4.4 (Left) Experiment setup. (Right) 3D slices of the ultrasound volume representing the
target and the tetrahedral mesh model (148 cells, 60 vertices).
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Phantom experiments with rigid motion

The first experiment consists in testing our approach with rigid motion. For this purpose,
the probe is displaced along square trajectories regarding the y-z axis by using the robot.
To demonstrate the relevance of the combination of piecewise affine approach and the
mechanical model, we compare our method without the mechanical model by removing
the �d term of Eq. (4.1). In Fig. 4.5, the evolution of the barycenter position is shown
during the tracking task. From this figure, we can observe that our method achieves a smaller
mean tracking error (1.23 mm±0.03 mm) than the method without mass-spring system (5.25
mm±0.42 mm) regarding the odometry measurements. In Fig. 4.6, we show the evolution of
the least square intensity error and the 3D mesh volume over each frame. We can notice that
the method without mechanical component provides higher final intensity error and volume
evolution that varies significantly. However, the target volume should remain constant since
only rigid motion is applied. This can be explained by the presence of local minimum due
to speckle noise perturbing the tracking. From the previous results, we can conclude that
the mechanical regularization allows compensating the presence of local optimum since
the mechanically-regularized method provides a smaller mean tracking error, smaller final
intensity error and constant volume evolution. In Fig. 4.7, we illustrate some tracking results
during a rigid motion including rotation motion by rotating the probe along the x-axis.
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Fig. 4.5 Results obtained during lateral translation motion with and without physical model
(Mass-Spring system (MS)). (a) Displacement of the target regarding the Y-axis over the
time. (b) Displacement of the target regarding the Z-axis over the time. (c) 3D displacement
of the target.
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Fig. 4.6 Results obtained during lateral translation motion with and without Mass-Spring
system (MS). (a) Volume estimation of the target. (b) Least square intensity error.
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(a) (b) (c)

(d) (e)

Fig. 4.7 Example of the tracking task. Mesh model during tracking with rotation motion at
frame 1 (a), at frame 16 (b), at frame 26 (c), at frame 36 (d), at frame 46 (e).

Experiment with deformation

In a second experiment, we evaluated our method during target deformation by applying
a periodic motion to the probe along the x-axis that produces significant and periodic
compression of the target. The estimated displacement of the target and the volume evolution
of the 3D model during the tracking task are shown in Fig. 4.8. Contrary to the previous
experiment, we can observe a large mean tracking error between the barycenter position
estimated from odometry and from our tracking method. This can be explained by the fact
that full motion can not be measured by odometry due to compression of both the target and
neighborhood gelatin. To cope with this issue, we manually annotated a specific landmark
of the target over each volume. The mean tracking error is computed by comparing the
position of the annotated landmark with the warped position of the model over each volume.
Thus, we can observe that both approaches provide approximately the same mean tracking
error of 1.50 mm. However, in Fig. 4.8, we also notice that our method produces a steady
periodic evolution of the volume varying with the probe displacement contrary to the method
without mechanical component. From the previous results, we can see that our method allows
avoiding local optimum by providing well-shaped model that fits the target surface over
several frames, as well as steady volume evolution. The tracking results during deformation
motions are illustrated in Fig. 4.9.



4.2 Results 55

 125

 130

 135

 140

 145

 150

 0  20  40  60  80  100  120

x 
(m

m
)

Frame

X position

Odometry
Without MS

With MS

(a)

 3800
 4000
 4200
 4400
 4600
 4800
 5000
 5200

 0  20  40  60  80  100  120  140  160  180  200

V
ol

um
e 

(v
ox

el
3 )

Frame

Volume

MS
No MS

(b)
Fig. 4.8 Results obtained during deformation motion. (Left) Displacement of the target
regarding the X-axis over each frame. (Right) Volume estimation of the model over each
frame.

(a) (b) (c)

(d) (e)

Fig. 4.9 Example of the tracking task. Mesh model during tracking with deformation motion
at frame 1 (a), at frame 16 (b), at frame 24 (c) , at frame 32 (d), at frame 40 (e).

Experiment with raw data

In this experiment, we compare the method applied on ultrasound raw data and the original
method applied on postscan data. The performance of the approaches is also evaluated
when the target becomes partially visible during the sequence. To do so, we acquired a
sequence where the robot followed a large square trajectory as well as an elevation motion
which deformed the target. Fig. 4.10 shows the displacements of the model barycenter and
the comparison with odometry measurement. We observed that the adaption improves the
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tracking accuracy (1.94 mm±0.18 mm instead of 3.25 mm± 0.20 mm with postscan data)
when the target goes out of the field of view. Fig. 4.11 shows an example of the tracking
task on several frames showing a slice of target which is displaced to the right and goes out
of the field of view. We noticed that, with the original method, our model does not have a
plausible shape when the target is not within the field of view (see Fig. 4.11b). This can be
also visualized in Fig. 4.10d because the volume of the model is abnormally reduced when
the target goes out of the field of view at frame 20. The original method remains however
robust since the model returns to its initial shape when the target becomes visible again
during its return to the initial position as shown in Fig. 4.11c. It is also worth mentioning
that both methods obtain similar results when the target is entirely visible. Therefore, in the
following experiments, only the original method method will be evaluated.
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Fig. 4.10 Results obtained with partially visible target. (a) Displacement of the target
regarding the Y-axis over the time. (b) Displacement of the target regarding the Z-axis over
the time. (c) 3D displacement of the target. (d) Comparison of the volume estimation of the
target with the prescan method and with the postscan method.
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(a) (b)

(c) (d)

Fig. 4.11 Example of the tracking task with partially visible target experiment. The different
images show a slice of the target regarding the Y-axis. Red points represent the intersections
between the mesh model and the image slice. Tracking with postscan data (a) at frame 1, (b)
at frame 34, (c) at frame 42. (d) Tracking with raw data at frame 34.
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4.2.3 Results on real data

A second validation step is performed on real-data by using the 3D database provided by
MICCAI CLUST’14-15 challenges containing ultrasound sequences of volunteers under
free breathing. The main goal of these challenges is to compare different approaches for
tracking anatomical landmarks in US sequences. The ground truth data is provided by using
the manual annotations from three experts of target positions over each frame. Thus, a
comparison can be performed between the ground truth landmark positions and the warped
point positions (estimated from our model) over each frame. Our approach has been tested
by tracking 34 different anatomical features acquired from 22 3D US sequences. The final
tracking results on CLUST’14 and CLUST’15 databases are respectively reported in table
4.1 and 4.2. They are also presented on the challenge website1,2.

Participants Mean SD 95%

Our method 1.62 2.19 4.81
Somphone et al. (2014) 2.55 2.46 7.98
Rothlubbers et al. (2014) 2.80 2.96 7.94
Lubke and Grozea (2014) 4.63 4.03 12.44

Table 4.1 CLUST’14 results of 3D point-landmark tracking expressed in millimeters. The
first column of the table details the reference to each candidate method. The subsequent
columns represent respectively the mean error, the standard deviation, and the 95th percentile
expressed in millimeters for each approach.

Participants Mean SD 95%

Our method 1.74 0.92 3.65
Banerjee et al. (2015) 1.80 1.64 3.41

Table 4.2 CLUST’15 results of 3D point-landmark tracking expressed in millimeters. The
first column of the table details the reference to each candidate method. The subsequent
columns represent respectively the mean error, the standard deviation, and the 95th percentile
expressed in millimeters for each approach.

From the previous results, we can observe that our method provides the smaller mean
tracking error for the different databases. We can also notice that our tracking error is different
between table 4.1 and 4.2 since the evaluation is not performed on the same database. The
detailed results for all target tracking tasks are presented in table 4.3. As it can be seen in this

1CLUST’14: http://clust.ethz.ch/clust2014.html
2CLUST’15: http://clust.ethz.ch/results.html
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table, the specific annotated landmarks are generally vein bifurcations since they are clearly
visible within ultrasound images. We can notice that our approach shows good performance
since the mean tracking error is low (<3 mm) for most of the ultrasound sequences except
for three ultrasound sequences (SMT-04_1, EMC-03_1, EMC-07-3_1). We also observe
that our method may produce inaccurate results when the 3D mesh model goes out of the
field of view (SMT-04_01). However, this issue can be addressed by using either binary
mask or rectangular raw data as presented previously. Inaccurate results can also be observed
when the target follows high deformation (> 50%) regarding the provided elastic parameters
(EMC-03_01). This problem can be solved by using specific elastic parameters for each
target. Furthermore, we also notice that the error can be higher due to strong motions between
consecutive ultrasound frames (EMC-07-3_1). This issue can be tackled by using another
ultrasound probe with higher frame rate. In the section 4.3, we detail the method robustness
regarding the maximum amplitude of motion and deformation of the target.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4.12 Examples of the tracking task on several sequences with our approach. (a-b-c)
Tracking of landmark representing hepatic vein bifurcation. The white cross represents the
point position in Y-slice at frame index (a) 00, (b) 08, (c) 12. (d-e-f) Tracking of landmark
representing vein birfucation in another 3D US sequence at frame index (d) 00, (e) 05 , (f)
12. (g-h-i) Tracking of landmark representing portal vein birfucation at frame index (g) 00,
(h) 23, (i) 59.
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Sequence Min MTE Max SD 95% Landmark Nb Vert. Nb. Cells

EMC-02_1 0,24 0,65 0,88 0,26 0,88 H-VB 47 134
EMC-02_2 0,72 1,47 2,33 0,62 2,33 H-VB 40 107
EMC-02_3 0,66 1,07 1,38 0,27 1,38 H-VB 44 131
EMC-02_4 0,78 1,44 2,48 0,71 2,48 H-VB 65 152
EMC-03_1 0,59 3,37 5,73 1,71 5,67 H-VB 37 101
EMC-04_1 0,57 0,92 1,92 0,33 1,76 VB 26 63
EMC-05_1 0,21 0,55 1,13 0,24 1,07 x 39 107
ICR-01_1 0,43 1,52 2,99 0,85 2,93 x 30 73
ICR-02_1 0,25 2,73 4,09 1,08 3,97 x 46 140
SMT-02_1 0,48 1,06 10,15 0,98 1,3 H-VB 47 123
SMT-02_2 0,6 1,27 2,1 0,3 1,77 RB-H-VB 62 30
SMT-02_3 1,3 2,24 3,02 0,43 2,91 P-VB 27 53
SMT-03_1 0,61 1,3 2,29 0,46 2,03 Nephron 38 80
SMT-03_2 0,36 1,2 2,19 0,41 1,92 H-VB 41 100
SMT-04_1 0,65 9,28 14,43 4,16 13,77 KA 45 118
SMT-05_1 0,55 2,21 6,22 1,59 6,06 P-VB 30 79
SMT-05_2 0,15 0,62 1,58 0,24 1,07 H-VB 30 71
SMT-06_1 0,46 0,93 1,44 0,2 1,29 H-BDB 35 96
SMT-06_2 0,51 0,98 1,43 0,21 1,34 AB 30 83
SMT-06_3 0,43 1,12 2,17 0,41 2,01 AB 48 120
SMT-07_1 0,7 1,15 1,81 0,23 1,51 AB 30 65
SMT-07_2 0,77 1,28 1,84 0,27 1,76 VB 23 59
SMT-08_1 0,17 0,81 1,3 0,23 1,21 AB 33 83
SMT-08_2 0,19 0,64 1,11 0,17 0,89 VB 28 81
SMT-08_3 0,59 1,45 2,48 0,44 2,24 VB 48 143
SMT-09_1 0,13 0,77 1,76 0,3 1,41 VB 35 90
SMT-09_2 0,21 0,62 1,1 0,19 0,93 VB 36 99
SMT-09_3 0,17 1,39 2,26 0,46 2,18 VB 30 71

EMC-06-1_1 0,71 1,54 2,58 0,46 2,58 VB 70 198
EMC-06-2_1 0,95 2,95 4,45 1,16 4,45 VB 49 153
EMC-06-3_1 1 1,47 2,76 0,52 2,76 VB 64 184
EMC-07-1_1 0,73 2,66 5,92 1,69 5,92 VB 50 140
EMC-07-2_1 0,1 1,51 2,84 0,83 2,84 VB 67 187
EMC-07-3_1 2,59 3,54 4,48 0,77 4,48 VB 67 187

Table 4.3 Detailed tracking error results for each tracking task. The error results are obtained-
from Euclidean distance and are expressed in millimeters. (Sequence) Name of the sequence
(Min) Minimum tracking error. (Max) Maximum tracking error. (MTE) Mean tracking error.
(SD) Standard deviation. (95%) 95th percentile of error. (VB) Vein bifurcation, (H-) Hepatic,
(P-) Portal, (KA) Kidney Artery, (AB) Artery Bifurcation, (BDB) Bile Duct bifurcation.
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4.3 Robustness evaluation

In this section, we evaluate the method robustness regarding several parameters including
the gain h

i

, the initial segmentation error, the mesh cell number and the motion amplitude.
Finally, we assess the benefit of the mechanical regularization term. To evaluate the sensitivity
regarding these parameters, we acquired three sequences detailed in table 4.4. The ground
truth is obtained from annotations of landmark positions over each 3D volume from one
expert. The tracking error is computed by comparing the position of the annotated landmark
with the warped position of the model over each volume. To evaluate the accuracy of the
landmark definition, we measured the inter-variability from the annotations of three observers
along 20% of the total number of 3D frames.

Sequence Deformation Target Dim. (mm) Int. Displ. (mm) Nb. Frame Inter-var (mm)

PHA_5 Rigid 20 x 30 x 32 6.5 40 1.6 ± 1.0
PHA_6 22% 20 x 30 x 32 1.5 42 1.7 ± 0.8
PHA_7 49% 23 x 8 x 11 4.5 20 2.0 ± 0.7

Table 4.4 Details of sequences. (Sequence) Name of the sequence. (Deformation) De-
formability of the target within the sequence. (Target Dim.) Target dimension expressed
in millimeters. (Int. Displ.) Maximum target displacement between consecutive volumes
expressed in millimeters. (Nb Frames) Number of frames in the sequence. (Inter-var)
Inter-variability of the landmark annotation expressed in millimeters.

In the previous table, the deformation measurement is obtained by measuring the length
between two landmarks of the target at the initial state and at the deformation state as follows:

M

def

=

d�D

D

(4.15)

where M

def

denotes the target deformability that may be represented by a percentage value.
D and d represent the initial and current length between the two landmarks. It is worth
mentioning that the compressibility measure was not used since the volume of some targets
can not be precisely retrieved due to inaccurate segmentation. In Fig. 4.13, we illustrate the
deformability measurements of different targets.
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(a) Initial State (b) Deformed State (22%)

(c) Initial State (d) Deformed State (49%)

Fig. 4.13 Example of deformable targets. (a-b) During the second experiment. (c-d) During
the third experiment.

4.3.1 Mechanical parameter

Among the method parameters, the coefficient h
i

is critical since it amplifies the contribution
of external displacements. To evaluate the sensitivity of this parameter regarding the target
deformability, we evaluate on different sequences the mean tracking error (MTE) of a
specific landmark regarding the parameter h

i

. In these experiments, the range of h
i

values
varies between 0.01 and 100 since it allows showing the limits of the method regarding this
parameter. In Figs. 4.14, 4.15 and 4.16, we show respectively the evolution of the mean
tracking error regarding h

i

parameter value on sequences PHA_5, PHA_6 and PHA_7. Fig.
4.14 shows the tracking error of rigid experiment with respect to the value of parameter
h

i

. From this figure, we observe that the minimum tracking error value is obtained when
1 < h

i

< 40. The mean tracking error becomes larger when h

i

> 40 due to the image noise
sensitivity as the internal force contribution becomes small. We can also observe that the
error is large when h

i

< 1 due to the low external force contribution regarding the target
displacement.
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Fig. 4.14 Rigid tracking experiment: Evolution of MTE regarding parameter h
i

.

In Fig. 4.15, the same experiment is performed on sequence whose target undergoes 22%
of deformation. As it can be seen in the figure, the minimum tracking error value is obtained
when 0.5 < h

i

< 45. The mean tracking error becomes larger when h

i

> 45 due to the
noise sensitivity that appears when the internal force contribution is too small. In the last
experiment, we evaluate the sensitivity of h

i

parameter on sequence that contains a highly
deformable target (49%). Fig. 4.16 shows the evolution of the mean tracking error regarding
the h

i

value. As it can be seen in this figure, the minimum error (< 2mm) is obtained when
13 < h

i

< 45. Contrary to the other experiments, the range of h
i

ensuring robust tracking is
smaller due to the high deformation of the target.
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Fig. 4.15 Tracking experiment with de-
formable (22%) target: Evolution of MTE
regarding parameter h
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Fig. 4.16 Tracking experiment with de-
formable (49%) target: Evolution of the
mean tracking error regarding parameter

As it can be seen from previous experiments, the tracking accuracy depends on the
value of parameter h

i

. Furthermore, we can also observe the range of possible values for
h

i

is larger when the deformation is limited (<22%). However, when the deformation is
higher, the value of parameter h

i

needs to be adjusted in order to emphasize external force
contribution. In order to reduce the method’s sensitivity regarding high deformation, an
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interesting perspective would be to automatically update the parameter h
i

according to the
target elasticity that can be obtained from elastography images.

4.3.2 Initial segmentation

To illustrate the sensitivity of our approach regarding initial segmentation, we performed
several experiments that consist in tracking same targets by using different segmentations.
This evaluation is performed on the first two ultrasound sequences presented in this table 4.4
(PHA_5 and PHA_6). Contrary to previous experiments, we set h

i

= 1 and we used different
segmented models obtained from bad segmentations around the target. The segmentation
error is measured by computing the Hausdorff distance between the initial (good) segmenta-
tion and the others. Thus, the higher is the Hausdorff distance, the worse is the segmentation.
Fig. 4.17 shows respectively the MTE evolution regarding the Hausdorff distance on two
sequences.
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Fig. 4.17 Evolution of the mean tracking error regarding the segmentation error (Left) Rigid
target. (Right) Deformable target (22% of deformation)

As it can be seen from Fig. 4.17, the tracking is not really sensitive to segmentation
error even if it exceeds 2 cm. It is worth mentioning that this value is relatively important
compared to the target size of 20 mm x 30 mm x 32 mm. Therefore, future work should
consist in tracking objects that are automatically segmented from 3D US images by using
method proposed by Chang et al. (2005) or Barbosa et al. (2014). Such methods may offer
average segmentation errors up to 2.29 and 2.26 mm.

4.3.3 Mesh quality

To measure the method’s sensitivity regarding mesh quality, we performed different experi-
ments that consist in tracking targets by using mesh models with different number of both
vertices and tetrahedral cells. This evaluation is performed on the two first sequences detailed
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in table 4.4. In Fig. 4.18, we show the mean tracking error (y-axis) regarding the number of
cells (x-axis) for rigid and non-rigid targets.
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Fig. 4.18 Evolution of the mean tracking error regarding the number of cells of the model
(Left) Rigid target. (Right) Deformable target (22% of deformation)

In Fig. 4.18, we can observe that the mean tracking error remains almost constant when
the tracked object motion is rigid even if the cell number is low. This can be explained by
the fact that all voxels of the target undergoes the same rigid displacement. In the non-rigid
experiment showed in Fig. 4.18, we can observe that the error increases when the mesh is
reduced. This can be explained by the fact that a sufficient number of cells are required in
order to represent the deformation.

4.3.4 Motion amplitude

To determine the robustness regarding the motion amplitude between two volumes, we
performed several experiments from the first US sequence detailed in table 4.4 (PHA_5). In
each experiment, the inter-volume target displacement is increased by removing consecutive
US volumes from original sequence. In Fig. 4.19, we show the evolution of the tracking
error (y-axis) regarding the motion amplitude. As it can be seen from this figure, the tracking
error remains small as long as the motion between two volumes is lower than 14 mm.
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Fig. 4.19 Evolution of mean tracking error regarding motion amplitude.
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4.4 Conclusion

In this chapter, we presented a real-time approach for tracking a deformable target in 3D
ultrasound images. The proposed method combines intensity-based approach with physical-
based model simulation. The validation was performed on phantom and real data by using
the database provided by the MICCAI CLUST’14 and CLUST’15 challenges. We evaluated
the robustness of the method regarding several parameters including initial segmentation
error, model properties and target velocity. From these results, we observed that the proposed
approach provides good performance regarding state-of-the-art methods.

However, our method remains sensitive to several issues that may have significant impact
on its tracking performance. Indeed, we observed that the elasticity parameters needs to be
specifically adjusted when the target undergoes high deformation (>22%). One potential
solution would be to dynamically adapt these parameters from ultrasound elastography.
Another issue is related to limited field of view of ultrasound images that may cause the
target to be partially visible. This issue can be solved by using rectangular raw data that
allows easily determining the limits of the image as demonstrated in this chapter.

While the proposed method was validated on several real sequences, it has not been
evaluated regarding large shadows and intensity shift that can appear due to gain variation or
US beam angle changes. In the following chapter, we propose to evaluate our approach with
these artifacts. We also introduce a new similarity criterion and novel tracking strategy that
allows improving the accuracy of the method.



Chapter 5

Confident-based Similarity Criteria and
Strategies

In the previous chapter, we presented an approach that allows tracking deformable structures
in 3D US images. While this method shows good results on phantom and real data, its
performance may be perturbed by several ultrasound artifacts such as ultrasound shadows
and intensity shifts. To cope with these issues, different ultrasound specific similarity criteria
have been proposed in the literature. For example, Cohen and Dinstein (2002) proposed a
similarity measure that assumes that the US images are degraded by Raleigh distribution
noise. Baumann et al. (2012) presented a correlation-based distance measure, which is
able to deal with local ultrasound intensity shift. However, these similarity criteria remain
sensitive to ultrasound shadows that occlude targeted structures. Another solution consists
in regularizing the displacement field from outlier detection. For example, Ni et al. (2008)
provided a feature-based method that removes shadowed landmarks by detecting darkest
intensity regions. Nevertheless, such approach might provide unsatisfactory results when the
number of visible features is not sufficient.

In this chapter, we propose to improve our tracking method by introducing new matching
criterion and novel tracking strategy based on the quality measurement of US images. From
simulated data and phantom data, we demonstrate that the proposed contributions outperform
classical tracking techniques since they improve robustness regarding US shadows and
intensity variation. This chapter is organized as follows. In section 5.1, we describe a new
similarity criterion that combines US quality measurement and Sum of Conditional Variance.
In section 5.2, we describe an hybrid pairwise tracking strategy that allows improving the
robustness of the tracking regarding the quality of the reference image. Finally, section 5.3
concludes this chapter.
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5.1 Confident-based similarity criteria

In intensity-based methods, similarity criteria play an important role since they allow mea-
suring the alignment between images. In ultrasound applications, the SSD criterion is often
used because it is simple and computationally efficient. However, it relies on the assumption
that the US wave reflected by a physical point does not vary over the time. Such assumption
is not always valid due to different ultrasound shortcomings. To cope with that issue, we
present an ultrasound-specific matching criterion combined to shadow detection process. In
section 5.1.1 and 5.1.2, we describe respectively the Weighted Sum of Squared Difference
(WSSD) and the proposed Sum of Confident Conditional Variance (SCCV). In section 5.1.3,
we describe experiments and results that allow comparing their performance on simulated
and phantom data regarding classical similarity criteria.

5.1.1 Weighted sum of squared difference

The Weighted Sum of Squared Difference criterion consists in improving the existing SSD
criterion by weighting voxels that are considered in shadowed regions. To do so, Eq. (4.7)
can be modified in order to obtain a robust weighted SSD cost function as follows:

C(q) = (H
t

(I

t

(p(t))� I

t0(p(t0))))
2 (5.1)

where H
t

is a (N

v

⇥N

v

) diagonal matrix that emphasize voxels that are not perturbed by
US shadows. In order to define the weight matrix H

t

, several shadow detection methods
have emerged (Hellier et al., 2010; Karamalis et al., 2012; Penney et al., 2004). For example,
Penney et al. (2004) presented a method that remove shadow along ultrasound scanline
by removing low intensity region. Another approach, proposed by Hellier et al. (2010),
consists in identifying shadowed regions by detecting areas with intensity ruptures and a
lower noise level. Karamalis et al. (2012) presented a technique that provides a confidence
measure per voxel based on the model of ultrasound wave propagation through the tissue. We
propose to use this third approach in order to detect shadows since it has been successfully
implemented in recent applications such as ultrasound compounding (Berge et al., 2014) and
ultrasound-based visual servoing (Chatelain et al., 2015). The approach provides, for each
ultrasound image I

t

, an associated confidence map U

t

expressing the uncertainty measure of
each voxel as it is illustrated in Fig. 5.1. From the confidence map U

t

, we can directly obtain
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(a) (b) (c)

Fig. 5.1 Illustration of the ultrasound image I

t

(a) and its confidence image U
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(b). (c)
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the weight matrix coefficient H
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(t)) of each voxel p
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(t) by using the following equation:
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(t)) < ⌧

1, otherwise
(5.2)

where ⌧ denotes the minimum confidence threshold that ensures the maximum weight
(H

t

(p
k

(t)) = 1). � is a scalar parameter that determines the smoothness of the weight matrix
function. The evolution of this weighting function shape is illustrated in Fig. 5.1c.

From the Fig. 5.1c, we can therefore deduce that the matrix H
t

(p
k

(t)) allows discrimi-
nating unconfident voxels that have confident value lower than a certain threshold ⌧ . This
weighting matrix is not applied to the reference image since we assume that its quality is
sufficient in order to obtain good tracking performance. Once the weight matrix is obtained,
this criterion can be combined to the tracking method described in the previous chapter.
To do so, the computation of the external displacements, expressed in Eq. (4.10), can be
rewritten as follows:

�q = �↵JTH
t

TH
t

[I

t

(Mqk�1
t

)� I

t0(Mq
t0)] (5.3)

The performance of this criterion is evaluated in section 5.1.3.

5.1.2 Sum of confident conditional variance

The WSSD dissimilarity measure is well suited for local intensity changes but it is not robust
to global intensity changes. To cope with that issue, we propose a new dissimilarity criterion
based on the Sum of Conditional Variance (SCV) criterion (Pickering et al., 2009; Richa et al.,
2011). Contrary to the SSD, the SCV has the advantage to be invariant to global intensity
changes. Furthermore, this criterion is also computationally efficient and is therefore well
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suited for real-time tracking application. The main idea of the SCV criterion consists in
dynamically adapting the intensity of the reference frame over the time in order to match the
intensity variation of the current frame. The SCV cost function can be expressed as follows:

C(q) = (I

t

(p(t))� bI t
t0
(p(t0)))

2 (5.4)

where bI t
t0

is a vector representing the US intensity of adapted reference frame computed
at time index t. This vector is estimated by using an expectation operator E that takes into
account the reference frame intensity I

t0 and the current frame intensity I

t

such that:
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Thus, the new intensity at a specific voxel position p
x

(t0) of the adapted reference frame is
computed as follows:
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where L represents the number of grey levels of the current and reference frames. p
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with �
u

(x) is an impulse function such that:
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8
<

:
1, if x=u

0, otherwise
(5.9)

However, the SCV criterion, as defined by Pickering et al. (2009), is not well suited to
ultrasound tracking since it is not invariant to local intensity changes that can occur due
to ultrasound shadows. To tackle the previous limitation, a proposed method consists in
applying the SCV criterion on sub-windows of the tracked image (Richa et al., 2014).
However, these approaches may be inaccurate when the size of the window is not well
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adapted to local intensity changes. To cope with that issue, we propose in this thesis a novel
ultrasound-specific version of this criterion by using shadow detection.

To limit the effect of shadowed voxels, we propose to improve the previous criterion by
modifying the cost function expressed in Eq. (5.4). To do so, we can refer to weighted cost
function of SSD (Eq. (5.1)). The cost function can now be expressed as:
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t
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t

(p(t))� bI t
t0
(p(t0))))

2 (5.10)

The joint probability density function p

I

t

I

t0
(i, j) can also be perturbed by shadows since

it is computed from the intensities of all voxels positions of the model. Such issue may
result in mis-estimation of the new intensities of the adapted reference frame p

I

t

I

t0
(i, j). To

solve this issue, we propose also to modify the computation of p
I

t

I

t0
(i, j) by emphasizing

the intensity vector of voxels that are located in confident regions. To do so, the new joint
probability density function can therefore be written as:
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where H
t

(p
k

(t)) represents the weighted value of the voxel position p
k

(t) that is provided
by Eq. (5.2) from the confidence map. By doing so, the computation of the adapted reference
frame bI t

t0
is not disrupted by voxels that are located in shadowed regions. Therefore, we

propose an ultrasound-specific dissimilarity measure that has the advantage to be robust to
global and local intensity changes caused by presence of shadows or gain variation of the
ultrasound imaging device. To link this matching criterion to the tracking method of the
previous chapter, the external displacements can be computed as follows:
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5.1.3 Results

The previous experiments demonstrated the performance of the method during nominal
conditions, where the region of interest is only affected by small intensity variations. However,
in ultrasound-guided procedures, large shadows can appear due to the presence of bones or
bad contact between skin and ultrasound probe. Furthermore, intensity variation can also
be introduced due to imaging gain change of the ultrasound device. To demonstrate that
our approach can cope with these issues, we evaluated our method during strong intensity
changes on both simulated data and phantom data.
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Results on simulated data

We first validate our method on simulated data by modifying original 3D ultrasound sequences
in order to include both synthetic shadows and global intensity changes on each frame.
Ultrasound shadows are simulated by replacing several ultrasound scanlines by synthetic
scanlines that contain a few white voxels followed by black voxels in such a way to artificially
represent a high ultrasound reflection usually observed in presence of bones. Therefore,
different amounts of shadows can be obtained by changing the number of synthetic scanlines.
We also simulate ultrasound gain change by adding a specific offset value on all the intensities
of the ultrasound image at each frame as follows:

I

t

(p
k

(t)) = I

t

(p
k

(t)) + (t) (5.13)

where (t) is the scalar value representing the offset at time index t. In order to create a
varying intensity shift, the offset value is dynamically updated over each 3D frame of an US
sequence until it reaches maximum or minimum limits. An example of simulated image that
includes synthetic shadow and synthetic gain change is provided in Fig. 5.2.

(a) (b)
Fig. 5.2 Simulation of US imaging gain change and shadows. (a) X-Y slice of original 3D
ultrasound image. (b) X-Y slice of simulated 3D ultrasound image with shadows and gain
change.

For our evaluation, we generated six simulated ultrasound sequences including either
rigid motion or deformation from the two original sequences. Each US sequence contains
different amounts of simulated shadows and intensity variations applied to each 3D frame
except the first reference image. The details of each simulated sequence are given in the
table 5.1.
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Sequence Motion Type Shadows Offset Min/Max Nb Frames

SIM_1 Rigid 16 lines 0/100 43
SIM_2 Rigid 40 lines 0/100 43
SIM_3 Rigid 99 lines 0/100 43
SIM_4 Non-Rigid 16 lines 0/100 100
SIM_5 Non-Rigid 44 lines 0/100 100
SIM_6 Non-Rigid 140 lines 0/100 100

Table 5.1 Characteristics of simulated sequences. (Sequence) Name of the sequence. (Motion
Type) Type of motion applied to the original sequence. (Shadows) Number of scanlines that
are replaced by synthetic shadowed scanlines. (Offset Min/Max) Minimum and maximum
offsets applied to ultrasound 3D frames. (Nb Frames) Number of frames in the sequence

The key frames of these simulated ultrasound sequences are illustrated in Fig. 5.3 and
Fig. 5.4. Fig. 5.3 shows the first three sequences where the simulated shadow is static
over the time while the target follows a rigid square motion. Consequently, the target is not
affected by synthetic shadow between frame 10 and frame 26. Fig. 5.4 illustrates the last
three sequences where the simulated shadow is also static but the target undergoes only a
non-rigid motion. In this case, the target is affected by the shadow along each frame of the
sequence.

(a) (b) (c) (d)
Fig. 5.3 Illustration of sequence SIM_3 at key frames. (a) Y-Z slice of frame 0 of sequence
SIM_1, SIM_2, SIM_3. (b) Y-Z slice of frame 6 of sequence SIM_3. (c) Y-Z slice of frame
15 of sequence SIM_3. (d) X-Z slice of frame 28 of sequence SIM_3.

(a) (b) (c) (d)
Fig. 5.4 Illustration of sequences SIM_4, SIM_5, SIM_6 at key frames. (a) X-Z slice of
frame 0 of sequence SIM_4, SIM_5, SIM_6. (b) X-Z slice of frame 25 of sequence SIM_4.
(c) X-Z slice of frame 25 of sequence SIM_6. (d) X-Z slice of frame 42 of sequence SIM_6.



74 Confident-based Similarity Criteria and Strategies

 0
 5

 10
 15
 20
 25
 30

 0  5  10  15  20  25  30  35  40

di
st

an
ce

 (v
ox

el
s)

 

Frame

Hausdorff distance

SCV
SCCV
SSD 

WSSD

(a) Sequence SIM_1

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0  20  40  60  80  100

di
st

an
ce

 (v
ox

el
s)

 

Frame

Hausdorff distance

SCV
SCCV
SSD 

WSSD
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(f) Sequence SIM_6
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Fig. 5.5 Evaluation of mean tracking error of criteria on each sequence of the simulated
dataset.
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In order to evaluate the approach regarding the different criteria, we measured the
Hausdorff distance between the model tracked in simulated sequence and the model tracked
in original sequence (without shadows and gain variations). We also evaluated the percentage
of confidence P

c

of the mesh in order to determine how the target is affected by shadows
along these simulated sequences. For that purpose, we computed the sum of confidence
weights per voxel as follows:

P

c
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100

N

v

N

vX

k=1

H
t

(p
k

(t)) (5.14)

where N

v

represents the total number of voxels in the mesh model. H
t

denotes the weight
matrix expressed in Eq. (5.2). If P

c

= 100%, then all the voxels of the model are considered
confident and not affected by shadows.

In Fig. 5.5, we present the Hausdorff distance results and the model confidence along
each sequence. As shown in this figure, the SSD and WSSD criteria provide inaccurate
tracking for each simulated sequence. Such results were expected since these similarity
measures are not well-suited during global intensity variation introduced by US gain changes.
Contrary to previous criteria, SCV and SCCV present accurate results for sequences that
include non-rigid motions and small confidence variation (SIM-4, SIM-5, SIM-6). Indeed, in
these sequences, we can notice that the confidence evolution only slightly varies (maximum
6%). From Fig. 5.5, we can observe that our novel criterion SCCV outperforms the SCV
in sequences including both rigid motions and large confidence variation (SIM-2, SIM-3).
As it can be seen in Fig. 5.5, the performance of SCV criterion is related to the decrease of
confidence level (after frame 26). Such result was expected because the SCV criterion is not
adapted to local intensity variation introduced by shadows.

In Figs. 5.6 and 5.7, we illustrate the computation of the Joint Probability Density
Function (JPDF) between the reference image and a selected current image. Let us recall that
this function depends on matching criterion. Indeed, SCV criterion takes into account all the
voxels for the JPDF computation, while SCCV emphasizes only confident voxels. We also
propose to plot the intensity mapping function expressed in Eq. (5.6). From this latter, we
observe that this function is directly obtained by averaging the JPDF weights. Furthermore,
its ground truth shape can be approximated because we used simulated gain offset. Figs.
5.6c and 5.6f show respectively the JPDF computation of SCV criterion between two images.
We can observe that the JPDF is very straight and narrow when strong correspondence can
be established between the intensities of the initial image (Fig. 5.6a) and current image
(Fig. 5.6b). The intensity mapping function is therefore also straight and fits the ground truth
curve. In Fig. 5.6f, we can see that the joint probability density function is perturbed by
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synthetic shadow that introduces wrong correspondences between the intensities of the initial
image (Fig. 5.6d) and current image (Fig. 5.6e). Such effect can be observed in the left part
of the plot. Consequently, the intensity mapping function is perturbed and does not follow
the ground truth curve. In Figs. 5.7c and 5.7f, we illustrate the JPDF computation between
two images obtained from SCV and SCCV criterion. The joint probability functions are
more scattered since there is more noise between reference and current images. Furthermore,
we can observe a horizontal shift of JPDF introduced by synthetic gain change. In Fig. 5.7c,
we show the high perturbation introduced by the shadow on JPDF computation from SCV
criterion. In Fig. 5.7f, this perturbation is reduced by using the SCCV criterion as it limits
the effect of shadowed voxels. Consequently, the intensity mapping function from SCCV
criterion has better shape and fits the ground truth curve.
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Fig. 5.6 Comparison of the estimation of joint probability density function p
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tracking task. The x-axis and y-axis represent respectively the intensity level of the target at
the current frame and at the original reference frame. The green cloud represents the joint
probability density function. The black and red curves represent respectively the intensity
conversion function estimated from ground truth and from joint probability density function.
(a) SCV criterion applied to original frame 2 without shadows (b) SCV criterion applied to
simulated frame 2 with synthetic shadows.
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Fig. 5.7 Comparison of the estimation of joint probability density function p
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tracking task. The x-axis and y-axis represent respectively the intensity level of the target
at the current frame and at the original reference frame. The green cloud represents the
joint probability density function. The black and red curves represent respectively the
intensity conversion function estimated from ground truth and from joint probability density
function.(c) SCV criterion applied to simulated frame 74 with shadows and imaging gain
change (d) SCCV criterion applied to simulated frame 74 with shadows and gain change.
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From the previous simulation results, we can conclude that in the presence of imaging
gain variation, the SSD and WSSD criteria produce inaccurate results while the SCV and
SCCV provide robustness by adapting the reference frame over the time. However, in the
presence of shadows, we can also observe that the SCV criterion provides good results as
long as the shadow and motion remain small. We can also notice that the new criterion
tackles the previous issues by limiting the effect of the shadowed voxels.

Results on phantom data

We also evaluated our approach regarding the different similarity criteria on two phantoms.
For that purpose, we acquired ultrasound sequences that contain real shadows and/or gain
variation. The details of each sequence are provided in table 5.2. To evaluate the accuracy of
the different criteria, we annotated the position of a specific target landmark for 10 frames
of each ultrasound sequence. Thus, we can compare the ground truth landmark positions
and the warped point positions estimated from our tracking approach. The overall tracking
results are shown in table 5.3. In the following experiments, specific landmarks are difficult
to identify due to the lack of texture within targets. To cope with that issue, we choose
respectively either the far left point or the far right point of the targets as landmarks.

Sequence Motion Type Shadows Gain change Nb Frames

PHA_1 Translation Yes No 100
PHA_2 Rotation Yes No 100
PHA_3 None No Yes 100
PHA_4 Translation Yes Yes 100

Table 5.2 Characteristics of phantom sequences. (Sequence) Name of the sequence. (Motion
Type) Type of motion applied to the original sequence. (Nb Frames) Number of frames in
the sequence.

Sequence SSD WSSD SCV SCCV

PHA_1 10.6 ± 11.7 5.8 ± 6.8 22.9 ± 31.1 2.48 ± 2.18
PHA_2 - 5.36 ± 6.01 – 2.0 ± 1.7
PHA_3 42 ± 46 – 1.7 ± 1.2 –
PHA_4 – – 31 ±41 2.4 ± 2.2

Table 5.3 Accuracy evaluation of similarity criteria regarding each US sequence. The results
are expressed in millimeters and represent respectively the mean tracking error ± the standard
deviation (Sequence) Name of the sequence.
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The first sequence PHA_1 allows comparing all the similarity criteria regarding the
presence of large shadows and translation motion. Fig. 5.8 illustrates the tracking tasks on
several frames and show that the SSD and SCV criteria diverge due to the amount of shadows
that occludes the target. We can also notice that the WSSD criterion shows better results but
the model does not fit exactly the target surface over the time. Contrary to the other criteria,
the SCCV criterion provides robust tracking along the ultrasound sequence. It can be also
seen in table 5.3, where we can observe that the SCCV provides smallest mean tracking error.
In Fig. 5.9, we illustrate the evolution of the model confidence where we see that the target is
strongly occluded by the shadow since its confidence decreases down to 30% around frame
50.

(a) (b) (c)

(d) (e) (f)
Fig. 5.8 Example of tracking tasks during the PHA_1 sequence with shadows and translation
motion. Red points represent the intersections between the mesh model and the Y-Z slice
of 3D image. (a-b-c) SCCV tracking at frame 2 (a), at frame 52 (b), at frame 99 (c) of
sequence PHA_1. (d) SSD tracking at frame 99 , (e) SCV tracking at frame 99, (f) WSSD
tracking at frame 99. The different images correspond to the Y-Z slices that passes through
the barycenter of the tracked mesh over the time. Therefore, the target can not be seen in
Figs. (d) and (e) since SSD and SCV criteria diverged.
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Fig. 5.9 Evolution of the mesh model confidence during the sequence PHA_1. We can
observe that the confidence of the mesh model decreases down to 30% at frame 50.

The second experiment consists in evaluating our approach on an ultrasound sequence that
contains shadows and rotation motion. In this experiment, we only compare the performance
of the WSSD and SCCV criteria since we demonstrate that they provide better results
regarding the presence of shadows. Fig. 5.10 shows the tracking tasks on several frames. We
can notice that the SCCV criterion provides more accurate tracking than WSSD criterion
since its model fits the target surface over the time. This can be also seen in table 5.3
that shows that the SCCV criterion achieves a smaller mean tracking error than the WSSD
criterion.

(a) (b) (c)

(d) (e) (f)
Fig. 5.10 Example of tracking tasks during the PHA_2 sequence with shadows and rotation
motion. Red points represent the intersections between the mesh model and the Y-Z slice
of 3D image. (a-b-c) SCCV tracking (a) at frame 2, (b) at frame 122, (c) at frame 145 of
sequence PHA_2. (d-e-f) WSSD tracking (d) at frame 2, (e) at frame 122, (f) at frame 145 of
sequence PHA_2.
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In the sequence PHA_3, we compare the performance of our approach only regarding
global intensity changes. For this purpose, we acquired an ultrasound sequence that does not
contain any motion and we modify the ultrasound gain during the acquisition. It is worth
mentioning that the target is not displaced since no motion is applied in this sequence. We
only compare the SCV and SSD criteria since the target undergoes only global intensity
changes. The tracking tasks are illustrated on some frames in Fig. 5.11 where we can notice
that the SSD tracking task diverges since the model is displaced over the time and it does not
fit the target surface. We can also observe that the SCV criterion achieves considerable better
results than SSD from the table 5.3.

(a) (b) (c)

(d) (e) (f)

Fig. 5.11 Example of tracking tasks during the PHA_3 sequence with gain variation. Red
model represents the 3D mesh model. (a-b-c) SCV tracking (a) at frame 2, (b) at frame 8, (c)
at frame 40 of sequence PHA_3. (d-e-f) SSD tracking (d) at frame 2, (e) at frame 8, (f) at
frame 40 of sequence PHA_3. The different images correspond to the X-Y slices that passes
through the barycenter of the tracked mesh over the time. Therefore, the target can not be
seen in Fig. (f) since SSD criterion diverged.
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The last experiment consists in testing our approach on an ultrasound sequence containing
both shadows and imaging gain variation. Furthermore, we also introduced a translation
motion by manually moving the probe. We only compare the performance of the SCV and
SCCV criteria since we demonstrated in the previous experiment that the SSD and WSSD
criteria are not robust to global intensity changes. The tracking tasks are illustrated on several
frames in Fig. 5.12. From this figure, we can observe that the SCV criterion diverges when
the target is displaced in shadowed region after frame 50. We can also notice that our new
criterion provides robust results during local and global intensity changes with a final mean
tracking error of 2.4 mm from table 5.3. Fig. 5.13 illustrates the evolution of the mesh model
confidence during the tracking task. We can observe that the SCV tracking diverges when
the target confidence decreases down to 80% after frame 50.

(a) (b) (c)

(d) (e) (f)

Fig. 5.12 Example of tracking tasks during the PHA_4 sequence with local and global
intensity variations. Red points represent the intersections between the mesh model and
the image slice. (a-b-c) SCCV tracking (a) at frame 2, (b) at frame 51, (c) at frame 71 of
sequence PHA_4. (d-e-f) SCV tracking (d) at frame 2, (e) at frame 51, (f) at frame 71 of
sequence PHA_4.
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Fig. 5.13 Evolution of the mesh model confidence during the sequence PHA_4.

From the previous experiments, we can deduce that the SSD and WSSD criteria are
sensitive to global intensity shifts. To cope with that issue, SCV and SCCV criteria are
more robust to ultrasound gain changes by adapting the reference target intensity. However,
the SCV is not well adapted to local intensity variation that can occur due to the presence
of ultrasound shadows. From the sequences PHA_1 and PHA_2, we also notice that the
WSSD can not provide accurate results against shadows. This is caused by the intensity
reduction effect in the vicinity of the shadow as illustrated in Fig 5.10(b). Finally, we can
notice that our new criterion SCCV is robust to local and global intensity changes even if
large shadows significantly occludes the target (70% of the target in experiment PHA_1 in
Fig. 5.9). The performance of the proposed criterion open novel perspectives since it allows
tracking structures that are affected by strong ultrasound artifacts. In the following section,
we propose a new tracking strategy based on SCCV criterion that allows maximizing the
quality of reference image.

5.2 Confident-based tracking strategy

In previous section, we proposed a new criterion that is robust to local and global intensity
variation introduced by ultrasound artifacts. However, the main issue of SCCV criterion
is related to the assumption that the quality of the reference image is high enough. Such
assumption is not always valid and may have significant impact on the tracking performance.
To cope with that issue, we propose a tracking strategy based on previous criterion. In
the literature, the tracking strategies can be distinguished into two main categories, i.e.
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pairwise and groupwise strategies. In the following sections, we give a description of each
type of strategy and we detail their advantages and shortcomings. We also propose a new
hybrid tracking strategy based on the quality measurement of ultrasound images. Finally, we
demonstrate that our method outperforms other strategies through simulated and phantom
data.

5.2.1 Pairwise strategy

In ultrasound tracking applications, pairwise approach is the most used since it relies on
classical registration scheme between current and reference images. These methods can be
subdivided into iterative and non-iterative pairwise strategies depending on how the reference
image is selected. Iterative pairwise strategies aim at finding the optimal transformation by
registering consecutive frames together. In ultrasound application, examples of these methods
have been proposed by Shekhar and Zagrodsky (2002) and Heyde et al. (2012). Therefore,
for each new acquired image, iterative pairwise strategy defines the spatial transformation T

by minimizing the following cost function:

argmin

T

S(I

t�1, T � I
t

) +R(T ) (5.15)

where I

t

and I

t�1 represent consecutives images acquired at time t and t � 1. However,
registering consecutive pairs of images can lead to error accumulation and drift over the
time. To cope with that issue, several authors propose non-iterative strategies that consist in
registering all the images to a selected reference image. Therefore, non-iterative strategies
aim at finding the spatial transformation T that minimizes the following cost function:

argmin

T

S(I

r

, T � I
t

) +R(T ) (5.16)

where I

r

and I

t

represent respectively the selected reference image and the current image.
The main shortcoming of these strategies is related to the critical choice of the reference
image I

r

. In most of tracking applications, the initial US image of the sequence is selected as
the reference template. However, this image quality should be high enough in order to ensure
good tracking performance. Furthermore, the appearance of both reference and current
images should be similar in order to obtain an unique optimal transformation. To cope with
that issue, several methods propose to periodically update the reference image when the error
between reference and current images is higher than a threshold.
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5.2.2 Groupwise strategy

A second type of methods, named groupwise strategies, consists in finding the optimal
displacement of moving structure from the simultaneous alignment of multiple images.
Therefore, these approaches take into account all image information in order to lead to more
robust registration results. Contrary to pairwise methods, these strategies are invariant to
the bias error introduced by the selection of a reference image. In ultrasound applications,
examples of groupwise methods have been proposed by Metz et al. (2011) and Vijayan et al.
(2013). Metz et al. (2011) proposed a method that consists in registering a current frame and
an implicit frame obtained from previous images. The estimation of the target displacement
is obtained by minimizing the following cost function:

argmin

T

S(

c
I

m

, T � I
t

) +R(T ) (5.17)

where cI
m

is an implicit frame computed from previous images of the sequence. It allows
eliminating the need to choose a reference image. Vijayan et al. (2013) propose to compute
the implicit frame by averaging the intensity of the previous image over the time as follows:

c
I

m

=

t�1X

t

k

=t0

I

t

k

(p(t
k

)) (5.18)

where I

t

k

represents the intensity vector of the image at time index k. p(t
k

) denotes a vector
that defines all the voxels positions of the target at time index k. From the previous equation,
we can see that this approach makes the assumption that intensity values at corresponding
spatial locations over time are constant. Compared to pairwise strategies, the main limitation
of these strategies is related to its computational complexity. Indeed, the execution time of the
proposed approach increases with the sequence length. Therefore, this type of strategy is not
well suited for real-time tracking of long sequence, as it requires a huge amount of memory
and processing power. In the table 5.4, we summarize the advantages and shortcomings of
each tracking strategy.

Type of Strategy Quality Invariant Drift Invariant Comp. time

Iterative Pairwise 3 7 3
Non-iterative Pairwise 7 3 3
Groupwise 3 3 7

Table 5.4 Characteristics of existing tracking strategies. (Comp. time) Computation time of
the method
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5.2.3 Hybrid strategy

In this section, we introduce a new tracking strategy that allows tackling the issues of the
previous approaches. The proposed method is based on non-iterative pairwise strategy that
registers a current image with a selected reference image. However, as stated previously, the
main limitation of this strategy is related to the reference image selection since this image
can be affected by large shadows. Such issue may introduce bias error during tracking task
because it reduces the number of confident voxels. To cope with that issue, we propose to
locally adapt the reference image over the time. Contrary to iterative strategies, the proposed
method aims at replacing only unconfident areas of the selected template in order to limit
error accumulation. By doing so, the proposed approach ensures the maximum quality of
the reference image. This strategy computes the spatial transformation by minimizing the
following cost function:

argmin

T

S(I

d

, T � I
t

) +R(T ) (5.19)

where I

d

is a dynamic image that depends on previous images of the sequence. Our strategy
aims at obtaining the dynamical reference image I

d

from quality measurement of previous
US images as follows:
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), if U
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(p
t0)

(5.20)

where I

t

and I

t0 represent respectively the current and the initial frames. U

t

denotes the
current confidence image, while U

d

is the dynamic confidence image representing the quality
of the image I

d

. It is obtained from previous confidence images and can be expressed as
follows:

U

d

(p
t0) =

8
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:
U
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), if U
t

(p
t

) > U

d

(p
t0)

(5.21)

The proposed method has the advantage to be faster than groupwise strategies as it relies only
on the alignment of two images. Furthermore, such approach prevents the error accumulation
as it locally replaces structures until the quality of the reference image is sufficient. Finally,
this strategy avoids the bias error introduced by the selection of reference image.
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5.2.4 Results

In this section, our novel tracking strategy is evaluated from two different types of exper-
iments. First, we compare the tracking approaches through simulated data that consist of
original US sequences that are degraded by simulated shadows. The second type of exper-
iments allows evaluating the tracking strategies on phantom data. It it worth mentioning
that only pairwise strategies are compared since groupwise strategy is not well-suited for
real-time applications.

Results on simulated data

The simulation experiments are performed on three original US sequences that are perturbed
by different amounts of simulated shadows. Contrary to previous simulation experiments, the
initial image of each sequence is also affected by ultrasound shadows. In Table 5.5, we detail
some characteristics of each sequence, e.g. the motion type and the amount of simulated
shadow.

Sequence Motion Type Shadows Nb Frames

SIM_1 Non-Rigid 140 lines 43
SIM_2 Rigid 16 lines 43
SIM_3 Rigid 40 lines 43

Table 5.5 Details of simulated sequences. (Sequence) Name of the sequence. (Motion Type)
Type of motion applied to the original sequence. (Shadows) Number of scanlines that are
replaced by synthetic shadowed scanlines. (Nb Frames) Number of frame in the sequence

To evaluate the performance of the strategies, we measure their accuracy and their bias
error along each sequence. To do so, we compare the Hausdorff distance between the models
tracked in perturbed sequence and in original sequence. The ground truth is provided by
results obtained from original sequence since this latter is not perturbed by shadows. We also
evaluate the bias error by measuring the intensity difference between the reference image
and original reference image. This error can therefore be expressed as follows:

E

bias

= ||oI
r

(p(t0))� p

I

r

(p(t0))||2 (5.22)

where o

I

r

denotes the initial image in the original sequence. p

I

r

denotes the reference image
in the simulated sequence. Depending on the chosen tracking strategy, the intensity vector
p

I

r

of the reference image may vary. For example, non-iterative pairwise tracking strategy
provides constant reference image such that p

I

r

=

p

I

t0 . Iterative strategy aims at changing



5.2 Confident-based tracking strategy 87

the reference image when a new image is acquired such that p

I

r

=

p

I

t�1. The hybrid strategy
allows locally adpating the reference image until its quality is sufficient such that p

I

r

=

p

I

d

.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 0  5  10  15  20  25  30  35  40

di
st

an
ce

 (v
ox

el
s)

 

Frame

Hausdorff distance

Iterative Hybrid Selected

(a) Sequence SIM_1 : Distance Error

 90

 100

 110

 120

 130

 140

 150

 5  10  15  20  25  30  35  40

E
rr

or

Frame

Intensity error

Iterative Hybrid Selected

(b) Sequence SIM_1 : Intensity Bias error

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0  5  10  15  20  25  30  35  40

di
st

an
ce

 (v
ox

el
s)

 

Frame

Hausdorff distance

Iterative Hybrid Selected

(c) Sequence SIM_2 : Distance Error

 0

 20

 40

 60

 80

 100

 120

 140

 5  10  15  20  25  30  35  40

E
rr

or

Frame

Intensity error

Iterative Hybrid Selected

(d) Sequence SIM_2 : Intensity Bias Error

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30  35  40

di
st

an
ce

 (v
ox

el
s)

 

Frame

Hausdorff distance

Iterative Hybrid Selected

(e) Sequence SIM_3 : Distance Error

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 5  10  15  20  25  30  35  40

E
rr

or

Frame

Intensity error

Iterative Hybrid Selected

(f) Sequence SIM_3 : Intensity Bias Error
Fig. 5.14 Comparison of pairwise tracking strategies on each sequence of the simulated
dataset. (Iterative) Iterative strategy, (Hybrid) Proposed Hybrid strategy, (Selected) Non-
Iterative strategy with selected reference image.
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The results of these experiments are presented in Fig. 5.14. From that figure, we
can notice that for each simulation, non-iterative and iterative strategies show respectively
constant and unstable evolution of bias error over each frame. This difference may be
explained by the adaptation of reference image from iterative strategy. However, such
technique may lead to error accumulation as it can be seen in Figs. 5.14d and 5.14f after
frame 25. Contrary to other strategies, we can observe that our method allows progressively
reducing the bias error of the reference image since it locally adapts the reference image until
its quality is sufficient. In terms of tracking accuracy, we can observe that hybrid and non-
iterative strategies outperforms iterative strategy for sequence SIM_1 and SIM_2. Indeed,
this latter is sensitive to error accumulation and therefore may lead to tracking drift over
the time. We can also notice that our strategy provides better tracking results for simulation
SIM_3. The bad tracking performance of non-iterative strategy is related to the poor quality
of reference image. Indeed, this strategy may provide incorrect results because it does not
allow updating the reference image.

Results on phantom data

The second type of experiment allows comparing the tracking strategies through 3D ultra-
sound images of synthetic phantom. To do so, we acquired a sequence whose quality varies
over the time by introducing US shadows. These latter are obtained from bad contact between
phantom and US probe. In this experiment, the tracking accuracy of each strategy is obtained
by measuring the tracking error with respect to an annotated landmark over each image. The
ground truth is provided from manual annotations of one expert over each frame.

The tracking task is illustrated in Fig. 5.16 from which we can observe that the initial
image of the sequence is highly perturbed by shadows. In Fig. 5.15, we compare the tracking
accuracy of each strategy over the time. We can observe that non-iterative pairwise strategy
provides high tracking error along the sequence with a mean tracking error of 5.65 mm. Such
result may be explained by the poor quality of reference image that reduces considerably the
number of confident voxels. We can also notice that iterative strategy provides better results
(MTE= 3.78 mm) since it allows updating the reference image along the sequence. However,
as illustrated in Fig. 5.15, we can see that the tracking error of the strategy increases at the
end of the sequence due to error accumulation. Therefore, we can see that the proposed
strategy outperforms existing pairwise strategies by providing stable and low tracking error
along the sequence (MTE =1.37 mm). However, we can also notice that high error can be
obtained at specific frames, e.g. frame 30, frame 83, and frame 127. This may be induced by
several factors like manual annotation inaccuracy, or high inter-frame motion. Nevertheless,
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as it can be seen from Fig. 5.15, the method remains accurate along the sequence by limiting
error accumulation.
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Fig. 5.15 Tracking error results obtained from Phantom experiment. Comparison of different
pairwise tracking strategies. (Iterative) Iterative strategy, (Hybrid) Proposed Hybrid strategy,
(Selected) Non-Iterative strategy with selected reference image.
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Fig. 5.16 Illustration of tracking results with hybrid strategy. (Left column) Current images
during tracking task. White points represent the intersections between the mesh model and
the Y-Z slice of 3D image. (Middle column) Dynamic Reference image I

d

during tracking
task. (Right column) Zoom on reference model during tracking task.
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5.3 Conclusion

In this chapter, we presented a novel matching criterion that combines Sum of Conditional
Variance and quality measurement of US images. Such criterion has the advantage to be
robust to local and global intensity variations that can occur due to large shadows and
gain variation. We demonstrated the proposed criterion outperforms classical matching
criteria from simulation and phantom experiments. Therefore, the proposed approach allows
opening novel perspectives in ultrasound-guided therapies when the visualization of targeted
structures is affected by ultrasound artifacts. However, this method relies on the assumption
that quality of the reference image is sufficient in order to ensure correct tracking results.

To cope with that issue, we introduced a new hybrid pairwise tracking strategy based on the
SCCV criterion. The proposed approach allows locally adapting the reference image until its
maximum quality is reached. Such approach has the advantage to be invariant to bias error
introduced by the selection of reference image. Furthermore, it is more robust to tracking
drift that may be induced by error accumulation. From simulation and phantom experiments,
we show that our hybrid strategy is more accurate than existing pairwise strategies. Finally,
our method is less computationally demanding than groupwise strategies because it only
relies on the alignment of two images.

In the following chapter, we propose to evaluate these contributions on real-data by using
an ultrasound sequence of liver tissue acquired on a volunteer. In addition, we propose a new
visualization system that combines pre-operative and 3D ultrasound images. Such system
relies on accurate tracking of structures in 3D US images by combining SCCV criterion and
mechanical-based regularization.





Chapter 6

Application to Multi-modal Visualization

In previous chapters, we introduced several contributions that allow tracking deformable
structures in ultrasound images even if they are affected by several ultrasound shortcomings
including speckle noise, gain variation, and shadows. As it can be seen from the results, the
proposed tracking approach achieves better performance than classical tracking techniques.
The robustness and accuracy of the proposed contributions allow opening novel perspectives
in multi-modal registration, visualization and medical robotics. In this chapter, we proposed
a clinical application that allows improving surgeon visualization by combining pre-operative
image and ultrasound images. To do so, we present a new visualization method that replaces
the shadowed areas of US images by visible structures from pre-operative images. These
areas represent structures that can not be seen in US images due to the strong reflections of
the ultrasound signal. They are generally caused by solid structures such as bones, but can
also occur due to bad contact between skin and ultrasound probe. To evaluate the proposed
application, the visualization system is tested in clinical practice. In section 6.1, we describe
the acquisition of 3D US sequence and MRI volume. The whole method including calibration
and registration steps is presented in section 6.2. In section 6.3, we evaluate the approach
through an experiment performed in real clinical scenario.

6.1 Materials

In this experiment, we acquired a 3D US sequence and MRI data of a healthy volunteer at
the University Hospital of Rennes. The MR volume is obtained from a 3T Siemens Verio
MRI research system and its associated dimensions are 640 x 520 x 64 voxels with a related
spacing of 0.59 x 0.59 x 3.0 mm. The ultrasound volumes are obtained from an Ultrasonix
station thanks to a motorized probe (4DC7-3/40). This probe incorporates a curvilinear
transducer array mounted on a motor that sweeps in forward and backward direction in
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order to acquire adjacent 2D images. Then, each 3D ultrasound volume is constructed
by interpolating the data between the acquired 2D frames. Each US volume is generated
from 11 adjacent 2D images with a motor angular step of 2.19�. The dimensions of the US
volumes are respectively of 781 ⇥ 518 ⇥ 221 voxels with an associated voxel spacing of
0.30 ⇥ 0.30 ⇥ 0.30 mm. Thus, the US field of view is equal to 24.09

� and its associated
volume rate is 0.5 vol/s.

6.2 Method

In this section, we propose a method that allows improving US visualization by replacing
shadowed regions of US images by structures visible in pre-operative image. Such approach
has the advantage to not disturb the surgeon visualization since only regions that do not
represent any clinical structures are removed from the US images. The proposed approach
can be decomposed into three steps:

• Multi-modal Registration: The first step aims at registering the initial US volume
and pre-operative image.

• Ultrasound Tracking: Once the initial registration is performed, a region of interest
is segmented in pre-operative image and tracked in the remaining of the sequence.

• Pre-operative/Ultrasound visualization: The last step aims at providing an output
image that replaces unconfident regions of the current US image by structures visible
in pre-operative image.

6.2.1 Multi-modal registration

This step consists in aligning MRI volume and the initial 3D US images. This registration
problem can be represented as follows:

E(T ) = argmin

T

E(I

us

, T � I
po

) (6.1)

where I

us

and I

po

represent respectively the initial ultrasound image and the pre-operative
image. T denotes the transformation applied to the source image. In this approach, T is
considered as a rigid transformation characterized by translation and rotation parameters. E
is a cost function that quantifies the level of alignment between the images. To perform regis-
tration between two images, several solutions are available including manual, semi-automatic,
and automatic multi-modal registration methods. In our approach, the registration is obtained
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from external registration by using localization system. Then, a manual registration step is
performed in order to refine the final transformation. The calibration of the different imaging
systems is required in order to have the different imaging modalities represented in the same
space coordinate system. In the following sections, we describe respectively the experimental
setup, and registration and calibration steps.

Experimental setup

In this section, the experimental setup that allows externally registering MR and Ultrasound
images is described. In Fig. 6.1, we illustrate this setup where F

ius

and F
imr

represent
respectively the coordinate systems associated to the US and MRI volumes. To fuse the
different imaging modalities, the classical solution consists in initializing the registration from
external localization system. Such system allows retrieving the 3D position and orientation of
passive markers with respect to the coordinate frame of localization system F

o

. As illustrated
in Fig. 6.1, a passive marker is attached to the ultrasound probe in order to detect the position
of the US volume. However, any passive marker can be linked to the MRI system since
it is not compatible with electromagnetic perturbations introduced by localization system.
To cope with that issue, several mri-compatible fiducials are stuck to the volunteer skin as
illustrated in Figs. 6.1 and 6.2. After the acquisition, the positions of these fiducials are
recorded from passive marker attached to a touch probe. The coordinate systems of the
touch probe and US probe are denoted as F

t

and F
p

. From this experimental setup, an initial
transformation can be retrieved from the external registration.

External registration

The external registration is based on an external localization system. To do so, several
devices can be used including electromagnetic, optical, or computer vision systems. In this
application, we chose to use optical system since it is robust and invariant to electromagnetic
perturbations. This system is equipped with a position sensor along with an infrared light
emitter. The passive markers are detected since they are composed of infrared-reflective
spheres. The objective of external registration is to find the rigid transformation imrH

ius

that links the MRI coordinate frame F
imr

to the US coordinate frame F
ius

. This rigid
transformation imrH

ius

can be computed as follows:

imrH
ius

=

oH�1
imr

oH
ius

(6.2)

where oH
ius

denotes the rigid transformation that relates the US image coordinate frame to
the optical camera coordinate frame. oH

imr

represents the rigid transformation that links
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Fig. 6.1 Illustration of the acquisition protocol. F
o

represents the frame associated to the
optical camera frame. F

ius

and F
imr

represent the coordinate systems associated to the US
images and MRI images. F

p

and F
t

are the frames associated to the touch probe and US
probe.

the MR image coordinate system to the optical camera coordinate system. As it can be
seen from Fig. 6.1, only the transformations denoted as oH

p

and oH
t

, relating both the US
probe frame and touch probe frame to the optical camera frame, can be retrieved from the
localization system. Therefore, in the following, we describe the calibration steps that allows
obtaining the transformations oH

ius

and oH
imr

. Once the imaging systems are calibrated, we
can compute the transformation imrH

ius

by rewriting the Eq. (6.2) as follows:

imrH
ius

=

oH�1
imr

oH
p

pH
ius

(6.3)

MRI calibration

The calibration of MRI system aims at providing the rigid transformation oH
imr

that links
the optical camera frame F

o

with the MRI frame F
imr

. In order to find this transformation,
we propose to relate the positions of several mri-compatible fiducials between these two
coordinate systems. To do so, several water-based fiducials are attached to the volunteer
skin as illustrated in Fig. 6.2. Therefore, such fiducials can be segmented by using an
intensity-threshold since they appear bright within MRI volume. In the optical camera
coordinate system, the positions of these fiducials are recorded by using the touch probe.
Once the coordinates of these fiducials are recorded in both frames, we can compute the rigid
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transformation oH
imr

that minimizes the following least square cost function:

e(R, t) =
1

N

f

N

fX

i=0

(pf

imr

(i)� (Rpf

o

(i) + t))2 (6.4)

where pf

imr

(i) and pf

o

(i) represent respectively the homogeneous coordinates of the i-th
fiducial in MRI and optical camera frames. e denotes the least square cost function. N

f

is the
number of fiducials points. The translation vector t and the rotation matrix R represent the
parameters of the cost function that can be found by using the singular value decomposition
algorithm. The transformation oH

imr

can thus be obtained by combining the previous
parameters as follows:

oH
imr

=

 
R3⇥3 t3⇥1

0 0 0

1

!
(6.5)

Once the MRI system is calibrated, it remains to define the rigid transformation oH
ius

from the calibration of the US imaging system in order to compute the external rigid
registration.

Fig. 6.2 Illustration of MRI calibration steps. (Left) Axial slice of MR volume of the
healthy volunteer. The blue circles represent the segmentation of fiducials. (Right) Image
representing the acquisition of the fiducials positions by the touch probe.

US Calibration

To perform external registration, the calibration of US imaging system is required since
it allows providing the transformation pH

ius

required in Eq. (6.3). In our application, the
calibration of the 3D US probe is performed by using an algorithm based on N-wires phantom
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from the Plus library proposed by Lasso et al. (2014). This technique relies on the detection
of fiducials points in US images representing the intersections between several wires and 2D
US image plane. This set of wires is attached to a calibration phantom whose geometry is
known. Then, the calibration method consists in determining the transformation that relates
the coordinates of fiducials points in both US image frame and probe frame. As this method
is adapted to 2D image, we developed a framework that allows calibrating 3D ultrasound
volumes from the extraction of the 2D image corresponding to the central observation plane
of the 3D probe. The calibration algorithm for 3D ultrasound volume can be decomposed
into three steps:

• Data Collection and Volume Rendering: This step consists in collecting each 2D
frame of a volume as well as the associated transformation matrices that relate the
optical camera frame to the frames of passive markers attached to both the ultrasound
probe and the calibration phantom. Once the volume is complete, the volume is
rendered by using bi-linear interpolation between 2D acquired data. The volume
generation is illustrated in Fig. 6.3a.

• Central Frame Extraction: As the US volume geometry is known, the calibration of
one 2D frame is sufficient in order to calibrate the whole volume. To do so, we retrieve
only the central image of the rendered volume as illustrated in Fig. 6.3b.

• Points Detection: Once the central image is extracted, the last step consists in detecting
and segmenting the bright image points representing the intersections between middle
US frame and the phantom wires. An example of US image during calibration is
shown in Fig. 6.3c. Then, an optimization algorithm is performed in order to find the
transformation that relates the probe frame to the 2D central frame.

Motor   

2D Frames

Interpolated

Data

Passive

marker   

(a)

Calibra�on

Phantom

Central

Frame

Phantom

Wires

Passive

markers   

(b)

Intersec�on

between

central frame 

and phantom

wires

(c)

Fig. 6.3 Illustration of the 3D ultrasound volume calibration. (a) Illustration of Data Col-
lection and Volume Rendering. (b) Central Frame Extraction and phantom calibration. (c)
Example of US image during calibration
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Once the imaging systems are calibrated, an initial registration between MR and initial
US image can be computed thanks to the Eq. (6.3). However, the external registration
may suffer from non-negligible inaccuracies due to the physiological motions of the patient.
To cope with that issue, other registration techniques can be combined in order to refine
registration between MR and US images.

Manual registration

In this work, we chose to refine the final registration thanks to manual registration from the
annotations of corresponding features in both images. Therefore, the final transformation T

can be expressed as follows:
T =

imrH
ius

H
man

(6.6)

where H
man

represents the manual transformation that allows refining the registration be-
tween MR image and initial US image. To obtain this transformation, we annotate landmarks
between initial US volume and warped MRI images as illustrated in Fig. 6.4. Once these
annotations are performed, the manual transformation can be obtained by decreasing the
following cost function:

e(Rm

, tm) =
1

N

f

N

fX

i=0

(p
wmr

(i)� (Rmp
ius

(i) + tm))2 (6.7)

where p
wmr

represents the landmarks annotated in warped MRI image as illustrated in
Fig. 6.4. p

ius

denotes the landmarks annotated in initial US image. Rm and tm respectively
represent the rotation matrix and translation vector computed from minimization of the
previous cost function. The manual transformation H

man

can thus be obtained by combining
the previous parameters as follows:

H
man

=

 
Rm

3⇥3 tm3⇥1

0 0 0

1

!
(6.8)

The main issue associated to manual registration is the time comsumption due to the user
interaction. To tackle this limitation, automatic registration methods can also be used as
described by Coupé et al. (2012).

6.2.2 Ultrasound tracking

Once the registration between initial US volume and MRI volume is performed, a region of
interest is segmented in pre-operative image and a corresponding mesh model is generated.
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(a) (b)

Fig. 6.4 Illustration of manual annotations. (a) Manual annotations in initial US image. (b)
Manual annotations in warped MRI image obtained from transformation imrH

ius

.

This model contains a set of cells linked by a set of nodes and allows tracking the region
of interest in the remaining images of the ultrasound sequence. To do so, we used the
contributions described in previous chapters that consists in the combination of robust
similarity metric (SCCV) and mechanical-based regularization. Thus, the node positions q(t)
at time t of the model can be obtained by using the following equation:

q(t) = q(t� 1) + h

i

�q+�d (6.9)

where q(t � 1) denotes the previous positions at time t � 1. �d is the internal node
displacements obtained from the integration of mechanical model forces. �q represents the
external node displacements obtained from the optimization of the similarity criterion. The
term h

i

represents a gain that amplifies the effect of external displacements estimation.

6.2.3 Pre-operative/Ultrasound visualization

The last step aims at providing an output image that replace unconfident regions of the current
US image by structures visible in pre-operative image. The output image can be computed as
follows:

I

v

(p(t)) =

8
<

:
I

t

(p(t)), if U
t

(p(t)) > ⇥

c

I

po

(p(t0)), otherwise
(6.10)

where I

t

and I

po

represent respectively the current ultrasound image and the pre-operative
image. U

t

and I

v

denote respectively the ultrasound confidence image and the output image.
⇥

c

is the confidence threshold that determines if the voxel is in shadow region, and p(t
i

)

represents the voxel positions at time index t

i

.
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6.3 Results

Multi-Modal registration

The registration and calibration errors are summarized in table 6.1. Thanks to the external
localization system, we can perform external registration between the MRI and initial US
volumes from the Eq. (6.3). The initial registration error is approximately 19.2 mm and
is thus too large in order to be used directly in the visualization application. This large
error can be caused by several factors including respiratory motion and ultrasound probe
pressure. To tackle this issue, we propose to compensate this error by adding a manual
transformation. The final error after manual registration is below 2 mm and allows obtaining
good initialization of the visualization system.

Protocol Mean Error

Optical Loc. Precision 0.30
Ultrasound calibration 1.22
MRI calibration 4.91
External registration 19.23
Final registration (+ manual) 1.80

Table 6.1 Registration and calibration errors expressed in millimeters.

Ultrasound tracking

Once the initial US volume and MR image are registered, we propose to track the region of
interest along the ultrasound sequence by using the proposed tracking approach described
in previous chapters. In order to provide ground truth, the position of a specific landmark
representing hepatic vein bifurcation was annotated over each ultrasound image of the
sequence. The accuracy of different similarity criteria is evaluated on the same tracking task.
The results of the mean tracking error are summarized in table 6.2 and show that SCCV
criterion has the advantage to propose greater accuracy performance. Other criteria provide
lower performance as the ultrasound sequence is affected by ultrasound shadows and beam
angle changes inducing local intensity variation.

Confident-based visualization

The previous tracking and registration results allow setting up the visualization system as
their error is under 2.4 mm. Some of the results are illustrated in Fig. 6.5. As it can be seen
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Similarity criterion Mean Tracking Error

Sum of Squared Differences 7.40
Weighted Sum of Squared Differences 3.82
Sum of Confident Conditional Variance 2.32

Table 6.2 Tracking errors expressed in millimeters

from the results, the sequence is perturbed by different amount of shadows between frames
0 and 21. The proposed application allows improving visualization by replacing occluded
structures of ultrasound imaging by warped pre-operative MRI imaging.

(a) (b) (c)

(d) (e) (f)

Fig. 6.5 Example of the tracking and visualization tasks. The top images represent X-Y slice
of US volumes (a) at time index 0, (b) at time index 14, (c) at time index 21. The bottom
images represent X-Y slice of output volumes (d) at time index 0, (d) at time index 14, (e)
at time index 21. Red points represent the intersection between 3D mesh model and image
plane.
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6.4 Conclusion

Ultrasound imaging is often used in order to guide percutaneous interventions because
it has the advantage to propose real-time visualization of soft tissue. However, during
these procedures, surgeon visualization is often perturbed by US shadows that occlude
some clinical structures of interest due to strong reflection of US waves. Consequently, the
accuracy and the intervention time of these procedures may be impacted. To cope with
that issue, we propose an application that allows improving the surgeon visualization by
replacing shadowed structures of ultrasound images by pre-operative data. We performed
an experiment from which we show that our new application may be implemented in a
real clinical scenario by using a multi-modal registration framework. From the previous
results, we can see that the proposed tracking approach may open novel perspectives in
intra-operative interventions guided by ultrasound images.





Chapter 7

Conclusion

7.1 Initial objectives

With the development of medical technologies, the use of minimally-invasive therapies
considerably increased with respect to classical surgery. These interventions allow delivering
treatment with greater surgical precision and therefore reduce pain and recovery time of the
patient. In this thesis, the focus is set on minimally-invasive therapies for liver tumor ablation.
These treatments consist in eliminating hepatic tumors by inserting a needle that delivers
heat energy or alcohol around malignant regions. While these therapies have progressed
dramatically in the past years, several issues still have an impact on their effectiveness. A first
type of problem is related to the required accuracy of these interventions since they can only
treat small regions around the needle tip. Such problem may force the surgeon to readjust
the needle position because targeted structures may be displaced by physiological motions
and medical tools manipulation. To cope with that issue, ultrasound imaging guidance is
often used since it provides real-time visual feedback of the tissues. However, this modality
suffers from several shortcomings such as speckle noise, shadows, and limited field of
view. These latter may complicate the visualization of targeted structures or needle. To
overcome this limitation, different tracking approaches have been proposed since they allow
estimating the position of targeted structures over the time. Despite the number of approaches
presented in the literature, it is still difficult to assess the performance of these methods as
they are evaluated on different databases. Furthermore, these approaches are often validated
on nominal conditions from US sequences that do not contain any shadows and intensity
variation. However, in minimally-invasive procedures, these artifacts are generally present
and significantly affect the US images. Therefore, such problem can be an obstacle to the
implementation in clinical practice.
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7.2 Achieved work

This thesis provides several contributions that allow obtaining accurate and robust estimation
of target displacements in US sequence. Furthermore, in this work, we also introduced an
application that fuses a sequence of US images with a pre-operative volume. This section
gives a brief description of our work.

Physically-based tracking approach

We first proposed an approach that combines intensity-based method and mechanical-based
regularization. In this method, the target displacements are computed by iteratively summing
both external and internal displacements over the time. The internal displacements are
obtained from simulation of mass-spring-damper system associated to the target model. The
external displacements are computed from dense motion estimation. We showed that our
approach has the advantage to follow accurately motions even if the targeted structure is af-
fected by high speckle noise. We also provided an adaptation of this method that allows using
ultrasound raw data acquired along scanlines. The proposed adaption avoids reconstructing
each 3D US volume of the sequence and allows tracking partially visible targets. From evalu-
ation on phantom and real data, we showed that the proposed method outperforms state-of
the-art approaches. To complete this study, we also evaluate the robustness of the method
with respect to mechanical parameters, initial segmentation error, and target displacement.

US-specific similarity criterion

Among our contributions, we also proposed an ultrasound-specific matching criterion that
combines quality measurement of US image and Sum of Conditional Variance (SCV) crite-
rion proposed by Pickering et al. (2009). For this purpose, we used an expectation operator
that computes the joint probability density function between reference and current images.
This function is emphasized only on confident regions that are not affected by shadows. The
main benefits of our similarity measure include its low computation time and its robustness
regarding local and global intensity variation. From simulated and phantom data, we demon-
strated its excellent performance on challenging ultrasound sequences that are affected by
gain variation and large shadows. In these experiments, we also showed that our matching
criterion is more accurate than classical similarity criteria.
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Hybrid tracking strategy

The last contribution of this thesis is related to a novel tracking strategy. In the literature,
classical tracking strategies aim at estimating target displacements from comparison between
two or more images. For example, pairwise strategies perform registration between successive
pair of images. However, these methods are sensitive to the quality of the selected reference
image. To cope with that issue, groupwise strategies have been introduced since they align
the whole sequence at the expense of the computational cost. In this thesis, we proposed a
novel strategy that aims at registering current image and dynamical reference image. The
method allows updating the intensity of reference image until its quality is sufficient. Our
approach has the advantage to be fast and robust to tracking drift induced by reference image
selection. From simulated and phantom data, we show that our approach is more robust
than existing pairwise strategies. Furthermore, the proposed strategy is not computationally
demanding contrary to groupwise strategies since it only relies on the comparison of two
images.

Application to multi-modal visualization

Thanks to the contributions presented previously, we provided a tracking approach that
obtains accurate and robust estimation of target displacements in sequence of ultrasound
volumes. The results demonstrate that our approach can handle different US artifacts such as
speckle decorrelation and shadows. To evaluate this method in a real clinical scenario, we
proposed an application that allows improving surgeon visualization. This application aims at
providing complete visualization of soft tissues by fusing US images and pre-operative image.
Such method relies on the combination between multi-modal registration framework and
the tracking contributions described previously. To evaluate this application, an experiment
fusing MRI and US imaging was performed at the University Hospital of Rennes.

7.3 Future work

In this thesis, we presented a tracking approach that combines several contributions in order to
obtain robust estimation of target position in a sequence of 3D ultrasound images. However,
they are limitations that still prevent the usage of this method in a real clinical practice.
Several perspectives, that may help solving these issues, are also discussed in this section.
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Patient-specific model

In this thesis, we presented a tracking approach that relies on mechanical-based regularization
obtained from the simulation of mass-spring-damper system. Despite its excellent perfor-
mance on different databases, some inaccuracies can be observed when the target deformation
is too high. We showed that this issue may be related to the setting of mechanical parameters
that are not well adjusted with respect to the organ motion. To cope with this problem, a
potential solution could be to dynamically tune the parameters of mechanical model from
elastography data. Such approach can provide better tracking results since it would adapt
the regularization term with respect to soft tissues of the patient. Furthermore, it is worth
mentioning that elastography data can be extracted from ultrasound images without any
additional cost. Another perspective would be to replace the mass-spring-damper system by
a more realistic model. For example, Haouchine et al. (2013) proposed an augmented reality
application that considers a finite element method based on a co-rotational formulation. Such
model is more adapted to the liver movements since it allows large displacements while
relying on a linear expression of the stress-strain relationship.

Automatic segmentation

As stated previously, the proposed tracking method relies on manual segmentation of the
target within the first volume of the US sequence. Nevertheless, such task is not adapted
to real clinical practice since it requires a certain amount of time due to manual interaction.
Therefore, future work could consist in tracking objects that are automatically segmented
from 3D US images. For that purpose, we can use methods proposed by Chang et al. (2005)
or Barbosa et al. (2014). Such methods may offer average segmentation errors up to 2.29
and 2.26 mm. However, pre-operative images can also be used as they provide better results
thanks to their greater imaging quality and their larger field-of-view. For example, Heimann
et al. (2009) proposed a method that provides a Root Mean Square Symmetric Surface
Distance of 1.4 mm.

Evaluation during treatment

In this work, we showed that the proposed contributions provide sufficient accuracy and
robustness in order to estimate the position of targeted structures. These results have been
obtained from simulated, phantom and real data acquired from different volunteers. However,
a future work could consist in evaluating our approach on US sequences acquired during
per-cutaneous minimally-invasive treatments. Indeed, during these procedures, several effects
may perturb the tracking performance. A first issue is related to the needle insertion that
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introduces organ deformation until a crack is formed in the tissue. Furthermore, high local
intensity variation can be observed around the needle position. To take into account this
artefact, an interesting approach would be to detect the needle within ultrasound sequences.
To do so, Uhercik et al. (2009) proposed an interesting approach based on random sample
consensus algorithm. The tracking performance can also be affected by the thermal or
chemical destruction that generate coagulated lesion around the targeted tissue. Such effect
introduces hyper-echogenic area during the ablative process. To tackle this problem, Seo
et al. (2011) proposed an approach where coagulated lesion is considered as landmark during
the tracking task. Such landmark has interesting properties since it is rigid and has a speckle
pattern that is distinct from the background. Finally, the tissue necrosis may also produce gas
during the treatment. Such effect generates US shadows that lead to inaccurate assessment of
treatment response and calculation of ablation zone dimensions. To cope with that issue, a
potential solution would be to evaluate the proposed SCCV criterion during the treatment.

Sophisticated optimization strategy

In this thesis, we observed that the proposed method may provide inaccurate results when the
target displacement is high between consecutive volumes. Such problem may complicate the
implementation in a real clinical scenario. It is worth recalling that the target displacement
between consecutive volumes is related to the acquisition frame rate of the used probe.
Therefore, a potential solution would be to use recent ultrasound systems providing high
acquisition rate. However, this solution requires reducing the computation time of the
proposed approach so that it can remain below the acquisition time of our ultrasound system.
To do so, several potential solutions may be evaluated. A first solution consists in reducing
the size of ultrasound volumes by using down-sampling operators. However, such solution
may have an impact on the tracking accuracy. A more sophisticated approach would be
to use other optimization approaches such as inverse compositional operators as proposed
by Delabarre and Marchand (2014). Such method allows reducing the computational cost
since the Jacobian matrix is kept constant throughout the tracking task. This strategy could
improve tracking accuracy if it is combined to more evolved optimization strategies such as
Levenberg-Marquardt or efficient second order minimization schemes.

Automatic registration

In this work, we proposed a novel multi-modal application that combines ultrasound images
and magnetic resonance imaging. While the obtained results are promising, the proposed
application suffers from different shortcomings that may complicate its usage in clinical
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practice. A first problem is related to initial registration computed from external localization
system. Such system provided a coarse alignment between images by detecting the position
of passive markers on the US probe and on the patient’s skin. However, the usage of such
method is difficult to implement in clinical scenario since it requires a particular attention
on the markers placement in order to ensure their visibility. A potential solution consists in
initializing the registration from markerless registration as proposed by Gilles et al. (2016).
This method detects the position of different patients from time of flight cameras. Once
the initialization is performed, the registration is refined from manual registration obtained
from annotations of landmarks of one expert. However, this step may also complicate the
procedure since it requires time and efforts due to the manual interaction. To cope with that
issue, one method can consist in obtaining the initial registration from automatic method as
proposed by Coupé et al. (2012).
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Appendix B

External displacement computation

In this section, details are given about the computation of the optimal displacement parameters.
Concerning the cost function expressed in Eq. 4.8, we have:
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The optimal parameters are obtained by minimizing the cost function C such that we obtain
the derivative of C with respect to �q equal to zero:
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It follows that:
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In order to compute the optimal parameters, we can rewrite the previous expression such
that:
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where (DJ)+ represents the left pseudo-inverse of the matrice DJ. However, the computation
of the pseudo-inverse is highly computational demanding due to its size (N

v

)⇥ (3 ·N
c

). In
our practical experiments, the size of the Jacobian matrix may be up to 20000⇥ 600 and its
pseudo-inverse computation may require up to 2.5 seconds per iteration. To cope with that
issue, we propose to use the steepest gradient strategy that consists in replacing the inverse
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term such that:
JTDTDJ ⇡ JTDTDJ+ �I (B.6)

where I denotes the identify matrix. � represent a damping coefficient. By assuming that
the coefficient � is high enough, we can ignore the left term of the previous equation. We
therefore obtain:

�q = �↵JTDTD[I
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Résumé 

. 
 
De nos jours, les traitements mini-invasifs, tel que l’ablation par 
radiofréquence, sont de plus en plus utilisés car ils permettent 
d’éliminer localement les tumeurs à partir de l’insertion d’une 
aiguille.  Cependant, le succès de ces procédures dépend de la 
précision du positionnement de l’aiguille par rapport aux 
structures anatomiques. Afin de garantir un placement correct, 
l’imagerie échographique est souvent utilisée car elle a 
l’avantage d’être temps-réelle, bas coût, et non-invasive. En 
revanche, cette modalité peut compliquer la visualisation de 
certaines structures en raison de sa qualité et de son champ de 
vue limité.  En outre, la précision des interventions peut aussi 
être perturbée par les déplacements de tissus liés aux 
mouvements physiologiques du patient et à la manipulation 
d'instruments médicaux. Afin d’aider le chirurgien à mieux cibler 
certaines structures anatomiques, de nombreuses équipes de 
recherche ont proposé des travaux permettant d'estimer la 
position de régions d’intérêts dans l'imagerie échographique.  
 
Cette thèse propose plusieurs contributions permettant de 
suivre en temps réel des structures déformables dans des 
séquences d'échographie 3D. Une première contribution repose 
sur l'utilisation conjointe de l'information visuelle dense et d'une 
méthode de simulation physique. Dans cette thèse, nous avons 
aussi proposé un nouveau critère de similarité spécifique à 
l'imagerie échographique basé sur une étape de détection 
d'ombres. Enfin, la dernière contribution est liée à une stratégie 
de suivi hybride permettant d’améliorer la qualité des images. A 
partir de ces contributions, nous proposons une méthode de 
suivi robuste au bruit de type « speckle », aux ombres et aux 
changements d'intensité perturbant l’imagerie échographique. 
 
Les performances des différentes contributions sont évaluées à 
partir de données simulées et de données acquises sur 
maquettes et sur volontaires humains. Ces résultats montrent 
que notre méthode est robuste à différents artéfacts de 
l’imagerie échographique. En outre, nous démontrons la 
performance de notre approche par rapport à différentes 
méthodes de l'état de l'art sur des bases de données publiques 
fournies par les challenges MICCAI CLUST'14 et CLUST'15.  
 
Dans cette thèse, nous proposons également une application 
permettant de combiner l'imagerie échographique à l’imagerie 
par résonance magnétique (IRM). Cette méthode permet 
d’observer des structures anatomiques non-visibles dans 
l’imagerie échographique durant l’intervention.  Elle est basée 
sur la combinaison d’une méthode de suivi et d’un recalage 
multi-modal obtenu à partir d’un système de localisation 
externe. Cette application a été évaluée sur un volontaire sain à 
partir d’une plateforme liée au centre Hospitalier Universitaire 
de Rennes.  
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Abstract 
 
 
Nowadays, mini-invasive treatments, such as radio-frequency 
ablation, are increasingly being used because they allow 
eliminating tumors locally from needle insertion.  However, the 
success of these therapies depends on the accurate positioning 
of the needle with respect to anatomical structures. To ensure 
correct placement, ultrasound (US) imaging is often used since 
this system has the advantage to be real-time, low-cost, and 
non-invasive. However, during the intervention, US imaging can 
complicate the visualization of targeted structures due to its 
poor quality and its limited field of view. Furthermore, the 
accuracy of these interventions may also be perturbed by both 
physiological movements and medical tools displacements that 
introduce motions of anatomical structures. To help the surgeon 
to better target malignant tissues, many research teams have 
proposed different methods in order to estimate the position of 
regions of interest in ultrasound imaging. 
 
This thesis provides several contributions that allow tracking 
deformable structures in 3D ultrasound sequences. We first 
present a method that allows providing robust estimation of 
target positions by combining an intensity-based approach and 
mechanical model simulation. In this thesis, we also propose 
novel ultrasound-specific similarity criterion based on prior step 
that aims at detecting shadows. The last contribution is related 
to a hybrid tracking strategy that allows improving quality of 
ultrasound images. From these contributions, we propose a 
tracking method that has the advantage to be invariant to 
speckle noise, shadowing and intensity changes that can occur 
in US imaging. 
 
The performance and limitations of the proposed contributions 
are evaluated through simulated data, phantom data, and real-
data obtained from different volunteers. Simulation and 
phantom results show that our method is robust to several 
artefacts of US imaging such as shadows and speckle 
decorrelation. Furthermore, we demonstrate that our approach 
outperforms state-of-the-art methods on the 3D public 
databases provided by MICCAI CLUST'14 and CLUST'15 
challenges.  
 
In this thesis, we also propose an application that combines 
ultrasound imaging to Magnetic Resonance Imaging (MRI). This 
method allows observing anatomical structures that are not 
visible in US imaging during the intervention.  It is based on the 
combination between US tracking method and multi-modal 
registration obtained from external localization system. This 
application was evaluated on a volunteer thanks to an MRI 
imaging platform located at the University Hospital of Rennes. 
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