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Abstract—The goal of this work is to propose an extension of
the popular leader-follower framework for multi-agent collective
tracking and formation maintenance in presence of a time-
varying leader. In particular, the leader is persistently selected
online so as to optimize the tracking performance of an exogenous
collective velocity command while also maintaining a desired
formation via a (possibly time-varying) communication-graph
topology. The effects of a change in the leader identity are
theoretically analyzed and exploited for defining a suitable error
metric able to capture the tracking performance of the multi-
agent group. Both the group performance and the metric design
are found to depend upon the spectral properties of a special
directed graph induced by the identity of the chosen leader.
By exploiting these results, as well as distributed estimation
techniques, we are then able to detail a fully-decentralized
adaptive strategy able to periodically select online the best leader
among the neighbors of the current leader. Numerical simulations
show that the application of the proposed technique results in an
improvement of the overall performance of the group behavior
w.r.t. other possible strategies.

Index Terms—Distributed agent Systems, Multi-agent systems,
Mobile agents, Distributed algorithms, Decentralized control.

I. INTRODUCTION

MANY complex organisms made of several entities rely
on the basic property of being able to follow an external

source. This is for example the case of groups of animals
during pack-hunting of a prey, or migrations driven by natural
signals. Inspired by these considerations, several collective
tracking behaviors and control algorithms have been proposed
for multi-agent systems [1], [2] as, for instance, the well-
known leader-follower paradigm, one of the most popular
techniques in the control and robotics communities [3], [4],
[5], [6]. In the leader-follower scenario, a special agent (the
leader) has access to the signal source, e.g., to the reference
motion to be tracked by the whole group. In order to act
cooperatively, this local information must then be spread
among the rest of the group by means of proper local actions
(see, e.g., [7] where distributed formation control and leader-
follower approaches are thoroughly reviewed).

Within the leader-follower scenario, one of the main re-
search topics has been the study of new distributed estimation
and control laws able to i) propagate the reference motion
signal through local communication to the whole group and
ii) let the group track this reference with the smallest possible
error/delay. In most of the cases, however, the leader is
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assumed to be a particular (constant) member chosen by the
group at the beginning of the task. This problem, denoted
here as static leader election, has been deeply investigated for
autonomous multi-agent systems. In the static leader election
case, the problem is to find a distributed control protocol such
that, eventually, one (and only one) agent takes the decision
of being the leader [8]. In [9] the leader election problem is
solved by the FLOODMAX distributed algorithm using explicit
message passing among the formation. In [10], the leader
election problem is solved using fault detection techniques
and without explicit communication, as done by some animal
species. However, in all these works the leader election is
assumed to be performed only once, e.g., at the beginning of
the task, with the goal of selecting a suitable leader whose
identity is then retained for the whole mission duration.

On the contrary, in this paper we extend this paradigm
by assuming that i) the identity of the leader is an addi-
tional degree of freedom that can be persistently changed
(i.e., online) with the aim of ii) optimizing both the group
tracking performance of the reference motion command and
the (concurrent) convergence to a desired group formation. We
refer to this problem as online leader selection.

In the recent years, a few works have addressed related
objectives with different approaches. Maximization of network
coherence, i.e., the ability of the consensus-network to reject
stochastic disturbances, has been the optimization criteria used
in [11]. The criteria used in [12] have been controllability of
the network and minimization of a quadratic cost to reach
a given target. The case of large-scale network and noise-
corrupted leaders has been considered in [13], [14]. A joint
consideration of controllability and performance has been
considered in [15]. The authors in [16] use instead the concept
of manipulability to select the best leader in the group.

With respect to these cases, we consider a different op-
timization criterion which, we believe, is more suited for
applications involving collective motion tracking: the conver-
gence rate to the reference velocity signal (only known by
the current leader) and to the desired formation. We note that
these criteria do not only depend on the characteristics of the
network, but also on the current state of the agents and on the
current reference signal. Therefore, their optimization cannot
be performed once and for all at the beginning of the task,
as it is the case for most of the aforementioned approaches.
Furthermore, for the sake of generality, we also consider
the possibility of a time-varying (but connected) interaction
graph, and we provide a fully-distributed control strategy for
obtaining an optimal and online selection of the leader.

The main contributions of this work can be summarized
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as follows: we introduce a new leader-follower paradigm in
which the agents can persistently change the current leadership
in order to adapt to both the variation of an external signal
source (to be tracked by the group), and to a possibly time-
varying communication-graph topology. For what concerns
the motion tracking algorithms, we consider a widely used
consensus-like decentralized multi-agent coordination model
(see, e.g., [17]) and theoretically analyze the effects of a
changing leadership over time. This is obtained by proposing
a suitable error metric that quantifies the performance of the
multi-agent group in tracking the external reference signal and
in achieving the desired formation shape. We then propose a
fully-decentralized online leader selection algorithm able to
periodically select the ‘best leader’ among the neighbors of the
current leader, and we finally provide numerical tests to show
the effectiveness of our approach. A preliminary version of the
framework proposed in this paper has been presented in [18],
where, however, simpler metrics have been considered, formal
proofs were omitted, and simpler case studies were discussed.

The paper is organized as follows. Section II defines the
problem background and introduces some preliminary results.
Section III presents the first main contribution of the paper
by theoretically analyzing the effect of a changing leader on
the considered tracking performance. Section IV presents the
second main result of the paper by proving that the selection of
the best leader can be performed in a completely decentralized
way. Finally, sections V and VI present some numerical tests
of the results and a final discussion, respectively.

II. MODELING OF FORMATION MAINTENANCE AND
TRACKING OF AN EXTERNAL REFERENCE

This section introduces the general model of our multi-
agent scenario and the first contribution of our paper, i.e.,
a set of results concerning the considered general model.
We consider a group of N mobile agents modeled as points
in Rd, with d ∈ {2, 3}, whose positions are denoted with
pi ∈ Rd for i = 1 . . . N . As customary, we model the
inter-agent communication capabilities by means of the (sym-
metric) adjacency matrix A = {Aij} ∈ {0, 1}N×N with
Aij = 1 if agents i and j, j 6= i, can communicate, and
Aij = 0 otherwise, ∀ i, j = 1 . . . N . We also denote with
Ni = {j |Aij = 1} the set of neighbors of agent i, i.e., the
agents with which i can communicate, and let G represent
the undirected communication graph defined by the adjacency
matrix A. Finally, we denote with L the Laplacian matrix of G,
i.e., L = diag(A1)−A, where 1 represents a column vector
of all ones of proper size (N , in this case), and diag returns
the diagonal matrix associated to a vector. We assume that
G is connected, i.e., there exists a sequence of hops (edges)
connecting any pair of agents in the communication network1.
As well known, see, e.g., [17], this implies that L has rank
N−1, or, equivalently, that the second smallest eigenvalue λ2
of L (the algebraic connectivity of G) is positive.

An ‘external entity’, referred to as the master2, provides
a collective motion command to the group in the form of a

1One can always restrict the analysis to a group connected component.
2This nomenclature is borrowed from the teleoperation literature.

master

master

master

leader k-1

leader k

leader  k+1

low-bandwidth
communication

low-bandwidthcommunication

low-bandwidth
communication

Fig. 1: Abstraction of the application scenario, in which a master
agent (e.g., a base station) can only communicate with one an agent
at the time (called leader) with a low bandwidth. The leader can be
changed every time a new high-level command from the master is
sent to the group.

velocity reference ur ∈ Rd.

Remark 1. The group of agents may represent, e.g., a group
of remote unmanned vehicles that needs to keep a fixed
formation in order to monitor a given area, and the master
can represent a base station in charge of guiding the group
based on some additional (locally available) knowledge and
computational power. In this situation, because of typical
bandwidth limitations, especially over large distances, it is
meaningful to assume that the master can only communicate
with one particular agent in the group at the time, see,
e.g., [19], [20] and references therein. Similarly, because of
the same reasons, it is also meaningful to assume that the high-
level command sent by the base station (the master) has a low
frequency compared to the group internal dynamics. Therefore
the agents will need to control their internal motion (faster
dynamics) by ‘interpolating’ between two consecutive high-
level commands from the base station (e.g., by considering
piece-wise constant reference commands among consecutive
receiving times).
Figure 1 provides a pictorial representation of the aforemen-
tioned application scenario.

Because of the practical limitations discussed in Remark 1
(which may arise in several different operating contexts),
we then assume at this modeling stage that the master can
communicate, with negligible delay, the current value of
ur ∈ Rd to only one agent at a time, called leader from
now on, and denoted with the index l throughout the rest
of the paper. We do not pose any special constraint on the
identity of the initial leader. Furthermore, we assume that the
master sends ur to the current leader at a known frequency
1/Tr, with Tr ≥ 0 being the sending period (ur will then
be treated by the current leader as a constant vector among
consecutive receiving times). Symmetrically, the group can
inform the master on the identity of the current leader at the
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same frequency 1/Tr.
Exploiting the multi-agent communication network, the

reference velocity ur ∈ Rd only known to the leader) can
be however transmitted to the other agents of the group via
a multi-hop propagation algorithm. As representative of the
several existing possibilities in this sense, we consider here
the following consensus-like law for easily modeling fast/slow
propagation algorithms and technologies:

˙̂ui = −ku
∑
j∈Ni

(ûi − ûj) ∀i 6= l (1)

ûl = ur (2)

where ûi is the i-th estimation of ur, and ku a positive
scalar gain. Model (1)–(2) may approximate a large variety of
propagation algorithms with different convergence speeds by
simply tuning the gain ku (larger gains correspond to shorter
propagation times and vice-versa). For example a ultrasonic
underwater communication can be modeled choosing a rela-
tively ‘small’ ku while a high-bandwidth LAN network should
more reasonably be modeled with a larger ku.

Letting û = (ûT1 . . . û
T
N )T ∈ RNd, (1)–(2) can be com-

pactly rewritten as
˙̂u = −ku(Ll ⊗ Id)û = kuGlû, (3)

where Ll is the ‘in-degree’ Laplacian matrix of the directed
graph (digraph) Gl obtained from G by removing all the in-
edges of l, ⊗ is the Kronecker product, Id the d× d identity
matrix, and Gl = −(Ll ⊗ Id) ∈ RNd×Nd. Using (3), the
velocity estimation error

eû = û− 1⊗ ur (4)

obeys the dynamics

ėû = kuGleû − 1⊗ u̇r. (5)

We further assume that, besides collectively tracking the
reference velocity ur, the agents must also arrange in space
according to a desired formation defined in terms of a set
of constant relative positions taken as reference shape in
some common frame decided before the task execution. These
relative positions are assumed generated as all the possible
differences between pairs of positions in a set of N absolute
positions d = (dT1 . . .d

T
N )T ∈ RdN . The ‘virtual’ absolute

positions d are clearly defined ‘up to an arbitrary translation’,
since only the position differences will play a role for the
coordination law.

Such a formation control task is a typical requirement in
many multi-agent applications (see, again, Remark 1 for an
example). A number of different control strategies can be
employed to achieve this goal, depending on the actuation and
sensing capabilities of the agents, see, e.g., [7] and references
therein for the centralized task-priority framework, or [17] for
the decentralized graph-theoretical methods. In order to model
a generic control action for letting the agents achieving the
desired formation, we consider the classical and well-known
distributed consensus-like formation control law

ṗi =

ûi − kp
∑
j∈Ni

((pi − pj)− (di − dj)) i 6= l

ûi(= ur), i = l
(6)

where di − dj ∈ R3 represents the desired relative position
between neighboring agents i and j, and kp > 0 is a positive
scalar gain. The complete agent dynamics then takes the form

ṗ = û + kpGl(p− d), (7)

where p = (pT1 . . .p
T
N )T ∈ RNd. The simple linear dy-

namics (7) is expressive enough for suitably modeling a
generic (also non-linear) formation control action around its
equilibrium point. The gain kp determines the ‘stiffness’ of
the formation control, i.e., how strongly the agents will react
to deviations from their desired formation.

Letting v = ṗ, we now consider the following formation
tracking error vector

ep = (p− 1⊗ pl)− (d− 1⊗ dl) (8)

and velocity tracking error vector

ev = v − 1⊗ vl = v − 1⊗ ur, (9)

representing, respectively, the tracking accuracy of the desired
formation encoded by d, and of the reference velocity ur
(known by the current leader, and propagated to the other
agents via (1)–(2)).

Using the properties Gl(p − d) = Glep, Glv = Glev,
Glû = Gleû, and taking into account (5)–(7), the dynamics
of the overall error vector e = (eTp eTv eTû )T then takes the
expression

ė =

kpGl 0Nd INd
0Nd kpGl kuGl

0Nd 0Nd kuGl

 e−

 0
1⊗ u̇r
1⊗ u̇r

 . (10)

As expected, the formulation (10) is quite general and, in
fact, it has been exploited several times (in different contexts)
in the multi-agent literature as, e.g., in [21], where the same
formulation is used for, however, other purposes not related to
the leader selection problem considered in this work.

We now show some fundamental properties of system (10)
and of other relevant quantities instrumental for illustrating the
main results of the paper. First of all let us rewrite matrix Ll,
obtained from L by zeroing its l-th row, as follows:

Ll ,

Ml,1 `l,1 Ml,2

0T 0 0T

Ml,3 `l,2 Ml,4

 , (11)

where Ml,1, Ml,2, Ml,3, Ml,4, `l,1, `l,2, and 0 are matrices
and column vectors of proper dimensions. We also define

Ml ,

(
Ml,1 Ml,2

Ml,3 Ml,4

)
∈ RN−1×N−1

and `l , (`Tl,1 `
T
l,2)T ∈ RN−1. The following properties play

a central role in the next developments.

Property 1. Denoting with σ(S) the spectrum of a square
matrix S, and assuming connectedness of the graph G, the
following properties hold:

1) Ll1 = 0, ∀l = 1 . . . N ;
2) Ml1 = (1TMl)

T = `l;
3) Ml is symmetric and positive definite;
4) σ(Ll) = σ(Ml) ∪ {0}.
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Proof: The first item follows from L1 = 0 which holds
by construction, while the second item is a direct consequence
of the first one.

In order to prove the third item, consider the decomposition
Ml = L−l − diag(`l), where L−l ∈ RN−1×N−1 is the
Laplacian of the subgraph G−l obtained from G by removing
the l-th vertex (and all its adjacent edges), and −diag(`l) ∈
RN−1×N−1 is a diagonal matrix built on top of vector `l, i.e.,
with ‘ones’ in all the diagonal entries corresponding to the
vertexes of G−l adjacent to l in G and ‘zeros’ otherwise.

Both matrix −diag(`l) are L−l are positive semidefinite.
In fact, the eigenvalues of −diag(`l) are either 1 or 0 by
construction, while L−l is the Laplacian matrix of a graph,
which is always positive semidefinite [17]. Therefore Ml is
at least positive semidefinite, being the sum of two positive
semidefinite matrixes. We prove now that Ml is actually
positive definite by showing that ∀w ∈ RN−1, w 6= 0,
we have that wTMlw > 0. Exploiting the aforementioned
decomposition we obtain

wTMlw︸ ︷︷ ︸
=b1+b2

= wTL−lw︸ ︷︷ ︸
=b1≥0

+wT (−diag(`l))w︸ ︷︷ ︸
=b2≥0

.

We now prove now that ∀w ∈ RN−1, w 6= 0, b1 = 0⇒ b2 >
0 which in turns will imply that ∀w ∈ RN−1 b1 + b2 > 0,
i.e., that Ml is positive definite.

From the properties of a Laplacian matrix, the subspace
of vectors w such that wTL−lw = 0 is spanned by the
eigenvectors w1, . . . ,wK of L−l associated to the eigenvalue
0, with K ≤ N−1 being the number of connected components
of G−l. These eigenvectors have a precise structure: each
connected component of G−l is associated to an eigenvector
with all ones in the entries corresponding to the vertexes of the
connected component and all zeros in the remaining entries.

Since the original graph G is connected by assumption, each
connected component of G−l has at least one vertex adjacent
to l in G. Therefore, remembering that −diag(`l) has ones
exactly in the the entires corresponding to the vertexes of G−l
adjacent to l in G, this implies −wT

i diag(`l)wi > 0 for any
i = 1 . . .K.

Summarizing, any nonzero vector w such that b1 = 0, i.e.,
w ∈ kerL−l−{0} can be expressed as the linear combination
w = a1w1 + . . . + aKwK with at least one ai 6= 0. It then
follows that

b2 = −wTdiag(`l)w = −
K∑
i=1

a2iw
T
i diag(`l)wi > 0,

thus concluding the proof of the third item.
Finally, in order to prove the fourth item, consider any

eigenvector v of Ll associated to an eigenvalue λ 6= 0. Since
Ll has a null l-th row, the l-th component of v must be
necessarily 0, i.e., v = (vT1 0 vT2 )T . Therefore λ(vT1 0 vT2 )T =
Ll(v

T
1 0 vT2 )T = ((Ml,1v1 + Ml,2v2)T 0 (Ml,3v1 +

Ml,4v2)T )T implying that λv1 = Ml,1v1 + Ml,2v2 and
λv2 = Ml,3v1 + Ml,4v2, i.e., λ(vT1 vT2 )T = Ml(v

T
1 vT2 )T .

Since σ(Ll) = σ(Ml)∪{0}, and being Ml is symmetric, it
follows that Ll has real eigenvalues, even though it is not sym-
metric (being Gl is a digraph). Let 0 = λ1 ≤ λ2 ≤ . . . ≤ λN

and 0 = λ1,l ≤ λ2,l ≤ . . . ≤ λN,l be the N real eigenvalues
of L and Ll, respectively. Since λ2 is called the ‘algebraic
connectivity’ of G, for similarity we also denote λ2,l as the
‘algebraic connectivity’ of the digraph Gl. From the previous
properties we have that, if G is connected, then both λ2 > 0
and λ2,l > 0.

In order to prove an important property that sheds additional
light on the relation between the eigenvalues of L and Ll we
first recall a well-known result from linear algebra.

Theorem 1 (Cauchy Interlace Theorem [22]). Let X be a
Hermitian matrix of order N , and let Y be a principal sub-
matrix of X of order N − 1, i.e., a matrix obtained from X by
removing any i-th row and i-th column, with i ∈ {1, . . . , N}.
If λX1 ≤ λX2 ≤ . . . ≤ λXN−1 ≤ λXN lists the eigenvalues of X
and λY1 ≤ λY2 ≤ . . . ≤ λYN−2 ≤ λYN−1 the eigenvalues of Y,
then λX1 ≤ λY1 ≤ λX2 ≤ λY2 ≤ . . . ≤ λXN−1 ≤ λYN−1 ≤ λXN .

Then, the following property also holds:

Property 2. For a graph G and an induced graph Gl it is
λi,l ≤ λi for all i = 1 . . . N .

Proof: The property is proven applying Theorem 1 the
matrixes X = L and Y = Ml and then using the fact that
σ(Ll) = σ(Ml) ∪ {0} thanks to Property 1.

To conclude this modeling section we formally prove the
stability of the linear system (10) in the next proposition.

Proposition 1. If the graph G is connected, the origin of
the linear system (10) with zero input (u̇r ≡ 0) is globally
asymptotically stable for any kp > 0, ku > 0. The rates
of convergence of (ep, ev) and eû are dictated by −kpλ2,l
and −kuλ2,l, respectively, where λ2,l = minσ(Ml), i.e., the
smallest positive eigenvalue of Ll (algebraic connectivity of
the digraph Gl).

Proof: The dynamics of the error e with zero input is:(
ėp
ėv
ėû

)
=

(
kpGl 0Nd INd

0Nd kpGl kuGl

0Nd 0Nd kuGl

)(
ep
ev
eû

)
. (12)

Because of their definition, the sub-vectors ep,l, ev,l, and eû,l
(i.e., the errors relative to the agent l) are zero at t = t0
and their dynamics is invariant because of the null row in Ll
corresponding to the agent l, i.e.,

ep,l = ev,l = eû,l = ėp,l = ėv,l = ėû,l = 0, ∀t > t0.

Therefore we can restrict the analysis to the dynamics of the
orthogonal subspace, i.e., of the remaining components ep,i,
ev,i, and eû,i for all i 6= l. We denote with lep, lev, and
leû the (N − 1)d-vectors obtained by removing the d entries
corresponding to l in ep, ev, and eû, respectively, and with
le their concatenation. The dynamics of the reduced error le
is then: (

lėp
lėv
lėû

)
=

 kplGl 0(N−1)d I(N−1)d

0(N−1)d kplGl kulGl

0(N−1)d 0(N−1)d kulGl


︸ ︷︷ ︸

Dl

le, (13)

where lGl = −Ml⊗Id. We recall that Ml is positive definite
(see Property 1) and its smallest eigenvalue, denoted as λ2,l,
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represents the algebraic connectivity of the digraph associated
to Ll. Due to the block diagonal form of Dl and to the
properties of the Kronecker product, the distinct eigenvalues
of Dl are at most 2(N − 1), of which N − 1 are obtained
by multiplying all the eigenvalues of Ml with −kp and the
remaining N − 1 by multiplying all the eigenvalues of Ml

with −ku. The thesis then simply follows from the structure
of system (13).

Therefore, if u̇r ≡ 0, the agent velocities v and estimation
û asymptotically converge to the common reference velocity
ur, and the agent positions p to the desired shape 1 ⊗ pl +
d− 1⊗dl. Furthermore, the value of λ2,l directly affects the
convergence rate of the three error vectors (ep, ev, eû) over
time. Since, for a given graph topology G, λ2,l is determined
by the identity of the leader in the group, it follows that
maximization of λ2,l over the possible leaders results in a
faster convergence of the tracking error. This insight then
motivates the online leader selection strategy detailed in the
rest of the paper.

III. EFFECTS OF A CHANGING LEADER AND ASSOCIATED
TRACKING PERFORMANCE METRIC

In this section we provide the second main contribution
of this paper by theoretically analyzing how the choice of
a changing a leader affects the dynamics of the error vector.
We assume that a new leader can be periodically selected by
the group at some frequency 1/T , T > 0, and let tk = kT .

Remark 2. We note that, in general, the quantities T (the
leader election period) and Tr (the reference command period)
do not need to be related. However, for the reasons given
in Remark 1, it is meaningful to consider T ≤ Tr since
the internal group communication/dynamics is typically much
faster than the master/group interaction. In the following, we
then design T to be an exact divisor of Tr, i.e., such that
Tr/T ∈ N.

Let us also denote the leader at time tk with the index
lk, and recall that the velocity reference ur, between tk and
tk+1 is constant (see Remark 1). Rewriting the dynamics of
system (3)–(6) among consecutive leader-selection times, i.e.,
during the interval [tk, tk+1), we obtain:

˙̂u = kuGlk û t ∈ [tk, tk+1) (14)
ṗ = û + kpGlk(p− d) t ∈ [tk, tk+1) (15)

with initial conditions

û(tk) = û(t−k ) + (S̄lk ⊗ Id)(1⊗ ur(tk)− û(t−k )) (16)

p(tk) = p(t−k ), (17)

and, for the velocity vector v,

v(tk) = û(tk) + kpGlk(p(tk)− d). (18)

Matrix S̄lk ∈ RN×N is a diagonal selection matrix with all
zeros on the main diagonal but the lk-th entry set to one, and
its complement is defined as Slk = IN − S̄lk .

Equation (16) represents the reset action (2) performed on
the components of û corresponding to the new leader lk which
are reset to ur(tk). The initial condition û(tk) hence depends

on the chosen leader lk and is in general discontinuous at
tk. Similar considerations hold for the value of the velocity
vector v(tk). On the other hand, the position vector p(t) is
continuous at tk.

Focusing on the error dynamics (10) during the interval
[tk, tk+1), and noting that ur(t) ≡ const in this interval by
assumption, we obtain

ė =

(
kpGlk 0Nd INd

0Nd kpGlk kuGlk
0Nd 0Nd kuGlk

)
e. (19)

Using (16–18), the initial conditions at tk for e =
(eTp eTv eTû )T as a function of the chosen leader lk and of
the received external command ur(tk) are then:

ep(tk) = (Slk ⊗ Id)(p(t−k )− d− 1⊗ (plk(t−k )− dlk)
(20)

ev(tk) = (Slk ⊗ Id)(û(t−k )− 1⊗ ur(tk) + γ(t−k )) (21)

eû(tk) = (Slk ⊗ Id)(û(t−k )− 1⊗ ur(tk)) (22)

where γ = −kp(L ⊗ Id)(p − d), i.e., γ =
(
γT1 . . .γ

T
N

)T ∈
RNd and

γi = kp
∑
j∈Ni

((pj − pi)− (dj − di)) .

Therefore, from (20–22) it follows that vector e(tk) is directly
affected by the choice of lk. For this reason, whenever appro-
priate we will use the notation e(tk, lk) to explicitly indicate
this (important) dependency. We also note that γ depends on
L and not on Llk .

The following lemma is preliminary to the main result of
the section.

Lemma 1. Consider any symmetric matrix F ∈ RM×M and
three positive gains kn, kp, ku > 0. Denote with λ1 . . . λM ∈
R the eigenvalues of F. Then define the symmetric matrix

Q =

 kp
kn

F 0M
1

2kn
IM

0M
kp
kn

F ku
2kn

F
1

2kn
IM

ku
2kn

F kuF

 .

The following facts hold:
1) the 3M eigenvalues of Q are

µ1(λi) =
kp
kn
λi (23)

µ2(λi) =
λik1 −

√
1 + λ2i k2

2kn
(24)

µ3(λi) =
λik1 +

√
1 + λ2i k2

2kn
(25)

for all i = 1 . . .M , with k1 = kp + knku (> 0) and
k2 = k2u + (kp − knku)2 (> 0);

2) if λ1 ≤ λ2 . . . ≤ λM < 0 and kn is chosen such that

λ2M (4knkpku − k2u) > 1 (26)

then µj(λi) < 0 for all j = 1, 2, 3, i = 1 . . .M , and

µ3(λM ) = max
j=1,2,3
i=1...M

µj(λi)
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Proof: We first prove item 1). For any eigenvalue µ of Q
it holds

Qv = µv (27)

where v = (vT1 vT2 vT3 )T ∈ R3M is a unit-norm eigenvector
of Q associated to µ. Consider the matrix xT ⊗ I3 ∈ R3×3N ,
where xi ∈ RM is a unit-norm eigenvector of F associated
to any eigenvalue λi of F, i = 1 . . .M . Left-multiplying both
sides of (27) with xTi ⊗ I3 and exploiting the symmetry of F,
we obtain

(xTi ⊗ I3)Qv =


kp
kn

λi 0 1
2kn

0
kp
kn

λi
ku
2kn

λi
1

2kn

ku
2kn

λi kuλi


︸ ︷︷ ︸

Qλi

(
xTi v1
xTi v2
xTi v3

)
= µ

(
xTi v1
xTi v2
xTi v3

)
.

Therefore µ is also an eigenvalue of the 3-by-3 matrix Qλi

for every λi ∈ σ(F) i = 1 . . .M . In particular, after some
straightforward algebra, this implies that all the eigenvalues
of Q are the solutions of M cubic equations of the form:(
µ− kpλi

kn

)(
µ2 − λi(kp+knku)

kn
µ− λ2

i (k
2
u−4knkpku)+1

4k2n

)
= 0,

for λi = 1 . . .M , which then leads to (23-25) and proves item
1).

We now prove the item 2).
First of all, under the stated conditions, it is µ3(λi) >

µj(λi) for any j = 1, 2 and i = 1 . . .M , and µ3(λi) > µ2(λi)
follows from λi < 0 and k1, kn > 0. On the other hand, the
inequality µ3(λi) > µ1(λi) can be shown, after some algebra,
being equivalent to√

1 + λ2i k
2
u + λ2i (kp − knku)2 > λi(kp − knku),

which holds for any value of λi. Therefore the negativity of the
eigenvalues of Q is guaranteed by the negativity of µ3(λi), for
every i = 1 . . .M . Condition µ3(λi) < 0, after straightforward
algebra, is equivalent to λ2i (4knkpku − k2u) > 1, for every
i = 1 . . .M . Furthermore, since λM has the smallest absolute
value among the eigenvalues of F, it is sufficient to guarantee
that λ2M (4knkpku − k2u) > 1, which proves the first part of
fact 2).

In order to prove the second part, it is sufficient to show
that µ3(λM ) > µ3(λi) for any i 6= M . To this end, we
prove that µ3(λi) is a monotonically increasing function of
λi in the interval (−∞,− 1√

4knkpku−k2u
), and has therefore

its maximum for i = M . By simple derivation we obtain

∂µ3

∂λi
=

1

2kn

(
k1 +

k2λi√
1 + k2λ2i

)
which can be positive (after some algebra) if and only if

k21 + k2(k21 − k2)λ2i > 0. (28)

Noting that k21 − k2 = 4kpkukn − k2u and applying (26) we
obtain (k21 − k2)λ2i > 1, which implies that (28) is always
satisfied under our assumptions, then concluding the proof of
item 2).

The following result gives an explicit characterization of the
behavior of e(t) during the interval [tk, tk+1).

Proposition 2. Consider the error metric

‖e‖2kn = eT

INd/kn 0Nd 0Nd
0Nd INd/kn 0Nd
0Nd 0Nd INd


︸ ︷︷ ︸

=:Pkn

e, (29)

with kn > 0. For any pair of positive gains kp and ku, if kn
is chosen such that λ22,l(4knkpku − k2u) > 1 then, in closed-
loop, ‖e(t)‖2kn monotonically decreases during the interval
[tk, tk+1), being in particular dominated by the exponential
upper bound:

‖e(t)‖2kn ≤ ‖e(tk)‖2kn e
−2 µlk (t−tk) ∀t ∈ [tk, tk+1), (30)

where

µlk =
λ2,lkk1 −

√
1 + λ22,lkk2

2kn
> 0 (31)

with k1 = kp + knku and k2 = k2u + (kp − knku)2.

Proof: Adopting the same arguments of the proof of
Prop. 1 during the interval [tk, tk+1), and omitting (as in the
following) the dependency upon the time-step k, we obtain
a dynamics of the reduced error le, in the interval [tk, tk+1)
equivalent to (13).

Notice that clearly

‖e‖2kn = eTPkne = leT lPkn
le = ‖le‖2kn ,

where lPkn is a d(N − 1) × d(N − 1) matrix obtained by
removing the d columns and rows of Pkn corresponding to l.

Consider now the dynamics of ‖e‖2kn = ‖le‖2kn :

d

dt
‖le‖2kn = 2leT lPkn

lė = 2leT lPknDl
le =

= 2leT sym(lPknDl)
le ≤ 2µmax,l‖le‖2,

(32)

with µmax,l being the largest eigenvalue of the symmetric part
of lPknDl, i.e., of

sym(lPknDl) =


kp
kn

lGl 0(N−1)d
I(N−1)d

2kn

0(N−1)d
kp
kn

lGl
ku
lGl

2kn
I(N−1)d

2kn

ku
lGl

2kn
kulGl

 .

Equation (32) implies that ∀ t ∈ [tk, tk+1)

‖e(t)‖2kn ≤ ‖e(tk)‖2kn e
2 µmax,lk

(t−tk). (33)

We then show that µmax,l = −µl, where µl is given in (31).
First of all note that, due to the properties of the Kronecker

product, the eigenstructure of sym(lPknDl) is obtained by
repeating d times the one of

lQl =

− kp
kn

lMl 0N−1
I(N−1)

2kn

0N−1 − kp
kn

lMl − ku
lMl

2kn
I(N−1)

2kn
− ku

lMl
2kn

−kulMl

 .

Applying Lemma 1 with A = −Ml and thus λM = −λ2,l, it
follows that, if kn is chosen such that λ22,l(4knkpku−k2u) > 1,
then −µl = µ3(−λ2,l) = µmax,l is the largest eigenvalue of
lQl, thus finally proving the proposition.

Note that Prop. 2 proves that the scalar metric ‖e‖2kn is
monotonically decreasing along the system trajectories, while
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this may not hold for other metrics such as the canonical ‖e‖2.
Since ‖e‖2kn is monotonically decreasing along the system
trajectories, regardless of the current leader, it also constitutes
a common Lyapunov function for the switching system [23].
Therefore the stability of the system under changing leaders
is also guaranteed.

Furthermore, Prop. 2 provides very important results since,
at every t = tk, the bound (30) allows us to compute an
estimation of the future decrease of the error vector e(t) in the
interval [tk, tk+1). In particular, by evaluating (30) at t = t−k+1,
i.e., just before the next leader selection, we obtain

‖e(t−k+1)‖2kn ≤ ‖e(tk, lk)‖2kn e
−2 µlkT . (34)

Since both e(tk, lk) and µlk depend on the value of lk (i.e.,
the identity of the leader), the rhs of (34) can be exploited
for choosing the leader at time tk in order to maximize the
convergence rate of e(t) during the interval [tk, tk+1) and
therefore improving, at the same time, both the tracking of the
reference velocity ur(t) and of the desired formation encoded
by d.

These remarks are formalized by the following statement.

Corollary 1. In order to improve the tracking performance of
the reference velocity and of the desired formation during the
interval t ∈ [tk, tk+1), the group should select the leader that
solves the following minimization problem

arg min
l∈Lk
‖e(tk, l)‖2kn e

−2 µlT , (35)

where Lk is the set of ‘eligible’ agents from which a leader
can be selected at tk.

Remark 3. Note that, in the cost function (35), both
‖e(tk, l)‖2kn and e−2 µlT depend on the chosen leader l.
Therefore the minimization problem (35) can only be solved
online since the cost function depends on both the group
topology and the current agent state.

Remark 4. We note that, because of the reset actions per-
formed in (2) and (6), every instance of the leader selection
potentially leads to a decrease of ‖e(tk, lk)‖2kn since it zeroes
the lk d-components of the estimation and velocity error
vectors eû, ev . Therefore, it would be desirable to reduce
as much as possible the selection period T . In practice,
however, there will exist a finite minimum selection period
T ≥ Tmin > 0 upper bounding the highest frequency at which
the leader selection process can be reliably executed (because
of, e.g., the limited bandwidth capabilities of the multi-agent
group).

IV. DECENTRALIZED COMPUTATION OF THE NEXT BEST
NEIGHBORING LEADER

In order to obtain a global optimum, (35) should be min-
imized among all the agents in the group, i.e., by setting
Lk = {1, . . . , N}. However this would result in a fully central-
ized optimization problem. Since we aim for a decentralized
solution, in this section we consider a decentralized (sub-
optimal) version where (35) is solved only among the 1-hop
neighbors of the current leader lk, i.e., by setting Lk = Nlk .

Nevertheless, even in this ‘decentralized’ case, evaluating (35)
for each l ∈ Lk requires to compute two global quantities for
each l, i.e., ‖e(tk, l)‖2kn and µl. We then now provide the third
main contribution of this paper by showing how to render this
computation fully distributed, i.e., only relying on local and
1-hop information available to the master and to the current
leader.

Let us then consider the evaluation of
‖e(tk, m)‖2kn e

−2 µmT in (35) by a candidate agent
m ∈ Lk−1. This requires knowledge of two global quantities:
the error norm ‖e(tk, m)‖2kn and the connectivity eigenvalue
λ2,m of digraph Gm for computing µm via (31). An estimation
of the value of λ2,m can be obtained in a decentralized way
by employing a simplified version of the Decentralized Power
Iteration algorithm proposed in [24] without the deflation
step (since λ2,m is the smallest eigenvalue of the matrix
Mm, which in fact does not possess a structural eigenvalue
in zero as it is for L). It is well known that a possible issue
of the power iteration is the speed of convergence for large
networks. For static network this does not represent a problem
since the distributed power iteration can be run just once at
the beginning before starting the task. The method can be still
applied for a slowly time-varying network if the parameters
(e.g., the gains) of the distributed power iteration are tuned
in advance depending on the variability and the speed of the
network (see, e.g., [25] for a use of the distributed power
iteration in the case of time-varying graphs).

Proposition 3. The scalar quantities ‖e(tk, m)‖2kn for m ∈
Lltk−1

can be estimated by the previous leader lk−1 in
a decentralized way by resorting to local computation and
distributed estimation.

Proof: We first note that the quantities pm, ûm and γm
are locally available to agent m, while ur can be retrieved
from the current leader lk−1 via 1-hop communication. It is
then convenient to expand ‖e(tk, m)‖2kn as:

‖e‖2kn = eTûeû +
1

kn
eTpep +

1

kn
eTvev, (36)

Algorithm 1: Decentralized Online Leader Selection

1 Denote with l0 the first selected leader (e.g., randomly)
2 k ← 1
3 while true do
4 if (k − 1)T/Tr ∈ N0 then
5 agent lk−1 informs the master about its leadership
6 agent lk−1 receives a new value of ur(tk) from the master
7 agent lk−1 sends ur(tk) to every neighbor in Nk−1

8 every agent m ∈ Nlk−1 sends ĉm[k] to agent lk−1

9 agent lk−1 computes the set Ck = argminm∈Lk−1
ĉm[k]

10 if lk−1 ∈ Ck+1 then
11 lk = lk−1

12 else
13 agent lk−1 nominates lk in Ck, e.g., randomly

14 keep implementing the distributed controllers and estimators
until T elapses

15 k ← k + 1
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Fig. 2: Values of λ2,l vs. λ2 for different leaders l. The squares correspond to values of λ2,l associated to a leader l = 1 . . . N , with N = 10.
The solid constant blue lines represent λ2. Each row corresponds to a different graph with N = 10 vertexes. From the top to the bottom:
the line, ring, star, two random (connected) graphs, and a complete graph.

where we omitted the various dependencies for brevity. For
every vector (Sm ⊗ Id)x, it is

‖(Sm ⊗ Id)x‖2 =

N∑
i=1

‖xi‖2 − ‖xm‖2.

Denoting with the superscript − the quantities computed at
t−k , and using (20–22), the three terms in (36) can then be
rewritten as

eTûeû =

N∑
i=1

‖û−i − ur‖2 − ‖û−m − ur‖2 =

N∑
i=1

û−Ti û−i − 2uTr

N∑
i=1

û−i +NuTr ur − ‖û−m − ur‖2

and

eTvev =

N∑
i=1

‖û−i − ur + γ−i ‖
2 − ‖û−m − ur + γ−m‖2 =

N∑
i=1

û−Ti û−i +

N∑
i=1

γ−Ti γ−i +NuTr ur − 2uTr

N∑
i=1

û−i +

2

N∑
i=1

u−Ti γ−i − 2uTr

N∑
i=1

γ−i − ‖û
−
m − ur + γ−m‖2.

(37)

We can further simplify (37) by noting that, being 1TL = 0,
it is −2uTr

∑N
i=1 γ

−
i = 0. Finally, letting p̃− = p− − d, we

obtain

eTpep =

N∑
i=1

‖p̃−i − p̃−m‖2 + 0 =

=

N∑
i=1

p̃−Ti p̃−i − 2p̃−Tm

N∑
i=1

p̃−i +N p̃−Tm p̃−m.

Therefore, we can conclude that the quantity ‖e(tk, m)‖2kn
can be expressed as a function of:

1) the vectors pm(t−k ), ûm(t−k ) and γm(t−k ) (locally avail-
able to agent m);

2) the vector ur(tk) (available to m via 1-hop communi-
cation from the current leader lk−1);

3) the three vectors
∑N
i=1 ûi(t

−
k ),

∑N
i=1 pi(t

−
k ), and∑N

i=1(pi(t
−
k )− di) (not locally available to agent m),

4) the four scalar quantities
∑N
i=1 û

−T
i û−i ,

∑N
i=1 γ

−T
i γ−i ,∑N

i=1 u
−T
i γ−i , and

∑N
i=1 p̃

−T
i p̃−i (not locally available

to agent m),
5) the total number of agents N .

The three vectors and four scalar quantities listed in 3)–4)
cannot be retrieved using only local and 1-hop information.
However, a decentralized estimation of their values can be ob-
tained by resorting to the PI-ace filtering technique introduced
in [26]. In fact, given a generic vector quantity x ∈ RN with
every component xi locally available to agent i, the PI-ace
filter allows every agent in the group to build an estimation
converging to the average

∑N
i=1 xi/N .

If N is known, the total sum
∑N
i=1 xi can then be immedi-

ately recovered, otherwise it is nevertheless possible to resort
to an additional decentralized scheme (see, e.g., [27]) to obtain
its value over time. Another possibility is to resort to one the
many distributed estimators of the network size proposed in
the literature, see, e.g., [28] and references therein. Therefore,
this analysis allows to conclude that agent m can estimate the
various quantities listed in points 3)–4), and thus also estimate
‖e(tk, m)‖2kn , in a decentralized way.

For the reader convenience we summarize in Algorithm 1
the decentralized “Online Leader Selection” run by the agents
at every tk, where ĉm[k] = ‖e(tk, m)‖2kn e

−2 µmT denotes the
cost function in (35) evaluated for l = m

Remark 5. The implementation of the proposed distributed
version of the leader selection algorithm relies on the assump-
tion of a time-scale separation between the (faster) dynamics
of the distributed estimation strategies w.r.t. the (slower)
system dynamics (formation control and velocity tracking).
This condition can be typically enforced by a proper tuning of
the gains of the distributed estimators as done in, e.g., [24],
[25], [29].

V. NUMERICAL EXAMPLES

We report now some numerical results meant to illustrate
the effectiveness of the proposed approach.
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Fig. 3: Results of the four simulation runs for the first-order leader selection. Fig. 3(a)-top reports the current graph G topology with the
indexing defined in Fig. 2, and Fig. 3(a)-bottom shows the three components of the piece-wise constant reference velocity ur(t). Figures 3(b–
e) then depict the identity of the current leader l(t) and the error metric ‖e(t)‖kn for the four leader selection strategies considered in the
simulations, i.e., constant leader, local leader selection, global leader selection and random leader selection, respectively. Note how the
constant leader selection has the worst performance in minimizing ‖e(t)‖kn (Fig. 3(b)), followed by the random leader selection case
(Fig. 3(e)). The local and global leader selection cases are instead able to quickly minimize ‖e(t)‖kn with a comparable performance.

We compare four different leader selection strategies: (i)
no leader selection (thus, constant leader during task execu-
tion); (ii) the decentralized leader selection summarized by
Algorithm 1; (iii) a globally informed variant of Algorithm 1
where, at each iteration, the leader is selected as the one
minimizing (35) among all the agents in the group rather
than within the set Lk−1 of leader neighbors; (iv) a random
leader selection. All the four runs started from the same initial
conditions and involved a group of N = 10 agents. The
interaction graph G was cycled over the six topologies shown
in Fig. 2 with a switching frequency of 2 s, and the velocity
command ur was received by the current leader with a sending
period Tr = 5 s. Finally, the leader selection algorithm was
executed with period T = 0.05 sec, and the gains kp = 5,
ku = 2.5 were employed. Note that the algorithm result does
not depend on the particular shape defined by d therefore we
just selected an arbitrary d for the examples.

Figures 3(a–e) report the results of the four simulation runs:
Fig. 3(a)-top shows the current graph G topology during the
simulations (according to the indexing used in Fig. 2) and
Fig. 3(a)-bottom the behavior of ur(t) which, as expected, is
piece-wise constant and has a jump at every Tr sec. The four
Figs. 3(b–e) then report the behavior of l(t) (the identity of
the current leader) and of ‖e(t)‖kn , the error metric defined
in (29), for the four leader selection strategies (i)–(iv).

We can note the following: strategy (i) (constant leader,
Fig. 3(b)) has clearly the worse performance in minimizing
‖e(t)‖kn over time, while strategies (ii)–(iii) (local and
global leader selection, Figs. 3(c–d)) are able to quickly

minimize ‖e(t)‖kn thanks to a suitable leader choice at every
T . Interestingly, the performance of both strategies is almost
the same (although strategy (iii) performs slightly better):
this indicates that the locality of Algorithm 1 (choosing the
next leader only within the set Lk−1) does not pose a strong
constraint, and it actually results in a less erratic leader choice
(compare Fig. 3(c)-top with Fig. 3(d)-top). It is however
reasonable to expect that the difference in performance among
the local and global leader selection strategies could increase
with faster changes in the network topology and/or faster
system dynamics, mainly because of the various distributed
estimation schemes exploited by the local leader selection.

Finally, as one would expect, strategy (iv) (random leader
selection) performs better than strategy (i) but convergence
time is much worse than the other optimization strategies,
being roughly 4.2 times the convergence time of strategies
(ii)–(iii) (∼ 3 s vs. ∼ 0.7 s, respectively), thus confirming the
effectiveness of an active leader selection w.r.t. a random one.

VI. CONCLUSIONS AND FUTURE WORKS

This paper addresses the problem of online leader selection
for a group of agents in a leader-follower scenario: the identity
of the leader is left free to change over time in order to
optimize the performance in tracking an external velocity
reference signal and in achieving a desired formation shape.
The problem is solved by defining a suitable tracking error
metric able to capture the effect of a leader change in the group
performance. Based on this metric, an online and decentralized
leader selection algorithm is then proposed, which is able to
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persistently select the best leader during the agent motion. The
reported simulation results clearly show the benefits of the
proposed strategy when compared to other possibilities such
as keeping a constant leader over time (as typically done), or
relying on a random choice.

As future developments we want consider the possibility
of developing similar results for the second-order case (we
already have some preliminary results for a particular choice
of the control gains). We also want to extend our analysis to the
case of multiple masters/leaders. Finally, it will be also worth
to consider decentralized online leader selection schemes for
other optimization criteria such as, e.g., controllability.
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