
ABSTRACT 
This paper presents and compares two vision-based 
navigation methods for tracking space debris in a low 
Earth orbit environment. This work is part of the 
RemoveDEBRIS1 project. The proposed approaches 
rely on a frame to frame model-based tracking in 
order to obtain the complete 3D pose of the camera 
with respect to the target. The proposed algorithms 
robustly combine points of interest and edge features, 
as well as color-based features if needed.  
Experimental results are presented demonstrating the 
robustness of the approaches on synthetic image 
sequences simulating a CubeSat satellite orbiting the 
Earth. Finally, both methods are compared in order to 
specify what could be the best choice for the future of 
the RemoveDEBRIS mission. 

1 INTRODUCTION 

Since the beginning of the space era in 1957, the 
number of missions has incredibly increased. 
Unfortunately, it has also progressively generated a 
huge amount of debris that are still orbiting the Earth. 
Today, space agencies feel more and more concerned 
about Earth orbital environment cleaning since they 
realize those debris represent a big threat due to the 
high risk of collision that could, among safety issues, 
damage operational satellites [8]. To investigate 
solutions to this issue, various projects aim to actively 
remove debris objects by catching them. Among these 
projects, is the RemoveDEBRIS project co-funded by 
the European Union and members of European space 
industry. In a first stage, the RemoveDEBRIS mission 
will consist of catching two miniaturized satellites 
(CubeSats DS-1 and DS-2 produced by the Surrey 
Space Centre) that will be previously ejected from a 
microsatellite called RemoveSat, itself released from 
the International Space Station (ISS). Then, the 
CubeSats will be used as targets instead of actual 
debris. This debris removal demonstration will 
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include net capture, harpoon capture and vision-based 
navigation using standard camera and LiDAR [9].  

In the literature, several works propose approaches 
based on active sensors, such as LiDAR, for space 
rendezvous and docking missions [11]. Those 
approaches have proved to be efficient in situations 
where lighting conditions can be tricky due to 
directional sunlight resulting in high specularities and 
shadows. However, LiDAR are known to be 
generally expensive and rather heavy sensors. 
Furthermore, it also has a limited range and accuracy, 
and it cannot take the advantage of using potential 
texture information available on the target surface in 
order to improve the navigation process.  

In this paper, we focus on the vision-based navigation 
part of the RemoveDEBRIS mission using a single 
standard RGB camera. Based on the knowledge of the 
3D model of the target, estimating the complete 3D 
pose of the camera with respect to this target has 
always been an ongoing issue in computer vision and 
robotics applications [16]. For instance, regarding 
space applications, [1, 5] use model-based tracking 
approaches for space rendezvous with space target or 
debris. Common approaches try to solve this problem 
by using texture [2], edge features [1, 3, 4, 5], or color 
or intensity features [6, 7, 15]. The algorithms 
proposed in this paper provides a robust approach 
relying on a frame to frame tracking that align the 
projection of the 3D model of the target with 
observations made in the image by combining edges, 
point of interest and color-based features [14, 10]. 
Moreover, one of the presented method relies on the 
use of a 3D rendering engine to manage the projection 
of the model and to determine the visible and 
prominent edges from the rendered scene, while the 
other method is based on a hand-made 3D model but 
does not require any complex rendering process. 

The paper is organized as follow: in a first stage, the 
general issues of the model-based tracking problem 
are recalled. Then, we describe how to combine edges 
features with keypoints and color-based features by 
considering two different model-based tracking 
approaches. The first approach only relies on the use 
of a CPU, while the second takes the advantage of 
using a graphics processing unit (GPU). Finally, 
experimental results are presented on synthetic image 
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sequences where comparisons are done between both 
approaches. 

2 MODEL-BASED TRACKING 

2.1 Pose Estimation 

As stated before, our problem is restricted to model-
based tracking where the considered 3D model is 
composed of a CAD representation of the target. In 
this paper, the model-based tracking part relies on a 
non-linear minimization of the reprojection error [16] 
where the general issue is to estimate the complete 3D 
pose of the camera with respect to the target 𝐌	# $ by 
minimizing the error ∆ between a set of measured data 
𝑠'∗ (usually the position of a set of geometrical features 
in the current image) and the same features projected 
in the image plane according to the current pose 𝑠' 𝒓 :  

∆(𝐫) 	= 𝜌(𝑠' 𝐫 − 𝑠'∗)0
1

234

 (1) 

where 𝜌 is a robust estimator [12], which reduces the 
sensitivity to outliers (M-estimation) and 𝐫 is a vector-
based representation of 𝐌	# $	 ( 𝐌	# $		 is the 
homogeneous 4x4 matrix that represents the position 
of the object in the camera frame).  

A common way of applying M-estimation is the 
Iteratively Reweighted Least Squares (IRLS) method. 
It converts the M-estimation problem into a least-
squares one where the error to be regulated to zero is 
defined as: 

𝐞 = 𝐃(𝐬 𝐫 − 𝐬∗) (2) 

where 𝐃 is a diagonal weighting matrix whose each 
coefficient gives the confidence on each feature. Their 
computation is based on M-estimators [3, 4]. 

Then, by considering an iterative least square 
approach given by: 

𝒗 = 	−	𝜆 𝐃𝐋𝒔 <𝐞 (3) 

where 𝑣  is the velocity screw applied to the virtual 
camera position and 𝐋𝒔 is the image Jacobian related 
to 𝐬 defined such that 𝐬 = 𝐋𝒔𝒗. The 3D pose of the 
camera can be iteratively updated from the computed 
displacement 𝒗 by applying an exponential map. More 
precisely, the resulting pose is given by: 

𝐌	#>?@ $
	 = 	 𝐌	#> $

	 	exp	(𝒗) (4) 

where 𝑘  denotes the number of iterations in the 
minimization process.  

While considering model-based tracking, it is 
important to decide what are the features 𝐬 to be used 
in order to define the error criterion (1). In this paper, 
we consider two model-based tracking methods that 
use a combination of geometrical edge-based features 
with keypoints features, and also color features along 
silhouette edges. 

2.2 CPU-Based Model-Based Tracker 

The first considered model-based tracking method 
relies only on a central processing unit (CPU), which 
is particularly appealing for space applications, thanks 
to the use of a simple hand-made CAD model. 
Furthermore, only edge-based features and keypoint 
features are used to define the error criterion (1). 

Considering different kind of features allows to 
benefit from their complementarity and to overcome 
the limitations of a single feature-based approach. In 
order to use them in the non-linear process presented 
in the previous section, the error ∆ to be minimized 
has to be rewritten according to the considered 
features. For this first method, it is defined as: 

∆	= 	𝑤F∆F + 𝑤H∆H (5) 

where ∆F  refers to the geometrical edge-based error 
and ∆H  to the error relying on the keypoint features. 
Respectively, 𝑤F and 𝑤H are the weighting parameters 
used to control the influence of each set of features.  

Finally, to include the combination of the different 
features in the minimization process, the idea (as 
proposed in [10]) is to stack ∆F and ∆H  in a single 
global error vector 𝐞 . Then, their corresponding 
Jacobian is also stacked and both are used as defined 
in (2) and (3). 

 
Figure 1: Model-based tracking principle considering 

the case of edge and keypoint features. 

Edge-based features 

From the knowledge on the 3D model of the target, a 
potential option is to use its silhouette to define 
features to rely on. Thus and as defined in (5), the first 
features we consider for this method are edge-based 
features. As in [3, 4], the edges that are considered 
correspond to the projection of the CAD model of the 
target, using the current camera pose 𝐫 . More 
precisely, the edges corresponding to the visible 
polygons of the model are considered in the 
minimization process. That is why this approach 
requires a simplified version of the 3D model that only 
contains polygons with visible edges (in term of 
gradient in the image). Furthermore, the visibility 
process has to be well defined in order to not consider 
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edges that are hidden by other polygons. Neglecting 
the two above issues would result in adding extra 
outliers in the minimization process and consequently 
wrongly estimating the 3D pose of the camera. 

Once the visible edges of the model are projected in 
the image, each single line 𝑙		is sampled giving the set 

of initial image points {	𝐱'
F}'34
MN . Each initial points is 

then tracked in order to determine the set of 

corresponding measured features  {	𝐱'
F∗}'34

MN . As in [3], 
tracking is performed via a 1D search along the 
normal to the projection of the line 𝑙' 𝐫  which is 
associated to the point 	𝐱'

F (see Figure 1). As a result, 
the error criterion ∆F  referred as the edge-based 
features error is defined as: 

∆F(𝐫) 	= 𝜌F(𝑑P(𝑙' 𝐫 , 𝐱'
F∗))0

1N
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 (6) 

where 𝜌F  is a robust estimator and 𝑑P(𝑙' 𝐫 , 𝐱'
F∗)  is 

the distance between the forward projection of the line 
𝑙' 𝐫  of the 3D model of the target and the desired 

point features 𝐱'
F∗ . Finally, the Jacobian of the 

distance of a point to a line is used (its analytic form is 
given in [3]). 

Keypoint-based features 

With a vision sensor and by considering that the target 
is potentially textured in the image, we have the 
possibility to use this information in order to improve 
the robustness of our navigation process. This is the 
reason why the considered methods also rely on 
keypoint-based features. Chosen keypoints are Harris 
corners that are tracked over the image sequence with 
the KLT algorithm [13]. Thus, the criterion error ∆H 

refers here to the distance between 	𝐱'
H 𝐫 , the position 

of the initial extracted keypoints 	𝐱'
H  with respect to 

the camera pose 𝐫, and their tracked position for each 

frame of the sequence 𝐱'
H∗ (see Figure 1).  

∆H(𝐫) 	= 𝜌H(	𝐱'
H 𝐫 − 	𝐱'

H∗)0
1R

234

 (7) 

where 𝜌H is once again a robust estimator. 

Regarding 	𝐱'
H 𝐫 , let us recall that for this first 

method we consider a simplified version of the 3D 
model of the target where keypoint are supposed to be 
detected on planar polygons belonging to the model. 
Thus, the displacement between the initial feature 
position and the tracked one can be specified by an 
homography. Then 	𝐱'

H 𝐫  can be related to the initial 

position 	𝐱'
Hof the keypoint by: 

	𝐱'
H 𝐫 = α	𝐊U

V4	𝐇	𝐊U		𝐱'
H (8) 

where 𝐊U  is the calibration matrix associated to the 
intrinsic camera parameters 𝜉 , and 𝐇  is the 

homography (up to a scale factor α) obtained from the 
3D camera motion 𝐌#YZY[	

#>  computed between the 
initial camera pose 𝐌	#YZY[ $

	  and the current camera 
pose  𝐌	#> $

	 : 

𝐇 = 𝐑']'^	
	
_ 		 +

𝐭']'^	
	
_

𝑑	']'^ 	 𝒏	']'^ b (9) 

where 𝐑']'^	
	
_ 		

and 𝐭']'^	
	
_ 		

are the rotation matrix and 
translation vector extracted from the displacement 
𝐌#YZY[	

#>  . Furthermore, 𝒏	']'^  and 𝑑	']'^  are the normal 
and distance to the origin of the planar polygon which 
	𝐱'
H 𝐫  belongs to. It is expressed in the initial camera 

frame 𝐌	# $
']'^.  

Finally, the Jacobian considering the coordinates of 
points is used and given by:  

𝐋H = 𝐊U
−
1
𝑍

0
𝑥
𝑍

𝑥𝑦 −(1 + 𝑥0) 𝑦

0 −
1
𝑍

𝑦
𝑍

(1 + 𝑦0) 𝑥𝑦 −𝑥
 (10) 

where (𝑥, 𝑦)  are the normalized coordinates of the 
image point 	𝐱'

H 𝐫  , and Z its corresponding depth 
obtained by: 

1 𝑍 = 	
𝑑 −	 𝐭']'^	

	
_ b 𝒏	']'^

	
']'^

( 𝐑']'^	
	
_ 		 𝒏	']'^ )	b	𝐱'

H 𝐫
	. (11) 

2.3 GPU-Based Model-Based Tracker 

For the second considered model-based tracking 
method, we take the advantage of using a low-end 
graphics processing unit (GPU) to improve the vision-
based navigation. Furthermore, in addition to edge-
based features and keypoint features that were used in 
the previous method, we also consider color-based 
features. As a result, the error ∆ to be minimized has 
to be rewritten as: 

∆	= 	𝑤F∆F + 𝑤H∆H +	𝑤#∆# (12) 

where ∆F  and ∆H	still refer to the geometrical edge-
based and keypoint-based errors, with 𝑤Fand 𝑤H their 
corresponding weighting parameters. ∆#  is the color-
based features error with its associated weighting 
parameter 𝑤#.  

Edge-based features 

With respect to the previous method, the error 
criterion ∆F remains the same (see (6)). However, the 
determination of the edges to be considered is slightly 
different. In the approach proposed in [10] and used 
here, the CAD model of the target is rendered, 
according to the camera pose 𝐫 , by using a 3D 
rendering engine (in our case OpenSceneGraph). This 
allows to process the corresponding depth map of the 
scene in order to extract, via a Laplacian filter, the 
prominent edges of the projected model that will 

define the new set of initial point features {	𝐱'
F}'34
MN . 



Tracking phase remains the same but as we are now 
dealing with a much complex 3D model, points are not 
associated anymore with any polygon. As a result, 
control points are processed independently and a 3D 
line 𝑙' is computed for each 	𝐱'

F (in blue on Figure 2). 

Keypoint-based features 

As for the keypoints, the feature-based error criterion 
∆H remains the same (see (7)). However, with respect 
to the previous method where polygons could contain 
several point features, we here have to take into 
account that every point may belong to a different 
polygon, due the potential complexity of the 3D 
model. Consequently, the way how 	𝐱'

H 𝐫  and its 
corresponding depth Z are computed has to be 
changed in order to avoid unnecessary time 
processing. As in [10] we take the advantage of using 
the GPU and more particularly the rendered depth map 

to back-project the initial detected keypoints {	𝐱'
H}'34
MR  

on the model, which gives the set of corresponding 3D 

points {	𝐗'
H}'34
MR . These 3D points are then projected 

with the value of the camera pose 𝐫 and each point 
	𝐱'
H 𝐫  can be redefined as: 

	𝐱'
H 𝐫 = 𝑝𝑟(𝐗'

H, 𝐫) (13) 

where 𝑝𝑟(𝐗'
H, 𝐫) is the perspective projection operator. 

Finally, the current depth value 𝑍	_  is computed by 
considering the current camera displacement 𝐌#YZY[	

#> . 

	𝐱'
H

	
_ = 𝐌#YZY[	

#> 	𝐱'
H

	
']'^ 	. (14) 

Note that the current depth value 𝑍	_  could also be 
obtained by rendering the scene at the current pose 
𝐌	#> $
	  and then using the corresponding depth map. 

However, this solution has not been considered since 
it requires too much time to process the data.  

Color-based features 

One last improvement that has been added to this later 
approach in order to robustify the navigation process 
is to also consider color-based features. The idea is to 
use the prominent edges that have been extracted to 
compute the edge-based error criterion ∆F in order to 
characterize the separation between the silhouette of 
the projected 3D model and the background by relying 
on color information [15, 10].  

The principle is to compute local color statistics (RGB 
means 𝐈'm and 𝐈'n and covariances 𝐑'm and 𝐑'n where O 
is the object and B  the background) on both sides 
along the normal 𝒏' to the projected model silhouette 

edges {	𝐱'
F}'34
MN  , regularly sampled in 	𝐱',q#  points up to 

a distance 𝐿 (see Figure 2). These statistics are then 
mixed according to a fuzzy membership rule [17], 
giving the mean 𝐈'	 (𝐫)  and covariance 𝐑'	 (𝐫)  where 
𝐈'	 (𝐫) is defined as the measured color value for 	𝐱',q# . 
Consequently, we can define the error 𝐞',q# 𝐫  as: 

𝐞',q# 𝐫 = 𝐈'	 𝐫 − 	𝐈(𝐱',q# ) (15) 

and the general error criterion ∆# can be re-written as: 

∆#(𝐫) 	= 𝜌#( 𝐞',q# 𝐫 b𝐑'	 (𝐫)V4𝐞',q# 𝐫 )
q'

 (16) 

where 𝜌#, as for 𝜌H and 𝜌F, is a robust estimator based 
on a Tukey M-Estimator. 

For more accuracy and temporal smoothness, [15] and 
[10] also propose to introduce a temporal consistency 
by integrating the color statistics computed on the 
previous frame 𝐈	s  for the silhouette edge point 	𝐱'

F 𝐫_  
at the first iteration of the minimization process. With 
a weighting factor ( 0 < α < 1 ), it gives 𝐞',q# 𝐫 =
α𝐈'	 𝐫 + (1 − 𝛼)( 𝐈'	 𝐫	

s − 	𝐈 	𝐱',q# ). For the detailed 
computation of the corresponding interaction matrix, 
see [17]. 

Finally, let us note that in case an RGB camera would 
not be available, it is still possible to use this approach 
with intensity only images. Indeed, color statistics 
defined above could still be computed by considering 
one image component only, that is, the intensity level 
for grey images. 

 
Figure 2: Model-based tracking principle considering 

the case of color features. 

3 EXPERIMENTAL RESULTS 

The proposed methods have been validated on two 
synthetic image sequences where ground truth data 
are available to validate the quality of our vision-
based navigation process. Both sequences simulate 
a CubeSat (DS-2) orbiting the Earth at different 
altitudes. The CubeSat DS-2 3D model has been 
generated by the Surrey Space Centre and provided 
by Airbus Defence and Space. The sequences have 
been generated via the 3D graphics and animation 
software Blender and the Earth has been textured 
using real satellite images available from NASA. 
Considered images dimensions are 640x480. 

Structure of the target 

The structure of the CubeSat DS-2 that will be used 
for the RemoveDEBRIS mission can be seen on 
Figure 3. It has avionics throughout the structure 
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and four deployable panels at the bottom in the 
shape of a cross. The panels have no specific 
function except to make the CubeSat looking more 
like an actual satellite, so that the vision-based 
navigation is performed close to real conditions. Its 
dimensions (panels excluded) are 0.1m x 0.1m x 
0.227m. 

 
Figure 3: CubeSat DS-2 structure (image from [9]). 

On Figure 4.a, we can see the CAD model used for 
the GPU-based approach. It is a wireframe 
representation of the model generated by the Surrey 
Space Center. The model is fully detailed and 
composed by many triangles. On the other side, the 
CAD model that is used for the CPU-based 
approach has been manually re-designed from the 
detailed model in order to contain only visible 
edges in terms of gradient in the image. There is no 
triangle in this simplified version, and the visible 
polygons on Figure 4.b directly represent the edges 
that will be used to define the edge-based and 
keypoint-based criterion errors (6) and (7). Models 
differences can also be seen on Figures 5.d and 6.d.  

 
(a) 

 
(b) 

Figure 4: 3D model used for the GPU-based MBT (a) 
and for the CPU-based MBT (b). 

Case 1: case of a geosynchronous orbit 

In the first sequence (see Figures 5 and 6), the 
considered target is on a geosynchronous orbit. It 
has an angular speed that creates rotational motions 
in the camera frame. However, the distance to the 
camera remains the same over the sequence. We 
have also considered different lighting conditions 
to simulate day and night (where the background 
also changes) in order to prove the robustness of 
our methods whatever the situation. The full video 
result for the GPU-based approach is available at: 
https://youtu.be/H9XKDaQEVbU, and for the CPU-
based approach at: https://youtu.be/Gr78pmRPKOA. 
 

(a) Image 0 (b) Image 680 

(c) Image 2145 (d) Image 2602 

Figure 5: Vision-based navigation of a CubeSat DS-2 
for the first sequence of a geosynchronous orbit, 

using the GPU-based approach. 

(a) Image 0 (b) Image 680 

(c) Image 2145 (d) Image 2602 

Figure 6: Vision-based navigation of a CubeSat DS-2 
for the first sequence of a geosynchronous orbit,  

using the CPU-based approach. 
. 

 
Figure 7: 3D poses estimated for the first sequence of 

a geosynchronous orbit (translation in meters and 
rotation in radians). 
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 CPU-based 
MBT 

GPU-based 
MBT 

RMSE Translation 0.0056 (m) 0.0039 (m) 
RMSE Rotation 0.0087 (rad) 0.0098 (rad) 
Mean Time 69 ms  290 ms 
Mean Nb. Feat. ≈800 ≈420 

Table 1: First sequence: Root mean square errors (in 
meters for the translation and radians for the 

rotation), mean time and mean number of features 
per frame obtained for the estimated navigation 

values. 

For this first sequence, both methods have been 
able to perfectly track the target. The estimated 
trajectory, which is fairly the same for both 
methods, is accurate and smooth (see Figure 7). 
Furthermore, according to the collected ground 
truth data, our vision-based navigation provides 
precise pose estimation with an RMSE that is less 
than 1cm on the translation and about 2deg on the 
rotation (see Table 1). However, Table 1 also 
shows that the GPU-based solution is about 4 times 
more consuming than the CPU-based one (70ms 
per frame vs 290ms per frame), while considering 
twice less features (≈800 vs ≈420). This is mainly 
due to the fact that, for the GPU-based approach, we 
are using a 3D rendering engine with a much more 
complex 3D representation of the target. Finally, on 
Figures 8 and 9, we can see the norm of the 
translational and rotational errors to the ground 
truth, which also shows where the algorithms 
encounter difficulties. Around frame 2200 for 
example, and for both approaches, the precision on 
the 3D pose estimation decreases a bit. The reason 
is that the panels of the target are orthogonally 
aligned with the focal axis of the camera (see 
Figures 5.c & 6.c), which results in increasing the 
incertitude on the target orientation. 

Case 2: case of the ISS orbit 

In the second sequence (see Figures 10 and 11), we 
also use a CubeSat DS-2 target. With respect to the 

 
Figure 8 : Error to ground truth for the CPU-based 

approach on the first sequence. 
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Figure 9 : Error to ground truth for the GPU-based 

approach on the first sequence. 

 
 

(a) Image 0 (b) Image 672 

(c) Image 1780 (d) Image 2870 

Figure 10: Vision:based navigation of a CubeSat at 
400km altitude (approximately ISS altitude), using the 

GPU-based approach. 

(a) Image 0 (b) Image 672 

(c) Image 1780 (d) Image 2870 

Figure 11: Vision:based navigation of a CubeSat at 
400km altitude (approximately ISS altitude), using the 

CPU-based approach.
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first sequence, the satellite is here orbiting at 
400km altitude, which is approximately the 
International Space Station (ISS) orbit altitude.  

Let us note that this orbit corresponds to the one 
that will be used during the RemoveDEBRIS 
mission since the target will, in the first stages of 
the mission, be released from the ISS. Furthermore, 
during the mission, the CubeSat DS-2 will be 
ejected from the RemoveSat at very low velocity 
(≈2cm/s) and out of the orbit plan in order to optimize 
the relative trajectory for the vision-based navigation 
demonstration. In this experiment and as for the 
previous case, we considered different lightning 
conditions simulating day and night, which creates 
specularities on the satellite panels and 
consequently make more complex the navigation 
process. The CubeSat velocity has also been 
increased, with respect to the mission specifications 
in order to simulate larger inter-frame motions. 
Finally, this case also considers a non-fixed 
distance between the camera and the target so that 
the target appears sometimes very small in the 
image sequence with a very low visibility. Once 
again, this aims to demonstrate the robustness of 
the navigation process whatever the situation. The 
full video result for the GPU-based version is 
available at: https://youtu.be/AEJ6S7d9Y70, and at 
https://youtu.be/3nG4WQ9Tu6M for the CPU-based 
approach. 

Regarding this second sequence, the CPU-based 
approach has not been able to correctly estimate the 
navigation data along the complete sequence (see 
Figure 12 and 13) while the GPU-based one has 
still been perfectly able to do it with an extremely 
good RMSE (0.0084 meters on the translation and 
0.0197 radians on the rotation, see Table 2). By 
comparing Figures 13 and 15 with Figures 10.c and 
11.c around frame 1700, we are still facing the 
same issue as in the previous experiment. Indeed, 
for these frames, the panels of the target are 
orthogonally aligned with the focal axis of the 
camera, which creates incertitude on the orientation 
of the target. Furthermore, the target appears small 
with a low visibility (see Figure 10.c). As a result, 
the CPU-based approach has not been robust 
enough to correctly estimate the navigation data 
around frame 1700 (see Figure 13). Hopefully, as 
soon as the CubeSat has reappeared in the image 
with better conditions, this issue disappeared and 
the CPU-based approach has been able to recover 
correct results. 

Note that in the presented approaches, no detection 
method has been implemented in parallel to the 
tracking. However, we could benefit from such 
algorithms to recover the target pose when tracking 
fails as, for example, in [17, 18]. 

 

 
Figure 12: 3D poses estimated for the second 
sequence by using the CPU-based approach 

(translation in meters and rotation in radians). 

 
Figure 13: Error to ground truth for the CPU-based 

approach on the second sequence. 

 
Figure 14: 3D poses estimated for the second 
sequence by using the GPU-based approach 

(translation in meters and rotation in radians). 

 
Figure 15: Error to ground truth for the GPU-based 

approach on the second sequence. 
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4 CONCLUSION 

In this paper, we have presented two model-based 
tracking approaches that have been developed and 
tested on various experiments with different 
conditions. While the first method (which is 
available in the ViSP framework [19]) is only 
relying on a CPU, the second one is also taking 
benefit of using a low-end GPU. Furthermore, in 
addition to the edge-based and keypoint-based 
features also used in the first approach, the second 
one is also considering color-based features (that 
could be adapted to intensity-based features if 
needed). This has aimed to increase the robustness 
of the navigation process in order to face with 
complex situations, as shown for the second image 
sequence. 

While considering space applications, the graphics 
processing unit might not be available and the 
central processing unit might not be powerful 
enough to run complex algorithms. However, when 
dealing with damaged or complex objects (which 
will probably be the case in the future of the 
RemoveDEBRIS mission), or when dealing with 
hard environment conditions as presented in the 
second experiment, the CPU version might not be 
robust enough and could eventually fail to estimate 
the navigation data. In those cases, the GPU-based 
approach remains a better choice. 
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 CPU-based 
MBT 

GPU-based 
MBT 

RMSE Translation 0.0420 (m) 0.0084 (m) 
RMSE Rotation 0.1400 (rad) 0.0197 (rad) 
Mean Time 66 ms 228 ms 
Mean Nb. Feat. ≈800 ≈330 
   

Table 2: Second sequence: Root mean square errors 
(in meters for the translation and radians for the 

rotation), mean time and mean number of features per 
frame obtained for the estimated navigation values. 


