
ABSTRACT
This paper presents and compares two vision-based
navigation methods for tracking space debris in a low
Earth orbit environment. This work is part of the
RemoveDEBRIS1 project. The proposed approaches
rely on a frame to frame model-based tracking in
order to obtain the complete 3D pose of the camera
with respect to the target. The proposed algorithms
robustly combine points of interest and edge features,
as well as color-based features if needed.
Experimental results are presented demonstrating the
robustness of the approaches on synthetic image
sequences simulating a CubeSat satellite orbiting the
Earth. Finally, both methods are compared in order to
specify what could be the best choice for the future of
the RemoveDEBRIS mission.

1 INTRODUCTION

Since the beginning of the space era in 1957, the
number of missions has incredibly increased.
Unfortunately, it has also progressively generated a
huge amount of debris that are still orbiting the Earth.
Today, space agencies feel more and more concerned
about Earth orbital environment cleaning since they
realize those debris represent a big threat due to the
high risk of collision that could, among safety issues,
damage operational satellites [8]. To investigate
solutions to this issue, various projects aim to actively
remove debris objects by catching them. Among these
projects, is the RemoveDEBRIS project co-funded by
the European Union and members of European space
industry. In a first stage, the RemoveDEBRIS mission
will consist of catching two miniaturized satellites
(CubeSats DS-1 and DS-2 produced by the Surrey
Space Centre) that will be previously ejected from a
microsatellite called RemoveSat, itself released from
the International Space Station (ISS). Then, the
CubeSats will be used as targets instead of actual
debris. This debris removal demonstration will

1	This work is supported by the European Commission FP7-
SPACE-2013-1 (project 607099) « RemoveDEBRIS – A
Low Cost Active Debris Removal Demonstration Mission »,
a consortium partnership project consisting of: Surrey Space
Centre (University of Surrey), SSTL, Airbus DS, Airbus
SAS, Airbus Ltd, ISIS, CSEM, INRIA, and Stellen-Bosh
University.	

include net capture, harpoon capture and vision-based
navigation using standard camera and LiDAR [9].

In the literature, several works propose approaches
based on active sensors, such as LiDAR, for space
rendezvous and docking missions [11]. Those
approaches have proved to be efficient in situations
where lighting conditions can be tricky due to
directional sunlight resulting in high specularities and
shadows. However, LiDAR are known to be
generally expensive and rather heavy sensors.
Furthermore, it also has a limited range and accuracy,
and it cannot take the advantage of using potential
texture information available on the target surface in
order to improve the navigation process.

In this paper, we focus on the vision-based navigation
part of the RemoveDEBRIS mission using a single
standard RGB camera. Based on the knowledge of the
3D model of the target, estimating the complete 3D
pose of the camera with respect to this target has
always been an ongoing issue in computer vision and
robotics applications [16]. For instance, regarding
space applications, [1, 5] use model-based tracking
approaches for space rendezvous with space target or
debris. Common approaches try to solve this problem
by using texture [2], edge features [1, 3, 4, 5], or color
or intensity features [6, 7, 15]. The algorithms
proposed in this paper provides a robust approach
relying on a frame to frame tracking that align the
projection of the 3D model of the target with
observations made in the image by combining edges,
point of interest and color-based features [14, 10].
Moreover, one of the presented method relies on the
use of a 3D rendering engine to manage the projection
of the model and to determine the visible and
prominent edges from the rendered scene, while the
other method is based on a hand-made 3D model but
does not require any complex rendering process.

The paper is organized as follow: in a first stage, the
general issues of the model-based tracking problem
are recalled. Then, we describe how to combine edges
features with keypoints and color-based features by
considering two different model-based tracking
approaches. The first approach only relies on the use
of a CPU, while the second takes the advantage of
using a graphics processing unit (GPU). Finally,
experimental results are presented on synthetic image

VISION-BASED NAVIGATION IN LOW EARTH ORBIT

*Aurelien Yol1, Eric Marchand 2, Francois Chaumette1,

Keyvan Kanani3, Thomas Chabot3

sequences where comparisons are done between both
approaches.

2 MODEL-BASED TRACKING

2.1 Pose Estimation

As stated before, our problem is restricted to model-
based tracking where the considered 3D model is
composed of a CAD representation of the target. In
this paper, the model-based tracking part relies on a
non-linear minimization of the reprojection error [16]
where the general issue is to estimate the complete 3D
pose of the camera with respect to the target 𝐌	# $ by
minimizing the error ∆ between a set of measured data
𝑠'∗ (usually the position of a set of geometrical features
in the current image) and the same features projected
in the image plane according to the current pose 𝑠' 𝒓 :

∆(𝐫) 	= 𝜌(𝑠' 𝐫 − 𝑠'∗)0
1

234

 (1)

where 𝜌 is a robust estimator [12], which reduces the
sensitivity to outliers (M-estimation) and 𝐫 is a vector-
based representation of 𝐌	# $	 (𝐌	# $		 is the
homogeneous 4x4 matrix that represents the position
of the object in the camera frame).

A common way of applying M-estimation is the
Iteratively Reweighted Least Squares (IRLS) method.
It converts the M-estimation problem into a least-
squares one where the error to be regulated to zero is
defined as:

𝐞 = 𝐃(𝐬 𝐫 − 𝐬∗) (2)

where 𝐃 is a diagonal weighting matrix whose each
coefficient gives the confidence on each feature. Their
computation is based on M-estimators [3, 4].

Then, by considering an iterative least square
approach given by:

𝒗 = 	−	𝜆 𝐃𝐋𝒔 <𝐞 (3)

where 𝑣 is the velocity screw applied to the virtual
camera position and 𝐋𝒔 is the image Jacobian related
to 𝐬 defined such that 𝐬 = 𝐋𝒔𝒗. The 3D pose of the
camera can be iteratively updated from the computed
displacement 𝒗 by applying an exponential map. More
precisely, the resulting pose is given by:

𝐌	#>?@ $
	 = 	 𝐌	#> $

	 	exp	(𝒗) (4)

where 𝑘 denotes the number of iterations in the
minimization process.

While considering model-based tracking, it is
important to decide what are the features 𝐬 to be used
in order to define the error criterion (1). In this paper,
we consider two model-based tracking methods that
use a combination of geometrical edge-based features
with keypoints features, and also color features along
silhouette edges.

2.2 CPU-Based Model-Based Tracker

The first considered model-based tracking method
relies only on a central processing unit (CPU), which
is particularly appealing for space applications, thanks
to the use of a simple hand-made CAD model.
Furthermore, only edge-based features and keypoint
features are used to define the error criterion (1).

Considering different kind of features allows to
benefit from their complementarity and to overcome
the limitations of a single feature-based approach. In
order to use them in the non-linear process presented
in the previous section, the error ∆ to be minimized
has to be rewritten according to the considered
features. For this first method, it is defined as:

∆	= 	𝑤F∆F + 𝑤H∆H (5)

where ∆F refers to the geometrical edge-based error
and ∆H to the error relying on the keypoint features.
Respectively, 𝑤F and 𝑤H are the weighting parameters
used to control the influence of each set of features.

Finally, to include the combination of the different
features in the minimization process, the idea (as
proposed in [10]) is to stack ∆F and ∆H in a single
global error vector 𝐞 . Then, their corresponding
Jacobian is also stacked and both are used as defined
in (2) and (3).

Figure 1: Model-based tracking principle considering

the case of edge and keypoint features.

Edge-based features

From the knowledge on the 3D model of the target, a
potential option is to use its silhouette to define
features to rely on. Thus and as defined in (5), the first
features we consider for this method are edge-based
features. As in [3, 4], the edges that are considered
correspond to the projection of the CAD model of the
target, using the current camera pose 𝐫 . More
precisely, the edges corresponding to the visible
polygons of the model are considered in the
minimization process. That is why this approach
requires a simplified version of the 3D model that only
contains polygons with visible edges (in term of
gradient in the image). Furthermore, the visibility
process has to be well defined in order to not consider

Current model
position
s i (r)

xp *
i

xg *
i

xg(r)i

xp(r)i

O
y

x
θ

l i (r)

d

Measured
position

si*

edges that are hidden by other polygons. Neglecting
the two above issues would result in adding extra
outliers in the minimization process and consequently
wrongly estimating the 3D pose of the camera.

Once the visible edges of the model are projected in
the image, each single line 𝑙		is sampled giving the set

of initial image points {	𝐱'
F}'34
MN . Each initial points is

then tracked in order to determine the set of

corresponding measured features {	𝐱'
F∗}'34

MN . As in [3],
tracking is performed via a 1D search along the
normal to the projection of the line 𝑙' 𝐫 which is
associated to the point 	𝐱'

F (see Figure 1). As a result,
the error criterion ∆F referred as the edge-based
features error is defined as:

∆F(𝐫) 	= 𝜌F(𝑑P(𝑙' 𝐫 , 𝐱'
F∗))0

1N

234

 (6)

where 𝜌F is a robust estimator and 𝑑P(𝑙' 𝐫 , 𝐱'
F∗) is

the distance between the forward projection of the line
𝑙' 𝐫 of the 3D model of the target and the desired

point features 𝐱'
F∗ . Finally, the Jacobian of the

distance of a point to a line is used (its analytic form is
given in [3]).

Keypoint-based features

With a vision sensor and by considering that the target
is potentially textured in the image, we have the
possibility to use this information in order to improve
the robustness of our navigation process. This is the
reason why the considered methods also rely on
keypoint-based features. Chosen keypoints are Harris
corners that are tracked over the image sequence with
the KLT algorithm [13]. Thus, the criterion error ∆H

refers here to the distance between 	𝐱'
H 𝐫 , the position

of the initial extracted keypoints 	𝐱'
H with respect to

the camera pose 𝐫, and their tracked position for each

frame of the sequence 𝐱'
H∗ (see Figure 1).

∆H(𝐫) 	= 𝜌H(𝐱'
H 𝐫 − 	𝐱'

H∗)0
1R

234

 (7)

where 𝜌H is once again a robust estimator.

Regarding 	𝐱'
H 𝐫 , let us recall that for this first

method we consider a simplified version of the 3D
model of the target where keypoint are supposed to be
detected on planar polygons belonging to the model.
Thus, the displacement between the initial feature
position and the tracked one can be specified by an
homography. Then 	𝐱'

H 𝐫 can be related to the initial

position 	𝐱'
Hof the keypoint by:

	𝐱'
H 𝐫 = α	𝐊U

V4	𝐇	𝐊U		𝐱'
H (8)

where 𝐊U is the calibration matrix associated to the
intrinsic camera parameters 𝜉 , and 𝐇 is the

homography (up to a scale factor α) obtained from the
3D camera motion 𝐌#YZY[

#> computed between the
initial camera pose 𝐌	#YZY[$

	 and the current camera
pose 𝐌	#> $

	 :

𝐇 = 𝐑']'^	
	
_ 		 +

𝐭']'^	
	
_

𝑑	']'^ 	 𝒏	']'^ b (9)

where 𝐑']'^	
	
_ 		

and 𝐭']'^	
	
_ 		

are the rotation matrix and
translation vector extracted from the displacement
𝐌#YZY[

#> . Furthermore, 𝒏	']'^ and 𝑑	']'^ are the normal
and distance to the origin of the planar polygon which
	𝐱'
H 𝐫 belongs to. It is expressed in the initial camera

frame 𝐌	# $
']'^.

Finally, the Jacobian considering the coordinates of
points is used and given by:

𝐋H = 𝐊U
−
1
𝑍

0
𝑥
𝑍

𝑥𝑦 −(1 + 𝑥0) 𝑦

0 −
1
𝑍

𝑦
𝑍

(1 + 𝑦0) 𝑥𝑦 −𝑥
 (10)

where (𝑥, 𝑦) are the normalized coordinates of the
image point 	𝐱'

H 𝐫 , and Z its corresponding depth
obtained by:

1 𝑍 = 	
𝑑 −	 𝐭']'^	

	
_ b 𝒏	']'^

	
']'^

(𝐑']'^	
	
_ 		 𝒏	']'^)	b	𝐱'

H 𝐫
	. (11)

2.3 GPU-Based Model-Based Tracker

For the second considered model-based tracking
method, we take the advantage of using a low-end
graphics processing unit (GPU) to improve the vision-
based navigation. Furthermore, in addition to edge-
based features and keypoint features that were used in
the previous method, we also consider color-based
features. As a result, the error ∆ to be minimized has
to be rewritten as:

∆	= 	𝑤F∆F + 𝑤H∆H +	𝑤#∆# (12)

where ∆F and ∆H	still refer to the geometrical edge-
based and keypoint-based errors, with 𝑤Fand 𝑤H their
corresponding weighting parameters. ∆# is the color-
based features error with its associated weighting
parameter 𝑤#.

Edge-based features

With respect to the previous method, the error
criterion ∆F remains the same (see (6)). However, the
determination of the edges to be considered is slightly
different. In the approach proposed in [10] and used
here, the CAD model of the target is rendered,
according to the camera pose 𝐫 , by using a 3D
rendering engine (in our case OpenSceneGraph). This
allows to process the corresponding depth map of the
scene in order to extract, via a Laplacian filter, the
prominent edges of the projected model that will

define the new set of initial point features {	𝐱'
F}'34
MN .

Tracking phase remains the same but as we are now
dealing with a much complex 3D model, points are not
associated anymore with any polygon. As a result,
control points are processed independently and a 3D
line 𝑙' is computed for each 	𝐱'

F (in blue on Figure 2).

Keypoint-based features

As for the keypoints, the feature-based error criterion
∆H remains the same (see (7)). However, with respect
to the previous method where polygons could contain
several point features, we here have to take into
account that every point may belong to a different
polygon, due the potential complexity of the 3D
model. Consequently, the way how 	𝐱'

H 𝐫 and its
corresponding depth Z are computed has to be
changed in order to avoid unnecessary time
processing. As in [10] we take the advantage of using
the GPU and more particularly the rendered depth map

to back-project the initial detected keypoints {	𝐱'
H}'34
MR

on the model, which gives the set of corresponding 3D

points {	𝐗'
H}'34
MR . These 3D points are then projected

with the value of the camera pose 𝐫 and each point
	𝐱'
H 𝐫 can be redefined as:

	𝐱'
H 𝐫 = 𝑝𝑟(𝐗'

H, 𝐫) (13)

where 𝑝𝑟(𝐗'
H, 𝐫) is the perspective projection operator.

Finally, the current depth value 𝑍	_ is computed by
considering the current camera displacement 𝐌#YZY[

#> .

	𝐱'
H

	
_ = 𝐌#YZY[

#> 	𝐱'
H

	
']'^ 	. (14)

Note that the current depth value 𝑍	_ could also be
obtained by rendering the scene at the current pose
𝐌	#> $
	 and then using the corresponding depth map.

However, this solution has not been considered since
it requires too much time to process the data.

Color-based features

One last improvement that has been added to this later
approach in order to robustify the navigation process
is to also consider color-based features. The idea is to
use the prominent edges that have been extracted to
compute the edge-based error criterion ∆F in order to
characterize the separation between the silhouette of
the projected 3D model and the background by relying
on color information [15, 10].

The principle is to compute local color statistics (RGB
means 𝐈'm and 𝐈'n and covariances 𝐑'm and 𝐑'n where O
is the object and B the background) on both sides
along the normal 𝒏' to the projected model silhouette

edges {	𝐱'
F}'34
MN , regularly sampled in 	𝐱',q# points up to

a distance 𝐿 (see Figure 2). These statistics are then
mixed according to a fuzzy membership rule [17],
giving the mean 𝐈'	 (𝐫) and covariance 𝐑'	 (𝐫) where
𝐈'	 (𝐫) is defined as the measured color value for 	𝐱',q# .
Consequently, we can define the error 𝐞',q# 𝐫 as:

𝐞',q# 𝐫 = 𝐈'	 𝐫 − 	𝐈(𝐱',q#) (15)

and the general error criterion ∆# can be re-written as:

∆#(𝐫) 	= 𝜌#(𝐞',q# 𝐫 b𝐑'	 (𝐫)V4𝐞',q# 𝐫)
q'

 (16)

where 𝜌#, as for 𝜌H and 𝜌F, is a robust estimator based
on a Tukey M-Estimator.

For more accuracy and temporal smoothness, [15] and
[10] also propose to introduce a temporal consistency
by integrating the color statistics computed on the
previous frame 𝐈	s for the silhouette edge point 	𝐱'

F 𝐫_
at the first iteration of the minimization process. With
a weighting factor (0 < α < 1), it gives 𝐞',q# 𝐫 =
α𝐈'	 𝐫 + (1 − 𝛼)(𝐈'	 𝐫	

s − 	𝐈 	𝐱',q#). For the detailed
computation of the corresponding interaction matrix,
see [17].

Finally, let us note that in case an RGB camera would
not be available, it is still possible to use this approach
with intensity only images. Indeed, color statistics
defined above could still be computed by considering
one image component only, that is, the intensity level
for grey images.

Figure 2: Model-based tracking principle considering

the case of color features.

3 EXPERIMENTAL RESULTS

The proposed methods have been validated on two
synthetic image sequences where ground truth data
are available to validate the quality of our vision-
based navigation process. Both sequences simulate
a CubeSat (DS-2) orbiting the Earth at different
altitudes. The CubeSat DS-2 3D model has been
generated by the Surrey Space Centre and provided
by Airbus Defence and Space. The sequences have
been generated via the 3D graphics and animation
software Blender and the Earth has been textured
using real satellite images available from NASA.
Considered images dimensions are 640x480.

Structure of the target

The structure of the CubeSat DS-2 that will be used
for the RemoveDEBRIS mission can be seen on
Figure 3. It has avionics throughout the structure

Current model
position
si (r)

xci,j

xg(r)i

Object

Background O
y

x
θl i (r),

{I i
O R i

OIO,

}
L

Measured
position

si*

R i
BI i

B,

and four deployable panels at the bottom in the
shape of a cross. The panels have no specific
function except to make the CubeSat looking more
like an actual satellite, so that the vision-based
navigation is performed close to real conditions. Its
dimensions (panels excluded) are 0.1m x 0.1m x
0.227m.

Figure 3: CubeSat DS-2 structure (image from [9]).

On Figure 4.a, we can see the CAD model used for
the GPU-based approach. It is a wireframe
representation of the model generated by the Surrey
Space Center. The model is fully detailed and
composed by many triangles. On the other side, the
CAD model that is used for the CPU-based
approach has been manually re-designed from the
detailed model in order to contain only visible
edges in terms of gradient in the image. There is no
triangle in this simplified version, and the visible
polygons on Figure 4.b directly represent the edges
that will be used to define the edge-based and
keypoint-based criterion errors (6) and (7). Models
differences can also be seen on Figures 5.d and 6.d.

(a)

(b)

Figure 4: 3D model used for the GPU-based MBT (a)
and for the CPU-based MBT (b).

Case 1: case of a geosynchronous orbit

In the first sequence (see Figures 5 and 6), the
considered target is on a geosynchronous orbit. It
has an angular speed that creates rotational motions
in the camera frame. However, the distance to the
camera remains the same over the sequence. We
have also considered different lighting conditions
to simulate day and night (where the background
also changes) in order to prove the robustness of
our methods whatever the situation. The full video
result for the GPU-based approach is available at:
https://youtu.be/H9XKDaQEVbU, and for the CPU-
based approach at: https://youtu.be/Gr78pmRPKOA.

(a) Image 0 (b) Image 680

(c) Image 2145 (d) Image 2602

Figure 5: Vision-based navigation of a CubeSat DS-2
for the first sequence of a geosynchronous orbit,

using the GPU-based approach.

(a) Image 0 (b) Image 680

(c) Image 2145 (d) Image 2602

Figure 6: Vision-based navigation of a CubeSat DS-2
for the first sequence of a geosynchronous orbit,

using the CPU-based approach.
.

Figure 7: 3D poses estimated for the first sequence of

a geosynchronous orbit (translation in meters and
rotation in radians).

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 500 1000 1500 2000 2500 3000

C
u
b
eS

at
 p

os
e

in
 t

h
e

ca
m

er
a
 f
ra

m
e

Frame number

X (m)
Y (m)
Z (m)

rX (rad)
rY (rad)
rZ (rad)

 CPU-based
MBT

GPU-based
MBT

RMSE Translation 0.0056 (m) 0.0039 (m)
RMSE Rotation 0.0087 (rad) 0.0098 (rad)
Mean Time 69 ms 290 ms
Mean Nb. Feat. ≈800 ≈420

Table 1: First sequence: Root mean square errors (in
meters for the translation and radians for the

rotation), mean time and mean number of features
per frame obtained for the estimated navigation

values.

For this first sequence, both methods have been
able to perfectly track the target. The estimated
trajectory, which is fairly the same for both
methods, is accurate and smooth (see Figure 7).
Furthermore, according to the collected ground
truth data, our vision-based navigation provides
precise pose estimation with an RMSE that is less
than 1cm on the translation and about 2deg on the
rotation (see Table 1). However, Table 1 also
shows that the GPU-based solution is about 4 times
more consuming than the CPU-based one (70ms
per frame vs 290ms per frame), while considering
twice less features (≈800 vs ≈420). This is mainly
due to the fact that, for the GPU-based approach, we
are using a 3D rendering engine with a much more
complex 3D representation of the target. Finally, on
Figures 8 and 9, we can see the norm of the
translational and rotational errors to the ground
truth, which also shows where the algorithms
encounter difficulties. Around frame 2200 for
example, and for both approaches, the precision on
the 3D pose estimation decreases a bit. The reason
is that the panels of the target are orthogonally
aligned with the focal axis of the camera (see
Figures 5.c & 6.c), which results in increasing the
incertitude on the target orientation.

Case 2: case of the ISS orbit

In the second sequence (see Figures 10 and 11), we
also use a CubeSat DS-2 target. With respect to the

Figure 8 : Error to ground truth for the CPU-based

approach on the first sequence.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 500 1000 1500 2000 2500 3000

R
M

S
E

 p
er

 f
ra

m
e

Frame number

t (m)
r (rad)

Figure 9 : Error to ground truth for the GPU-based

approach on the first sequence.

(a) Image 0 (b) Image 672

(c) Image 1780 (d) Image 2870

Figure 10: Vision:based navigation of a CubeSat at
400km altitude (approximately ISS altitude), using the

GPU-based approach.

(a) Image 0 (b) Image 672

(c) Image 1780 (d) Image 2870

Figure 11: Vision:based navigation of a CubeSat at
400km altitude (approximately ISS altitude), using the

CPU-based approach.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 500 1000 1500 2000 2500 3000

R
M

S
E

 p
er

 f
ra

m
e

Frame number

t (m)
r (rad)

first sequence, the satellite is here orbiting at
400km altitude, which is approximately the
International Space Station (ISS) orbit altitude.

Let us note that this orbit corresponds to the one
that will be used during the RemoveDEBRIS
mission since the target will, in the first stages of
the mission, be released from the ISS. Furthermore,
during the mission, the CubeSat DS-2 will be
ejected from the RemoveSat at very low velocity
(≈2cm/s) and out of the orbit plan in order to optimize
the relative trajectory for the vision-based navigation
demonstration. In this experiment and as for the
previous case, we considered different lightning
conditions simulating day and night, which creates
specularities on the satellite panels and
consequently make more complex the navigation
process. The CubeSat velocity has also been
increased, with respect to the mission specifications
in order to simulate larger inter-frame motions.
Finally, this case also considers a non-fixed
distance between the camera and the target so that
the target appears sometimes very small in the
image sequence with a very low visibility. Once
again, this aims to demonstrate the robustness of
the navigation process whatever the situation. The
full video result for the GPU-based version is
available at: https://youtu.be/AEJ6S7d9Y70, and at
https://youtu.be/3nG4WQ9Tu6M for the CPU-based
approach.

Regarding this second sequence, the CPU-based
approach has not been able to correctly estimate the
navigation data along the complete sequence (see
Figure 12 and 13) while the GPU-based one has
still been perfectly able to do it with an extremely
good RMSE (0.0084 meters on the translation and
0.0197 radians on the rotation, see Table 2). By
comparing Figures 13 and 15 with Figures 10.c and
11.c around frame 1700, we are still facing the
same issue as in the previous experiment. Indeed,
for these frames, the panels of the target are
orthogonally aligned with the focal axis of the
camera, which creates incertitude on the orientation
of the target. Furthermore, the target appears small
with a low visibility (see Figure 10.c). As a result,
the CPU-based approach has not been robust
enough to correctly estimate the navigation data
around frame 1700 (see Figure 13). Hopefully, as
soon as the CubeSat has reappeared in the image
with better conditions, this issue disappeared and
the CPU-based approach has been able to recover
correct results.

Note that in the presented approaches, no detection
method has been implemented in parallel to the
tracking. However, we could benefit from such
algorithms to recover the target pose when tracking
fails as, for example, in [17, 18].

Figure 12: 3D poses estimated for the second
sequence by using the CPU-based approach

(translation in meters and rotation in radians).

Figure 13: Error to ground truth for the CPU-based

approach on the second sequence.

Figure 14: 3D poses estimated for the second
sequence by using the GPU-based approach

(translation in meters and rotation in radians).

Figure 15: Error to ground truth for the GPU-based

approach on the second sequence.

-3

-2

-1

 0

 1

 2

 3

 0 500 1000 1500 2000 2500 3000

C
u
b
eS

a
t

p
o
se

 i
n
 t

h
e

ca
m

er
a
 f
ra

m
e

Frame number

X (m)
Y (m)
Z (m)

rX (rad)
rY (rad)
rZ (rad)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 500 1000 1500 2000 2500 3000

R
M

S
E

 p
er

 f
ra

m
e

Frame number

t (m)
r (rad)

-3

-2

-1

 0

 1

 2

 3

 0 500 1000 1500 2000 2500 3000

C
u
b
eS

a
t

p
o
se

 i
n
 t

h
e

ca
m

er
a
 f
ra

m
e

Frame number

X (m)
Y (m)
Z (m)

rX (rad)
rY (rad)
rZ (rad)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 500 1000 1500 2000 2500 3000

R
M

S
E

 p
er

 f
ra

m
e

Frame number

t (m)
r (rad)

4 CONCLUSION

In this paper, we have presented two model-based
tracking approaches that have been developed and
tested on various experiments with different
conditions. While the first method (which is
available in the ViSP framework [19]) is only
relying on a CPU, the second one is also taking
benefit of using a low-end GPU. Furthermore, in
addition to the edge-based and keypoint-based
features also used in the first approach, the second
one is also considering color-based features (that
could be adapted to intensity-based features if
needed). This has aimed to increase the robustness
of the navigation process in order to face with
complex situations, as shown for the second image
sequence.

While considering space applications, the graphics
processing unit might not be available and the
central processing unit might not be powerful
enough to run complex algorithms. However, when
dealing with damaged or complex objects (which
will probably be the case in the future of the
RemoveDEBRIS mission), or when dealing with
hard environment conditions as presented in the
second experiment, the CPU version might not be
robust enough and could eventually fail to estimate
the navigation data. In those cases, the GPU-based
approach remains a better choice.

References

[1] N. W. Oumer, G. Panin, Q. Mülbauer, A.
Tseneklidou, Vision-based localization for on-
orbit servicing of a partially cooperative satellite,
Acta Astronautica, 117:19-37, 2015.

[2] G. Bleser, Y. Pastarmov, and D. Stricker. Real-
time 3d camera tracking for industrial augmented
reality applications. Journal of WSCG, pp. 47–54,
2005.

[3] A.I. Comport, E. Marchand, M. Pressigout, and F.
Chaumette. Realtime markerless tracking for
augmented reality: the virtual visual servoing
framework. IEEE T-VCG, 12(4):615–628, July
2006.

[4] T. Drummond and R. Cipolla. Real-time visual
tracking of complex structures. IEEE PAMI,
24(7):932–946, July 2002.

[5] A. Petit, E. Marchand, and K. Kanani. Tracking
complex targets for space rendezvous and debris
removal applications. IEEE IROS’12, pp. 4483–
4488, Vilamoura, 2012.

[6] G. Panin, Al. Ladikos, and A. Knoll. An efficient
and robust real-time contour tracking system.
IEEE ICVS, 2006.

[7] V. Prisacariu and I. Reid. Pwp3d: Real-time
segmentation and tracking of 3d objects. British
Machine Vision Conf., September 2009.

[8] C. Bonnal, J.-M. Ruault, M.-C. Desjean, Active
debris removal: Recent progress and current
trends, Acta Astronautica, 85:51-60, April 2013.

[9] J. Forshaw, G. Aglietti, N. Navarathinam, H.
Kadhem, T. Salmon, et al. An in-orbit active
debris removal mission - REMOVEDEBRIS: Pre-
Launch update. IAC'2015, Jerusalem, Oct. 2015.

[10] A. Petit, E. Marchand, A. Kanani. Combining
complementary edge, point and color cues in
model-based tracking for highly dynamic scenes.
IEEE Int. Conf. on Robotics and Automation,
ICRA'14, pp. 4115-4120, Hong Kong, June 2014.

[11] R.T. Howard, A.S. Johnston, T.C. Bryan, M.L.
Book, Advanced video guidance sensor (AVGS)
development testing, Defense and Security, Int.
Soc. for Optics and Photonics, Orlando, 2004.

[12] P.-J. Huber, Robust Statistics. Wiley, New York,
1981.

[13] J. Shi and C. Tomasi, Good features to
track, IEEE Int. Conf. on Computer Vision and
Pattern Recognition, CVPR '94, Seattle, 1994.

[14] M. Pressigout, E. Marchand. Real-time hybrid
tracking using edge and texture information. Int.
Journal of Robotics Research, 26(7):689-713, July
2007.

[15] G. Panin, E. Roth, and A. Knoll. Robust contour-
based object tracking integrating color and edge
likelihoods. VMV 2008, pp. 227–234, Konstanz,
2008.

[16] E. Marchand, H. Uchiyama, F. Spindler. Pose
estimation for augmented reality: a hands-on
survey. IEEE T-VCG, 2016.

[17] A. Petit. Robust visual detection and tracking of
complex object: applications to space autonomous
rendez-vous and proximity operations. Ph.D.
thesis, Université de Rennes 1, December 2013.

[18] A. Petit, E. Marchand, R. Sekkal, K. Kanani. 3D
object pose detection using foreground-
background segmentation. IEEE Int. Conf. on
Robotics and Automation, ICRA'15, pp. 1858-
1865, Seattle, May 2015.

[19] E. Marchand, F. Spindler, F. Chaumette. ViSP for
visual servoing: a generic software platform with a
wide class of robot control skills. IEEE Robotics
and Automation Magazine, 12(4): 40-52, 2005.

 CPU-based
MBT

GPU-based
MBT

RMSE Translation 0.0420 (m) 0.0084 (m)
RMSE Rotation 0.1400 (rad) 0.0197 (rad)
Mean Time 66 ms 228 ms
Mean Nb. Feat. ≈800 ≈330

Table 2: Second sequence: Root mean square errors
(in meters for the translation and radians for the

rotation), mean time and mean number of features per
frame obtained for the estimated navigation values.

