
Scanning electron microscope

calibration using a multi-image

non-linear minimization process

Abstract

A scanning electron microscope (SEM) calibrating approach based

on non-linear minimization procedure is presented in this article1.

Both the intrinsic parameters and the extrinsic parameters estimations

are achieved simultaneously by minimizing the registration error. The

proposed approach considers multi-images of a multi-scale calibration

pattern view from different positions and orientations. Since the pro-

jection geometry of the scanning electron microscope is different from

that of a classical optical sensor, the perspective projection model and

the parallel projection model are considered and compared with dis-

tortion models. Experiments are realized by varying the position and

1A part of this article has been published in IEEE International Conference on Robotics
and Automation (ICRA), 2014
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the orientation of a multi-scale chessboard calibration pattern from

300× to 10,000×. The experimental results show the efficiency and

the accuracy of this approach.

NOMENCLATURE

δu, δv radial distortion coefficients

γ skewness coefficients

λ proportional coefficient

µ coefficient in Levenberg-

Marquardt method

e error between current and

desired image feature

I identity matrix

Jp image Jacobian

r extrinsic parameters (pose)

v velocity

x coordinates on meter of the

projection of a point on im-

age plane

xp coordinates on pixel of the

projection of a point on im-

age plane

ξ intrinsic parameters

cX coordinates of a point in sen-

sor frame

px, py pixel/meter ratio

s1, s2 spiral coefficients

u0, v0 coordinates of principle

point
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1 Introduction

Scanning electron microscope (SEM) is an electron microscope where a fo-

cused beam of electrons is used to scan the surface of a specimen. This

is an essential instrument to display, measure and manipulate the micro

and nano-structure with a micrometers or nanometers accuracy. When the

task requires the computation of metric information from the acquired two-

dimensional (2D) images, the calibration of the SEM is an important issue

to be considered.

Calibration of an optical sensor has been widely investigated over the

last decades. The goal of the calibration process is to determine the set of

parameters which define the relationship between the three-dimensional (3D)

coordinates of an object point on the observed specimen and its projection

in the image plane (such parameters that include, in an optical system, the

focal length, the dimension of pixel, the location of principle points on the

image plan are named intrinsic parameters). This issue is usually considered

as a registration problem. Some authors use linear techniques (e.g., Faugeras

and Toscani 1987), where least squares method is employed to estimate the

intrinsic parameters and the pose (i.e., the position and the orientation of

the calibration pattern frame in the sensor frame). Other techniques use

non-linear optimization methods (Brown, 1971). It consists in minimizing

the error between the observation and the forward-projection of the model.

In Tsai (1987) and Wei and Ma (1994), a linear estimation of some parameters
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is considered and the others are estimated iteratively. Alternatively, another

technique (Ma et al., 2004), called self-calibration, do not use any calibration

pattern but the parameters are estimated by moving a camera in a static

scene. Constraints are provided by the scene rigidity in this approach.

Since the structure of a scanning electron microscope is very different from

the structure of an optical microscope, it became apparent that novel image

analysis, geometrical projection models and calibration processes would be

necessary in order to extract accurate information from the SEM images.

Postek et al. (1993) has demonstrated that accurate SEM calibration and

error analysis was one of the major problems when considering such sensor.

In earlier studies, photogrammetric analysis of SEM has been considered by

some authors (Boyde, 1973; Ghosh, 1975). Several photogrammetric related

calibration methods (Boyde, 1970; Wergin, 1985; Minnich et al., 1999) have

been proposed for three dimensional imagery and reconstruction in SEM.

The projection model relates a 3D point on a specimen in the observed

space to its projection in the 2D image. The perspective projection, where

objects are projected towards a point (the center of projection), is used in

classical camera models. The parallel projection (typically orthographic pro-

jection) corresponds to a perspective projection with an infinite focal length.

The projection rays and the image plane is perpendicular in parallel projec-

tion model. It is noticed that this projection model is similar to the model

used for telecentric lenses (Li and Tian, 2013)(Chen et al., 2014). In (Chen

et al., 2014) a telecentric stereo micro-vision system is calibrated by solving
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a problem of sign ambiguity induced by the planar-object-based calibration

technique. Previous studies on SEM consider that at low magnification,

perspective projection model can be applied because the observed area and

electron beam sweep angle are both large. At higher magnification, the center

of projection is usually regarded at infinity so the parallel projection model is

assumed. However, the practical limit between the choice of perspective pro-

jection and parallel projection model is not clear. Some experiments (Cornille

et al., 2003; Sinram et al., 2002) show that parallel projection is assumed at

magnification of 1000× and higher. Howell (1978) has concluded that the

use of parallel projection depends on the desired accuracy for the calculation

of position of a point on the specimen.

Another important issue in calibration is distortion, which contains spa-

tial distortion (static distortion) and time-dependent drift (temporally-varying

distortion). The drift is mainly due to presence of nonlinearities and in-

stabilities during the raster scanning a specimen surface by the electron

beam (Maune, 1976; Mizuno et al., 1997). This drift can be calibrated and

be compensated as shown in (Cornille, 2005; Sutton et al., 2006; Malti et al.,

2012b). However, few authors have investigated the spatial distortion for an

accurate calibration of SEM. One reason might be the complexity of mod-

eling of distortions in a high magnification, where the common model of

distortion is weakened. Several papers (Lacey et al., 1996; Sinram et al.,

2002) ignore distortion and consider only a pure projection model. A few

authors (Ghosh, 1975; Hemmleb and Albertz, 2000) consider the spatial dis-

5



tortion with parametric models. Spatial distortion including radial distor-

tion and spiral distortion are introduced in their geometric model. Schreier

et al. (2004) proposed to use a priori distortion estimation technique in com-

bination with bundle-adjustment (Brown, 1976; Triggs et al., 2000) for an

accurate calibration of SEM. In Cornille et al. (2003), this distortion removal

function is determined before the calibration stage. In this method, good

guesses are required in the measurement to ensure the accuracy.

Furthermore, El Ghazali (1984) proposed system calibration for a SEM

since the traditionally laboratory calibration is not convenient for compli-

cate systems where the compensation and the deterioration effect between

the different system components are not taken into account. Recently, a

landmark-based 3D calibration strategy (Ritter et al., 2006) has been pro-

posed considering a 3D micrometer-sized reference structure with the shape

of a cascade slope-step pyramid. The manufacture of this special 3D refer-

ence structure is nevertheless an important and different issue. Eberle et al.

(2015) has shown a micro chip that features a hexagonal arrangement of

calibration structures. Since different scales of magnification are needed in

some applications, Malti et al. (2012a) considers the modeling magnification-

continuous parameters of the static distortion and the projection of the SEM.

Zhu et al. (2011) has proposed a stereo-vision system under a SEM. The sys-

tem has been calibrated using distortion-corrected images of a planar object

and grid for various orientations (Sutton et al., 2009).

In this article, the mentioned calibration problems of SEM: projection
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models and spatial distortions are addressed. A novel approach of SEM

calibration involving a full scale non-linear optimization is proposed. The

extrinsic parameters (the pose) computation and SEM calibration are con-

sidered simultaneously. The formulation is simple and versatile. An itera-

tive algorithm has been developed to acquire accurate results of calibration.

This article is organized as follows. First, geometrical projection model is

described in Section 2. Section 3 introduces the principle of calibration pro-

cedure. The experimental results at various magnifications that validate the

approach are shown in Section 4.

2 Considered projection models for a SEM

In this article the geometrical calibration of the system projection model

is focused on. The final objective of our work is visual servoing tasks for

object positioning and manipulation using a SEM. Therefore for simplicity

issues classical projection models is considered. Whereas such model as a

clear physical meaning when considering optical devices, this is no longer

the case with a SEM. Nevertheless, for the targeted applications, considering

classical projection model has proved to be sufficient (Ghosh, 1975) (such

assertion may no longer be true for, e.g., structure characterization). It

is however important to determine the nature of the projection models to

be considered (Hemmleb and Albertz, 2000; Howell, 1978): perspective or

parallel models (see Figure 1). In this section, both the perspective and
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parallel projection models including modeling of the image distortion are

discussed.

2.1 Perspective projection

Let cX = (cX,c Y,c Z, 1)> be the homogeneous coordinates of a point on the

observed object expressed in the sensor frame Fc (located on the projection

center). x = (x, y, 1)> is the homogeneous coordinates of its projection on

the image plane expressed in normalized coordinate (i.e., in meter). It can

be expressed by (Ma et al., 2004)


x =

cX
cZ

y =
cY
cZ

(1)

leading in the actual image coordinates expressed in pixel xp = (u, v) on the

image plane and given by

 u = u0 + pxx

v = v0 + pyy
(2)

where px and py represent the pixel/meter ratio and u0, v0 the principal

point coordinates in the image plane. According to (1) and (2), the general
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expression of perspective projection is:


u

v

1

 =


px 0 u0

0 py v0

0 0 1


︸ ︷︷ ︸

K


1 0 0 0

0 1 0 0

0 0 1 0


︸ ︷︷ ︸

Π



cX

cY

cZ

1


. (3)

For the camera calibration on perspective projection model, px, py, u0 and

v0 are considered as intrinsic parameters. We rewrite (3) as:

xp = K Π cX (4)

As already stated, for calibration issue, we consider a calibration pattern for

which the position of some 3D features are known in a reference frame Fw.

Let us denote wX = (wX, wY, wZ, 1)> the coordinates of a feature expressed

in Fw. Its projection in the image plane (See Figure 2) is then given by

xp = K Π cTw
wX (5)

cTw is an homogeneous matrix defined such that:

cTw =

 cRw
ctw

03×1 1

 (6)
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where cRw and ctw are the rotation matrix and translation vector that define

the position of the vision sensor in the calibration pattern frame (note that

being a rotation matrix, cRw should respect the orthogonality constraints).

cTw is referred as the intrinsic parameters or sensor pose.

2.2 Parallel projection

In parallel projection model, the projection rays are parallel. As mentioned

previously, the projection center lies at infinite. The coordinates of a 2D

point x = (x, y) corresponds to its 3D coordinates cX:

 x = cX

y = cY
(7)

leading to its position expressed in pixel xp = (u, v) in the digital image is

 u = pxx

v = pyy
. (8)
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According to (7) and (8), the general expression of parallel projection can be

written as


u

v

1

 =


px 0 0

0 py 0

0 0 1


︸ ︷︷ ︸

K⊥


1 0 0 0

0 1 0 0

0 0 0 1


︸ ︷︷ ︸

Π⊥



cX

cY

cZ

1


. (9)

Since there is no longer principle point in parallel projection, only px and py

are considered as the intrinsic parameters. As in the previous case, we can

rewrite (9) as:

xp = K⊥ Π⊥
cX (10)

and if we consider the 3D coordinates of 3D features in the calibration refer-

ence frame Fw we have

xp = K⊥ Π⊥
cTw

wX. (11)

2.3 Image distortion

In classical models (Heikkila and Silven, 1997), the most commonly used

spatial distortion is radial distortion. Instead of (2) in perspective model,

the relation between the point position x and the coordinates in the image
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plane xp in perspective projection is expressed by

 u = u0 + pxx+ δu

v = v0 + pyy + δv

. (12)

The radial distortion can be approximated using

 δu = ũ(k1r
2 + k2r

4 + ...)

δv = ṽ(k1r
2 + k2r

4 + ...)
(13)

where r2 = ũ2+ ṽ2, ũ = u−u0 and ṽ = v−v0. Usually, to compensate for the

radial distortion, one or two coefficients are enough. Considering the SEM

geometry, it has to be noted that in SEM image such distortion appears to

be very small. This should be validated by experiments.

Another issue that can be considered is the skewness between the x- and

y-axis. In this case:  u = u0 + pxx+ γy

v = v0 + pyy
. (14)

Typically, γ is null when the pixel in x- and y-axis is exactly rectangular.

Repeated in Klemperer and Barnett (1971), the spiral distortion is caused

by the spiral of the electrons within the microscope column. It is usually given

by  u = u0 + px(x+ δx)

v = v0 + py(y + δy)
(15)
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where δx = s1(x
2y + y3), δy = s2(x

3 + xy2), s1 and s2 are spiral coefficients.

In the parallel model, the distortion models that replace (8) are similar

but u0 and v0 equal to zero in equation (12), (14) and (15).

3 Non-linear calibration process

Calibration is an old research area that received much attention since the

early 70’s, first in the photogrammetry community (e.g., Brown 1971) then

in the computer vision and robotics communities (e.g., Faugeras and Toscani

1987; Tsai 1987; Weng et al. 1992, etc.). Performing the calibration leads

to the estimation of the intrinsic camera parameters (image center, focal

length, distortion) but also, as a by-product, extrinsic camera parameters

(i.e., the pose). Various techniques exist to achieve the calibration. Among

these techniques, full-scale non-linear optimization techniques (introduced

within the photogrammetry community, Brown 1971) have proved to be very

efficient. They consist in minimizing the error between the observation and

the back-projection of the model. Minimization is handled using numerical

iterative algorithms such as Newton-Raphson or Levenberg-Marquartd.

3.1 Single image calibration

As stated the goal is to minimize the error between the points extracted from

the image x∗p and the projection of the model of the calibration pattern for

given model parameters (both intrinsic parameters and pose) xp(r, ξ).
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Denoting ξ the set of intrinsic parameters to be estimated and r ∈ se(3)

a minimal representation of cTw (r = (ctw, θu)> where θ and u are the angle

and the axis of the rotation cRw), the problem can be formulated as:

(r̂, ξ̂) = argmin
r,ξ

N∑
i=1

(ix∗p −i xp(r, ξ))2 (16)

where N is the number of points used in the calibration process. For each

point i, ixp(r, ξ) = KΠ cTw
wXi (for the perspective projection model with-

out considering distortion) and ixp(r, ξ) = K⊥Π ⊥
cTw

wXi (for the parallel

projection model without considering distortion). The solution of this prob-

lem relies on an iterative minimization process such as a Gauss-Newton or a

Levenberg-Marquardt method.

Solving equation (16) consists in minimizing the cost function E(r, ξ) =

‖e(r, ξ)‖ defined by:

E(r, ξ) = e(r, ξ)>e(r, ξ), with e(r, ξ) = xp(r, ξ)− x∗p (17)

where xp(r, ξ) = (...,i xp(r, ξ), ...)
> and x∗p = (...,i x∗, ...)> where ixp(r, ξ) is

computed using equation (2) or (8). To simplify the notation, let us simply

denote e = e(r, ξ).

To minimize this cost function, an exponential decrease of the projection

error is specified:

ė = −λe (18)

14



where λ is a proportional coefficient. In (18), ė can be simply computed from

the time variation of ẋp which is given by:

ẋp =
∂xp
∂r

dr

dt
+
∂xp
∂ξ

dξ

dt
(19)

where r represent the (virtual) sensor position along the minimization tra-

jectory (translation and rotation), v =
dr

dt
is the (virtual) sensor velocity

during the minimization 2. Rewrite (19):

ẋp = JpV (20)

where V =

 v

ξ̇

. Matrix Jp is the image Jacobian, it is given by:

Jp =

[
∂xp
∂r

∂xp
∂ξ

]
. (21)

Combining (20) and (18), V can be rewritten as follows:

V = −λJ+
p (xp(r, ξ)− x∗p) (22)

where J+
p is the pseudo inverse of matrix Jp and V being the parameters

increment computed at each iteration of this minimization process.

2note that this process is close to the visual servoing technique and has been used for
pose estimation in Marchand and Chaumette (2002)

15



3.2 Multi-image calibration

In practice, the intrinsic parameters are usually obtained by different view-

points of the calibration pattern from the same camera. The optimization

scheme then requires the computation of a set of positions of calibration pat-

tern and a common set of intrinsic parameters. In that case the global error

to be minimized is given by

E =
n∑
i=1

(e>i ei) (23)

where n is the number of images used in the calibration process and

ei = xp(ri, ξ)− x∗p. (24)

Let xip be a set of images features extracted from the ith image. In multi-

image calibration, (20) can be rewritten as:



ẋ1
p

ẋ2
p

...

ẋnp


= Jp



v1

v2

...

vn

ξ̇


(25)
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with

Jp =



∂x1
p

∂r
0 · · · 0

∂x1
p

∂ξ

0
∂x2

p

∂r
0 0

∂x2
p

∂ξ
...

...
. . .

...
...

0 · · · 0
∂xnp
∂r

∂xnp
∂ξ


. (26)

3.3 Nonlinear optimization

In the nonlinear minimization process, the optimization algorithm is an im-

portant issue. The general idea of minimizing a nonlinear function is to suc-

cessively update the parameters such that the value of cost function decreases

at each iteration as specified by equation (18). The Gauss-Newton method

is usually used in nonlinear optimization as presented in equation (22).

Particularly, the measured values are small in the SEM imaging (point

coordinates are expressed in micrometer (µm) and nanometer (nm)). Several

numerical problems are then induced into the optimization algorithms. For

example, these tiny values causes rank deficiency of Jacobian matrix Jp. This

is why the Levenberg-Marquardt method is considered, which is numerically

more efficient:

V = −λ(J>p Jp + µI)−1J>p e (27)

where I is a identity matrix and µ is a coefficient whose typical value ranges

from 0.001 or 0.0001. By modifying µ, the algorithm is set to adapt the input

data and to avoid numerical issues.
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3.4 Jacobian

In this article, the computation of
∂xp
∂r

and
∂xp
∂ξ

in the Jacobian Jp is pre-

sented with the two specified projection models above.

The image Jacobian
∂xp
∂r

relates the motion of a point in the image to

the (virtual) sensor motion, it could be expressed by:

∂xp
∂r

=

 px 0

0 py

L. (28)

where L =
∂x

∂r
is the Jacobian which relates the motion of the projection of a

point on image plan (coordinates expressed in meter) to the (virtual) sensor

motion.

3.4.1 Perspective projection

In the perspective projection model, the Jacobian L is given by Comport

et al. (2006):

L =

 − 1

Z
0

x

Z
xy −(1 + x2) y

0 − 1

Z

y

Z
1 + y2 −xy −x

 . (29)
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From (2), without considering the distortion in the camera model, the devi-

ation of image feature xp by intrinsic parameters ξ = (px, py, u0, v0) is:

∂xp
∂ξ

=

 x 0 1 0

0 y 0 1

 . (30)

Considering one coefficient k in radial distortion (k1 in (13)), the skew

factor γ and spiral coefficient s1, s2 as distortion parameters, the deviation

of image feature xp by intrinsic parameters ξ = (px, py, u0, v0, k, γ, s1, s2) with

distortion factors is:

∂xp
∂ξ

=



x+ s1(x
2y + y3) 0

0 y + s2(x
3 + xy2)

1− k(r2 + 2ũ2) −2kũṽ

−2kũṽ 1− k(r2 + 2ṽ2)

ũr2 ṽr2

y 0

px(x
2y + y3) 0

0 py(x
3 + xy2)



>

. (31)
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3.4.2 Parallel projection

In the parallel projection model, the Jacobian is given by:

L⊥ =

 −1 0 0 0 −Z y

0 −1 0 Z 0 −x

 . (32)

Comparing with equation (29), it is evident that the motion along the z-axis

is not observable. Therefore the depth of the calibration pattern cannot be

recovered. The deviation
∂xp
∂ξ

without distortion for ξ = (px, py) is given

from (8):

∂xp
∂ξ

=

 x 0

0 y

 . (33)

With distortion, it is expressed with ξ = (px, py, k, γ, s1, s2):

∂xp
∂ξ

=



x+ s1(x
2y + y3) 0

0 y + s2(x
3 + xy2)

ũr2 ṽr2

y 0

px(x
2y + y3) 0

0 py(x
3 + xy2)



>

. (34)

20



4 Experimental results

In the experiments, a Carl Zeiss AURIGA 60 SEM has been used to validate

the developed calibration method. It provides a wide magnification ranges

from 12× to 1,000,000×. Within the SEM a 6-DoF platform is available,

including 360° continuous rotation and tilt from -15° to 70°. Another SEM

Carl Zeiss EVO LS 25 has also been employed in the experiments. The

magnification of this SEM ranges from 5× to 1,000,000×.

A multi-scale planar calibration pattern3 (see Figure 3) is used in the

calibration procedure. It is a hierarchy of chessboard grids where size of

each square are of 25 µm, 10 µm, 5 µm, 2 µm and 1 µm. Acquired image

size is 1024×768 pixels. Several sets of calibration images (Figure 4) have

been acquired within the SEM with different magnifications ranging 300×

up to 10,000×. The images from AURIGA 60 SEM have been acquired with

a medium scan speed (3.3 µs/pixel) and a fast scan speed (0.25 µs/pixel)

respectively. The images from EVO LS 25 have been acquired with a medium

scan speed (2.5 µs/pixel). Each group (with a given magnification) contents

7 to 9 images of the pattern acquired from various poses with rotation around

z-axis ranging from 0° to 40°, and tilt from 0° to 8°.

The proposed calibration procedure has been implemented with the ViSP

library (Marchand and Chaumette, 2005). Considering the chessboard shape

of the calibration pattern, OpenCV chessboard corners detector has been

3fabricated at FEMTO-ST institute, France
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employed in order to obtain a precise localization of each corner. A linear al-

gorithm has been considered to have a first approximation of the calibration

parameters (Zhang, 2000). The proposed multi-image iterative non-linear

minimization method for calibration, using both perspective and projection

model, is then used. The intrinsic parameters are then computed by minimiz-

ing the residual error between the projection of the pattern for the current

estimated pose and the observed one.

4.1 Minimization process and algorithm behavior

To illustrate the behavior and performance of the proposed algorithm, the

calibration of the SEM using a parallel projection model and without adding

any distortion parameters is considered here.

AURIGA 60 SEM has been employed in this experiment. The SEM

magnification has been set to 2000×, the size of each pattern square is of 5

µm. Eight images of the calibration pattern have been acquired from eight

poses with rotation from 0° up to 20° and tilt from 0° up to 8° and used

in the calibration process. The gain λ in equation (18) in the algorithm is

set to 0.4. Figure 5(a) shows the residual error computed at each iteration

of the minimization process. The evolution of intrinsic parameters px and

py is shown in Figure 5(b). The residual error and the intrinsic parameters

converge quickly even thought the value is significant at the beginning. Only

a few iterations less than 50 are required by the process. Figure 6 presents

the estimated set of extrinsic parameters (estimated sensor poses) during the
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minimization process. It can be noted that, as expected, motion along the

z-axis is not observable using the parallel projection model (in equation (32),

the elements in the third column of L⊥ which correspond to the Jacobian of

translation on z-axis are indeed null).

4.2 Projection models

Another experiment aims to test two projection models that can be possibly

considered for the calibration of a SEM. To compare the performance with

different scales, four magnifications are considered: 500×, 1000×, 2000×

and 5000×. Note that it is suggested in the literature (Cornille et al., 2003;

Sinram et al., 2002) that perspective projection can be applied for a mag-

nification up to 1000× whereas parallel projection should be considered for

higher magnification. The images from AURIGA 60 SEM are firstly used in

this experiment. Table 1 shows the estimated calibrated intrinsic parameters

px, py, u0 and v0, the estimated distance Z1 between sensor and calibration

pattern (for the first image) and the residual error ‖e‖ in pixel. In all the

case the algorithm converges and the registration error is less than 0.5 pixel

per point which correspond to the noise level in corner extraction. It is quite

clear from the estimation of parameters px and py that, with the perspec-

tive projection model, intrinsic parameters are inconsistent. Nevertheless

the ratio px/(Z1M) is almost constant (see Table 2) which confirms the fact

that the difference between px (or py) and object depth is not observable.

This motivates the choice of the parallel projection model for future visual
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servoing experiments despite the fact that depth motion are not observable.

Table 2 shows the p(x,y)/(Z1M) for perspective projection and p(x,y)/M

for parallel projection. These factors are approximately a constant value in

the two projection models.

A wide range of magnifications from 300× to 10,000× considering parallel

projection model have been tested. The images are acquired by a medium

scan speed (see Figure 4(a),(b)). Results are shown in Table 3. The in-

trinsic parameters of AURIGA 60 SEM through magnifications are shown in

Figure 7. The ratio between the computed intrinsic parameters px, py and

magnification M is almost constant: as expected a quasi linear relation ex-

ists between px, py and magnification as shown in Figure 7. It as to be noted

that the residual error ‖e‖ is slightly more important for low magnification

meaning that parallel projection model is less appropriate at low magnifica-

tion (300×, 500×) which confirms earlier report (Sinram et al., 2002). ‖e‖

also increases at high magnification but the reason is that at low magnifica-

tion the extraction of corner position on the calibration pattern used in this

experiment is far more accurate than that at high magnification.

To compare the performance of the proposed calibration process within

different conditions, another set of images is acquired using fast scan speed

(see Figure 4(c),(d) ). Results are shown in Table 4. It can be seen that the

calibration results keep stable while the scan speed has been changed. From

the results, ‖e‖ increases using fast scan speed due to the noise introduced

into the images.
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Table 5 shows the calibration results on parallel projection from EVO

LS 25 SEM. It can be noticed from the table the ratio between px, py and

M is also almost constant as that in Table 3. Since the calibration images

are acquired from different SEMs respectively, px/M and py/M are different

from that in Table 3. Figure 8 shows the intrinsic parameters of EVO LS 25

SEM with respect to magnifications.

4.3 Distortion issues

Finally, an experiment has been realized to test the potential effects of dis-

tortion using AURIGA 60 SEM. Three magnifications are considered in this

experiments: 500×, 2000× and 5000×. To compare the performance of

calibration with and without distortion parameters, all the factors (gain, co-

efficient in Levenberg-Marquardt optimization, etc.) in the algorithm are

fixed. Table 6 shows the calibrated radial distortion parameter k, skewness

parameter γ, intrinsic parameters p′x, p
′
y, residual error ‖e′‖ with distortion

and intrinsic parameters px, py, residual error ‖e‖ without distortion. Re-

sults are obtained on parallel projection model. It is evident that introducing

distortion parameters does not affect the computation of the main intrinsic

parameters px, py and does not improve the residual error. In this case, such

spatial distortion could be typically ignored in the calibration process.
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5 Conclusions

In this article, a simple and efficient method of SEM calibration has been

addressed. A global multi-image non-linear minimization process that min-

imizes the residual error between the projection of the calibration pattern

and its observation in the image was considered. The precise intrinsic pa-

rameters as well as the position of the sensor with respect to the pattern are

computed. Since the lack of observation of the depth information of SEM

image, the choice of the parallel projection model has been validated for

SEM images. The spatial distortion parameters (skewness, radial distortion

and spiral distortion) are such insignificant in the experiments that can be

eliminated.
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