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Abstract— This paper addresses the challenge of detecting
and localizing a poorly textured known object, by initially
estimating its complete 3D pose in a video sequence. Our
solution relies on the 3D model of the object and synthetic
views. The full pose estimation process is then based on
foreground/background segmentation and on an efficient prob-
abilistic edge-based matching and alignment procedure with
the set of synthetic views, classified through an unsupervised
learning phase. Our study focuses on space robotics applications
and the method has been tested on both synthetic and real
images, showing its efficiency and convenience, with reasonable
computational costs.

I. INTRODUCTION

The scope of this paper deals with 3D initial pose esti-
mation of a single known 3D object in a monocular image
sequence, with a focus on the case of a space object, such
as a satellite or a debris moving in outter space. Solving
this issue is a key requirement to initialize a robust and
accurate frame-by-frame 3D tracking phase, for instance
for space autonomous rendezvous and space debris removal
applications.

In the field of monocular 3D object recognition, detection
and pose estimation, different classes of approaches can
be considered among the large literature. Some methods
(single or multi class) are based on global template matching
using real training templates of the object. Some of them
consider appearance [8], or shape [15, 7, 9] to represent the
object. Many others are based on learning local or semi-local
features described by descriptors such as SIFT [14], region
descriptors such as HOG [5], extracted from real training
images of the object. The online recognition and detection
phase can then provide, potentially besides the object class,
pose or viewpoint estimates, through a pose computation
step based on 2D-3D point correspondences with the 3D
model [11], using a voting process method [14, 24, 18]. But
in our context, these methods, based on real training images,
are not suitable since natural images of space objects can
hardly be obtained prior to the mission itself. Besides, space
objects are often poorly textured or prone to specular effects
(for instance due to the insulating film on satellites), making
the description of templates or the extraction and description
of local features complicated.

Using the 3D model of the object: instead, we propose
to rely on another class of approaches which learns the
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geometry or the shape of the 3D model of the object, which is
assumed to be known and present in the image. We deal with
industrial objects (spacecrafts, satellites or parts of them), for
which accurate geometrical CAD models can be available.

Some template matching methods [26, 17], sparse 2D-
3D edge feature matching techniques [13, 23] or multiview
learning frameworks based on part or region descriptors
[12, 20], suggest to use and learn the 3D model of the
target object and its projection. However, approaches such
as [13, 23], based on matching geometrical primitives such
as lines, can be computationally prohibitive, due to the
large search space. Furthermore, they face problems when
extracting the considered geometrical primitives from edges
in the image with degraded conditions such as noise, blur, or
background clutter. Region or part descriptor based methods
[12, 20] have recently proposed to overcome the issue of
computational costs by efficiently learning the 3D model
with shape descriptors. But these solutions, which are more
suited for object class detection, still require a certain amount
of supervision during the learning step and are restricted to
a coarse set of viewpoints.

Towards template matching: Here we design an un-
supervised method for single class object pose detection,
precise enough to correctly initialize a frame-by-frame track-
ing process, while keeping computational costs reasonable.
We propose to follow the idea of template matching. Some
efficient edge or shape based global similarity measures
[15, 22, 1] have been considered to cope with occlusion,
clutter, noise, and specular effects... Our idea is thus to match
an exhaustive set (over the 6D pose parameters), of non
photorealistic synthetic views of the object. With the issue
of the large search space, we propose to efficiently learn the
set of views. In this sense, we rely on the concept of aspect
or view graph [4, 25] or of hierarchical view graph [26, 17],
leading to sets of reference views of the object. Our pose
estimation process can then be performed by matching the
input image with these graph structures.

Benefiting from foreground/background segmentation:
the considered single object is assumed to be moving with
respect to its background. Thus, we suggest to take advan-
tage of a foreground/background segmentation technique, as
in [25].

For computational efficiency and robustness concerns, we
propose to spread our object localization process over a
sequence of successive input images. Only reasoning on
the first frame could indeed result in a too coarse pose
estimate, or would require a more exhaustive and costlier
searching process over the pose parameters. With our system,
the retrieval of the pose is then based on progressively



matching and aligning the synthetic views with a short image
sequence. At the end of the process the most likely view is
determined and selected, along with the stored pose used
to render it. Combining this pose with estimated in-plane
rotation, translation and scaling parameters to align the view
in the image allows us to compute the pose. Indeed, with our
applications the dimensions of the object can be assumed to
be small (∼ 10m) relatively to its distance from the camera
(∼ 100/1000m), a weak perspective projection model can
be assumed: an isotropic scaling (equivalent to a translation
along the optical axis) precedes an orthographic projection.

In this work we propose an accurate edge-based distance
function which is made robust to segmentation errors, by
involving both the segmented and the original images. We
also suggest to use the image in-plane translation, rotation
and scale of the segmented silhouette to coarsely estimate
the similarity transformation of the considered tested view
to guide the matching process and compute the pose. This
framework would thus result in a fast process, and would be
less sensitive to local minima, in contrast to [26, 25], which
rely on a costlier coarse-to-fine search [26], or an exhaustive
probabilistic inference over these parameters [25].

Contributions: As main contributions, this paper sug-
gests a novel probabilistic matching and edge-based align-
ment framework between the views and the image to retrieve
the full 6 DoF pose. A novel foreground/background segmen-
tation method suited for the targeted application combining
color statistical modeling and motion-based compensation is
also proposed.

Overview of the approach: our method can be outlined
by the following steps:
• Learning step : based on generated synthetic views of

the object, it aims at building a hierarchical model view
graph leading to some reference views of the model.

• Pose estimation step along the image sequence :
– Foreground/background segmentation of the object.

By computing binary moments of the extracted
silhouette, an initial estimate of the image in-
plane translation, rotation and scale transformation
parameters of the reference views in the image can
be determined.

– With the aim of refining these parameters, particle
filtering is performed with respect to them, for each
reference view, along the input image sequence.

– We then determine the most likely model view
and an associated estimate of the image similarity
transformation of the view in the image, providing
the complete pose, along the input image sequence.

– Finally the matched view and the pose and refined
by traversing through the hierarchical view graph.

II. FOREGROUND/BACKGROUND SEGMENTATION

We deal with a single object moving in an input image
sequence. The aim of this segmentation task is to extract a
foreground layer, corresponding to the object silhouette in the
image, in the presence of a potentially cluttered and dynamic
background. The information provided by the extracted sil-

houette will further be used in the pose estimation step (see
Section IV-E).

Among the vast literature addressing the issue of segmen-
tation, classical approaches rely on background modeling
and substraction [21] but these methods requires a prior
knowledge of the background and are limited to static
or weakly dynamic backgrounds. Other methods [3, 19]
have based their solution on the assumption that foreground
and background layers have different motion patterns. The
general idea is then to automatically extract and classify these
patterns and build models of both layers. Segmentation can
then be efficiently achieved using graph cuts [2].

Since the apparent motions of both the foreground (the
moving object) and the background can potentially be
identified, our basic idea is also to use a statistical fore-
ground/background modeling technique. In our application,
we can assume that, locally, the Earth is a rigid body at rest
in space, and that the apparent motion of the background
is due to the camera selfmotion, the processing time of
the algorithm being negligible with respect to the Earth
self rotation period. For this reason we rely on the idea
suggested in [19], consisting in automatically identifying the
background and the foreground layers and then to statistically
model them.

As in many layer segmentation methods, we use an energy
minimization framework, based on statistical models of the
foreground and the background.

A. Energy Minimization formulation
For an image Ik, we denote by α = {αi}Ni=1 the set

of the unknown binary labels of the set of pixels {pi}Ni=1

of Ik (αi = 0 for the background pixels, αi = 1 for
the foreground). Estimating the values α̂ of the labels for
an entire image can be formulated as the minimization of
an energy-based Markov Random Field objective function
E(α), with respect to α:

E(α) = Edata(α) + γEsmooth(α) (1)

with Edata(α) =
∑
i

Ui(αi) (2)

Edata is the ”data” energy term, with Ui(αi) a unitary term
accounting for the observation probability p(pi | αi) of pixel
pi to belong to the foreground or to the background, based on
some image ”data” (intensity, color, location...) observed in
the image at pixel pi, using the statistical models previously
built for the background and the foreground. More formally,
we have Ui(αi) = −log(p(pi | αi)). Esmooth is the
smoothness energy term whose goal is to favor smoothness,
or spatial coherence within the pixels [3].

In order to compute the optimal solution of this energy
minimization problem and to determine α̂, we employ the
graph cuts algorithm [2].

In our context, we propose to compute the data energy
term using two different terms. One term is obtained through
foreground and background statistical modeling (Emdata, see
section II-B). The other term is computed by modeling
the motion of the background and using homography-based



motion compensation (Ecdata, see section II-C). Formally,
Edata can be rewritten as:

Edata(α) = βEmdata(α) + (1− β)Ecdata(α). (3)

β is a weighting parameter (0 < β < 1). pm(pi | αi) and
let us define pc(pi | αi) as the corresponding observation
probabilities for Emdata and Ecdata.

B. Feature tracking, clustering and foreground/background
modeling

As in [19], we propose to identify and describe both
foreground and background layers by processing some fea-
ture points that will be tracked over a certain number of
frames and will be classified as background or foreground
points, consistently with their motions. We choose Har-
ris corner points that are detected on the first frame. By
tracking them over the image sequence with the Kanade-
Lucas-Tomasi (KLT) tracker, we obtain a set of trajectories
on a sliding window. When a frame Ik0 is reached, the
goal is then to cluster these trajectories into background or
foreground trajectories. Since the background is supposed
to be stationary in the world frame, we follow the approach
of [19], which uses the rank-constraint for the background. It
means that the matrix formed by the projected trajectories of
stationary points in the world frame is a rank three matrix, so
that background trajectories must lie in a subspace spanned
by three basis trajectories. RANSAC is used in order to
robustly determine these basis trajectories from the set of all
trajectories, and to finally identify trajectories that lie within
the resulting subspace. This method enables to efficiently
cluster trajectories and the corresponding feature points into
foreground trajectory points or background trajectories. We
obtain a set of background trajectory points {pbi}

Nb
i=1 and

a set of foreground trajectory points {pfi }
Nf
i=1. We then

use these sets to determine the statistical models of both
background and foreground layers. For both layers Kernel
Density Estimation is employed as probabilistic modeling
[19], but in our approach, only a color model is used for
the background. The foreground model is instead based on
both color and spatial information. A reason for this choice
is that the foreground layer is likely to be concentrated in
the image, making spatial information more discriminative
than for the background.

More formally, the background model is based on the set
of vectors {zbi}

Nb
i=1, where zbi =

[
Ri Gi Bi

]T
, with Ri,

Gi and Bi the RGB color coordinates of pixel pbi . The
foreground model is based on the set of vectors {zfi }

Nf
i=1,

where zfi =
[
Ri Gi Bi ui vi

]T
, with Ri, Gi and

Bi the RGB components of pfi and ui and vi the pixel
coordinates of pfi .

Then the probability pm(pi | αi) for a pixel pi to belong
to the background or the foreground is then computed using
Kernel Density Estimation, by selecting the appropriate data
zi on pi, and using an Epanechnikov kernel function, which
is fast to compute. But kernel density estimation is computa-
tionally expensive, and both layers are modeled this way only
for the first frame Ik0 . For the next ones, based on the data

provided by this initial segmented frame, the background and
the foreground are represented by smoothed color histograms
h which are adaptively learned over successive frames.

C. Homography based motion compensation

Relying on the important assumption that the background
can be considered as planar, the idea is to evaluate pixel
observation probabilities through motion compensation. It is
based on the estimation of the homography transformation
induced by the motion of the background in successive
frames. With this motion compensation framework, the idea
is to compensate for errors induced by a poor modeling
of foreground and the background layers, due to some
misclassifications of the trajectory points.

By using background trajectory points identified at a frame
Ik, and the same points at frame Ik−kH , with kH ≤ k0
we can compute the homography kHk−kH between the
two background planes, with a RANSAC robust procedure.
kHk−kH is then applied to the whole frame Ik−kH , to
compensate for the background motion between Ik−kH and
Ik, and thus to discriminate the foreground layer, which has
a different motion, by computing the error e(pi):

e(pi) = Ik(pi)− Ik−kH (
kHk−kH (pi)) (4)

Likelihoods can then be evaluated by a Gaussian kernel, with
a bandwidth σ:

pc(pi | αi = 0) =
1

σ
√
2π
e−
‖e(pi‖)

2

2σ2 (5)

pc(pi | αi = 1) = 1− pc(pi | αi = 0) (6)

III. HIERARCHICAL MODEL VIEW GRAPH

A. Generation of synthetic views

The purpose of our template matching method is to align
a sequence of successive initial input images with synthetic
views generated from the 3D model. These views are gen-
erated on a view sphere centered on the 3D model. This is
managed by a 3D rendering engine by setting virtual cameras
at uniformly spaced viewpoints (see Figure 1). [4, 25, 17]
process these views as silhouette shapes. Instead we propose
to extract both silhouette and internal edges of the rendered
views through a Laplacian filter computed on the depth
maps, in order to avoid ambiguities between silhouettes
(Figure 1). For each generated view V , we store the pose
cVMo used to render the 3D model. Besides, we also store
the centroid cV =

[
uV vV

]
, orientation αV and area AV

of the silhouette of the projected 3D model (Figure 1 right).
These parameters are evaluated using image moments.

B. Building a hierarchical model view graph

Since the process of matching the whole set of views with
the input images can be computationally challenging, we
iteratively cluster the views into a hierarchical view graph, as
in [26, 17]. We consider an unsupervised clustering technique
based on Affinity Propagation [6], similar to [17]. At the
first level of the hierarchy, we build clusters within disjoint
neighborhoods on the sphere. This is done by comparing
the views with each other in each neighborhood using a
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Fig. 1: Generation of synthetic views on a view sphere centered on
the 3D model. Contours are extracted by processing the depth buffer
of the rendered 3D model, and silhouette parameters are compute
using image moments.

distance function (see Section III-C). A slight overlap is
considered between the different neighborhoods to consider
inter neighborhood variabilities. The result is a set of clusters,
represented by reference views, which define the first level
of our hierarchical structure. We proceed in the same way
with these views. Since this set has an acceptable size, we do
not consider spatial neighborhoods from this level. We can
then iteratively build successive hierarchical levels until a
reasonable number Nr of reference model views is reached.
A set {V j}Nrj=1 of reference views is finally obtained.

C. An edge-based distance function between synthetic views
The proposed distance function D, intended to compare

two synthetic views, is based on all the extracted edges of
the two views, instead of silhouette contours as with the
Shape context used in [25], which is based on the silhouette
contours. From the sets of edge points {cik}

Ni
k=1 and {cjk}

Nj

k=1
(both silhouette and internal edges) on views V i and V j , we
compute an oriented Chamfer distance by looking for the
closest edge from one view to the other, so that Di,j =
1
2 (di,j + dj,i). di,j is related to the distance for each edge
point cik of V i to the closest one in V j . It also takes
into account the difference between the orientation θ(cik) of
the edge point cik and the orientation of the corresponding
closest edge point in V j . It results in an accurate and
robust discriminative distance function by taking into account
distance between edges of the views and the difference
between their corresponding orientations.

IV. A PROBABILISTIC FRAMEWORK FOR ALIGNING AND
MATCHING REFERENCE VIEWS WITH INPUT IMAGES

Our problem consists in matching and aligning the ref-
erence model views to each input image and finding the
most likely one. Once a first image is segmented, at time
step k0, the next input images are used to determine a pose
estimate. In order to ensure smooth transitions between the
matched and aligned model views, we propose a probabilistic
framework to determine the best view. Let us first describe
how the pose can be determined from the alignment of a
given synthetic view V with an input image I.

A. Rough pose computation assuming a weak perspective
model

We assume a weak perspective projection model, justified
in our applications by the fact that the dimensions of the

target space object are small relatively to the distance from
the camera. Based on this assumption, the pose cMo between
the camera and the object can be retrieved using the stored
pose cVMo used to generate the considered synthetic view
V and the similarity transformation which aligns the view
V with the image I. This similarity transformation can
be represented by four parameters: the in-plane rotation,
expressed by a rotation angle β, the 2D translation vector
t =

[
tx ty

]T
, and the scaling s. Let R−β denotes the

3D rotation matrix of angle −β around the optical axis zc.
The rotation matrix cRo of cMo can then be computed
through cRo = R−β

cVRo, with cVRo the rotation matrix
of cVMo. Since synthetic views are generated on a view
sphere centered on the 3D model, at a fixed distance d0, and
since scaling is assumed isotropic, the translation vector cto
of cMo is given by cto = s d0

[
tx ty 1

]T
.

Next, we present our solution to align each reference
view V jr with the input images (section IV-B), giving a fair
similarity transformation, and to determine the best matching
(or most likely) reference view (section IV-D).

B. Aligning a reference view by refining similarity transfor-
mation parameters

Using the segmentation technique presented in section II,
the silhouette of the object can be extracted on the first
segmented frame Ik0 . The centroid c =

[
u v

]
, orientation

α and area A of this silhouette can be then evaluated, using
the image moments.

Given a reference view V j and using its stored silhouette
parameters

[
uj vj αj Aj

]T
, we can retrieve the simi-

larity transformation to align V j with Ik0 . This similarity
transformation can be expressed by vector xj :

xj =
[
tu tv β s

]
(7)

=
[
u− uj v − vj α− αj

√
A
Aj

]
(8)

Based on the process presented in section IV-A, the pose
cV jMo (used to generate V j) and xj can provide us with
a pose cMo, for the considered view V j . However, due
to some segmentation errors,

[
u v α A

]T
may be too

coarsely computed. We thus propose, for each reference view
V j , to refine the parameters xj .

C. Refining as particle filtering

With the aim of estimating and refining xj by minimiz-
ing a distance function between a reference view and the
observed input image, we propose an efficient and robust
solution by using particle filtering, which is particularly
suited to deal with the non-linearity of this distance function,
in contrast to local deterministic minimization techniques
such as Gauss-Newton or Levenberg-Marquardt. It is also
more optimal and computationally efficient than coarse-to-
fine searches.

Given a reference model view V j and a first image Ik0 , we
estimate and refine the corresponding parameters xj using
particle filtering, and we propose to use the CONDENSA-
TION [10] formulation of the filter, whose steps are recalled
hereafter, and which is illustrated on Figure 2.



In this sense, the similarity transform xjk, for a frame

Ik, is represented by a finite set {x(i,j)
k }

Nj

i=1
of Nj sam-

ples, or particles, associated with weights {w(i,j)
k }

Nj

i=1
, with∑Nj

i=1 w
(i,j)
k = 1. Then, after initialization, the process

consists in predicting the states of the particles according
to a motion model (here a simple Gaussian noise is used),
in updating the weights using a likelihood function and in
performing a random weighted draw among the particles to
avoid degeneracy. The estimate x̂jk is then the estimator of
probability expectation.

Likelihood evaluation: a likelihood function needs to
be evaluated for each particle to compute its weight. The
function chosen here is derived from the distance function
presented in section III-C. For a model view V j , a particle
x
(i,j)
k , an image Ik and its corresponding segmented image

Isegk , it consists in the distance D(x
(i,j)
k ) between the contour

points {pi,jl }
Mx

l=1 extracted from V j translated, scaled and
rotated around its centroid with respect to x

(i,j)
k , and the

corresponding closest contour points of both sets {pl,k}Nl=1

and {psegl,k }Pl=1 extracted from Ik and Isegk using a Canny
edge detector. It gives D(x

(i,j)
k ) = ρd(x

(i,j)
k , Ik) + (1 −

ρ)d(x
(i,j)
k , Isegk ). ρ is a scalar tuning the balance between

the original image and the segmented one. d(x(i,j)
k , Ik) and

d(x
(i,j)
k , Isegk ) are respectively computed in similar ways to

di,j (section III-C). By computing the distance on both the
edge maps of the original image and the segmented image,
the idea is that edges resulting from a potentially cluttered
background can be discarded through the segmented image,
whereas potential segmentation errors can be compensated
by keeping the original image edges.

Also, due to potential ambiguities in the computation
of the image moments and the direction of the princi-
pal axis, we actually use the distance Dmin(x

(i,j)
k ) =

min(D(x
(i,j)
k ), D(x

(i,j)
k,π )), where x

(i,j)
k,π is the particle x

(i,j)
k

rotated by π in the image plane. The likelihood π(i,j)
k of x(i,j)

k

for a frame Ik, with τ a tuning parameter, is thus given by:

w
(i,j)
k ∝ π(i,j)

k = e−τ
−1Dmin(x

(i,j)
k )

2

(9)

c j

α
j

A j

Fig. 2: Illustration of particle filtering for a reference view. The view
is translated, rotated and scaled according to the particles, and the
likelihoods are evaluated w.r.t the input image and its segmented
frame.

D. Matching the reference views within a probabilistic
framework

Once particle filtering is performed for all the reference
views V j for a frame Ik, the goal is then to find the most

likely view, while ensuring smooth transitions with respect
to previous selected views. For this purpose, probabilistic
graphical models can be considered. We have chosen to
employ Hidden Markov Models (HMM) which define a joint
distribution over the sequence of the matched model views
and the sequence of observations which are the initial input
images.

The sequence of the matched views as a Hidden Markov
Model: a HMM supposes that the sequence of matched
reference views {Vl}kl=k0 follows a hidden Markov process.
Besides, each observation Il is assumed to only depend on
Vl. Based on these assumptions, the joint probability of the
sequence {Vl}kl=k0 and the sequence {Il}kl=k0 can be written
as:

p(Vk0:k, Ik0:k) =

k∏
l=k0

p(Il|Vl)p(Vl, Vl−1)

with p(Il|Vl = V j) =
1

A

Nj∑
i=1

π
(i,j)
l , A =

Nr∑
j=1

Nj∑
i=1

π
(i,j)
l (10)

The probability p(Il|Vl) refers to the observation probability
of a given matched model view Vl, with V j the view
corresponding to Vl in {V j}Nrj=1. π(i,j)

l is the weight of
particle x

(i,j)
l and A is a normalization factor so that we

deal with a probability distribution.
p(Vl, Vl−1) is the transition probability between matched

views Vl and Vl−1. It can be determined offline by:

p(Vl, Vl−1) ∝ e
−
acos(ul

T ul−1)2

2σv2 (11)

where ul corresponds to the viewpoint vector of the matched
view Vl in the set {V j}Nrj=1. This viewpoint vector is related
to the azimuth and elevation angles used to generate the
synthetic view corresponding to Vl. σv a fixed parameter
related to the variance of the viewpoints.

Inference of the HMM: in order to maximize equation
(10) with respect to the sequence of views, in the set
{V j}Nrj=1 at each time step k and thus to determine Vk (the
last element of the estimated sequence), we use the classical
Viterbi algorithm on the whole sequence of observations until
k. The resulting reference view V j

∗
corresponding to Vk is

thus chosen as the most likely one.
As an estimate of the similarity transformation parameters,

we propose to consider the whole set of reference views
to compute a global estimate x̂k, given their respective
probabilities {p(Ik|V j)}Nrj=1 and their estimate {x̂jk}

Nr
j=1. It

gives x̂k =
∑Nr
j=1 p(Ik|V j)x̂

j
k.

The particles {x′k
(i,j)}Nji=1 of each V j are reweighted with

respect to x̂k, prior to being processed in the particle filters
of the different reference views, for the next frame Ik+1.

E. Refinement as graph search and pose computation

Once a certain number of frames kF is reached, the
most likely reference model view VkF , serves as a starting
point of a best match search among its child views on
the hierarchical view graph and among the whole set of
its associated particles. More formally, if V j

∗
denotes the



Objet Azi. step Elev. step L0 L1 L2
Spot 8◦ 8◦ 2303 436 53
Atlantis 8.6◦ 8.6◦ 1765 304 44
Soyuz 5.1◦ 5.1◦ 1225 268 38

TABLE I: Parametrization of the view sphere for each object and
results of the learning step, with the number of reference determined
at each level L of the hierarchical view graph.

reference view corresponding to VkF , the process results in
a view V lj∗ determined at the bottom level on the view
graph, and in a best particle x̂kF . With x̂kF and V lj∗ and
using the steps described in section IV-A, we can compute
a pose cMo

kF . This pose is finally directly used to initialize
a frame-by-frame tracking algorithm [16].

V. RESULTS

We have evaluated and validated our technique with a
focus on space objects. The algorithm has been run, using a
standard laptop (2.8GHz Intel Core i7 CPU), on synthetic
images featuring a Spot satellite (512 × 512 images are
processed). Concerning real sequences, a first one shows
the Soyuz TMA-12 spacecraft approaching the International
Space Station (ISS). A second one features the Atlantis Space
Shuttle performing its pitch maneuver towards the ISS.

A. Learning step

Table I shows the parametrization of the view sphere for
the different objects, with sampling steps for both azimuth
and elevation angles.

It also presents the results of the building of the hierar-
chical model view graph and the number of reference views
obtained at each level L of the graph. For each object, we
have stopped the learning process at level 2 in order to get
reasonable numbers of reference views. Some examples of
these reference views can be seen on Figure 3.

View 1 View 28

View 37

View 41

View 47

View 42

View 46

View 32

(a) Spot

View 6 View 12

View 23View 19

View 29

(b) Soyuz

View 1 View 3

View 10 View 21

View 31

(c) Atlantis

Fig. 3: Some reference views determined at the second level of the
view graph.

B. Segmentation

As explained in Section II, the pose detection process
starts by segmenting the initial images of the sequence.
Figures 4(a,d,g) shows the Harris corner points being tracked
using the KLT tracker (red trajectories) for the different
sequences. Blue and green dots represent the dots respec-
tively classified as belonging to the foreground object or the
background, spread on regular grids. We observe that the
clustering process explained in section III-A is performed

correctly, with very few misclassified pixels for Spot (Fig-
ure 4(a)) and Soyuz (Figure 4(d)) whereas we find more
errors for Atlantis (Figure 4(g)). Figures 4(b,e,h) depicts the
mean image between the current image and its homography-
based compensated one, enhancing the motion of the object
with respect to the background, with the zone featuring the
object being blurred (with kH = 5).

Finally, Figures 4(c,f,i) shows both object (colored) and
the background (black) layers after the segmentation phase,
which starts at k0 = 8, with satisfactory results, despite the
cluttered background. This segmentation step is executed in
around 0.6s using kernel density estimation and in 0.38s
using histograms.

a b c

d e f

g h i
Fig. 4: Segmentation process. On (a,d,g) are shown the tracked KLT
trajectory points, in green those classified as foreground points and
in blue as background points. (b,e,h) represent the mean image after
homography based motion compensation and (c,f,i) the resulting
segmented image.

C. Results for the initial pose estimation

Several sequences, with some of them presented on Fig-
ure 4, have been processed within our initial pose estimation
framework. For the considered objects, reference views col-
lected at the second level (L2) of their respective hierarchical
view graph (Figure 3) are selected to perform the matching
and alignment phase, over 10 initial input images. The
particle filters on the similarity transformation parameters
process 100 particles in these tests.

Results for the different sequences are depicted on Fig-
ures 5- 7. The probabilistic alignment phase is represented
by the superimposition of the most likely reference view. The
view refinement and pose computation step, performed at
frame 9, is also shown. Finally, the initialization of a frame-
by-frame model-based tracking algorithm [16] is featured.

In order to show the advantage the Hidden Markov Model
used to match the reference views with the input images
(section IV-D), the marginal joint probabilities, provided by



the Viterbi algorithm, of the different reference views along
the input sequence are plotted.

For sequences on Figure 6(a)-6(d), 7(b)-7(d), 6(f)-6(i)
and 5(l)-5(n), we observe that consistent reference views
are matched and realigned to the image through particle
filtering. The benefit of the HMM is visible through its
ability to smooth, by estimating the optimal sequence, the
determination of the most likely view at each time step.
For the sequence on Figures 6(a)-6(d), three reference views
(views 1, 46 and 47) still have similar appearance, despite the
hierarchical clustering technique described in section III-A.
Thanks to the inference of the HMM, view 1 is progressively
rejected, in terms of marginal joint probability, and the
marginal probability of view 46 is increasing. A false positive
can be observed on the initial match for the sequences
on Figures 5(a)-5(d). However, the HMM rapidly discard
this inconsistent view and a fair one is finally dominant.
Ambiguities can also be observed for the Soyuz sequence
(Figures 6(f)- 6(i)) between view 6 and view 19.

On Figures 7(b)-7(d) (see also the provided video), due
to the coarse segmentation, the orientation of the object in
the image is initially not proper, as seen on Figure 7(b), but
through the particle filtering framework, the most likely view,
which is consistent with the image, is progressively aligned,
its marginal probability increasing. Without the alignment
procedure, tracking then fails.

The alignment and matching step is executed in around
0.35s per frame. Including segmentation, the process is
executed in less than 1fps.

D. Discussion

An issue regarding our pose detection system to be dis-
cussed concerns its reliance on the segmentation process and
on image moments. In this study we have dealt with cases
for which moments are quite distinct. Besides, potential am-
biguities in the determination of the direction of the principal
axis of the object are treated by computing the distance
function w.r.t both a considered particle and itself rotated
by π. However, in the case of more ambiguous moments
(a spherical object for instance) or on large segmentation
errors, the determination of the image plane rotation could
be problematic, despite our robust distance function and
alignment procedure, solving the issue to a certain extent.
Finally, as another issue and as suggested in the results
shown above, ambiguities between different reference views
may result in false positives. To improve segmentation, a
solution for our applications would be to use the localization
information provided by the chaser spacecraft with respect to
the earth to provide prior information on the earth apparent
motion. Otherwise, some priors on the apparent motion or
color of the earth surface could be used. Besides, to relax the
reliance on segmentation or to cope with indistinct moments,
we could think of integrating in the process some local or
region descriptors based learning methods.

VI. CONCLUSION

In this paper we propose a method to address the chal-
lenging issue of full-viewpoint detection and initial pose

estimation in the case of complex poorly textured known
3D objects such as spacecrafts. The idea is to match and
align synthetic views of the 3D model of the known object
with successive initial frames. In order to efficiently cover the
parameter space, the views are classified into a hierarchical
view graph. We also take advantage of a segmentation tech-
nique, which guides the probabilistic edge-based matching
process to provide a sufficiently precise pose to initialize a
classical frame-by-frame tracking.
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(f) Segmented frame (g) Aligned view 0
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(k) Segemented frame (l) Aligned view 0
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Fig. 5: Matching and alignment procedure of the reference views. From the segmented frame (see 4(a) for the first row), the alignment
of the most likely reference view is shown. Probabilities of the views are plotted on (c,h,m). (d,i,n) depict the pose determined after
the refinement step on frame 10 by traversing through the view graph, from the most likely reference view. Finally the tracking can be
initialized (e,j,o).
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Fig. 6: Ambiguous cases. Two similar reference views are predominant. However, thanks to the distance function and the probabilistic
framework, the most consistent reference view tends to be more likely (c,h). From this view, the refinement step (d,i) enables to initialize
the tracking (e,j).
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Fig. 7: Coarse segmentation. In the case of a coarse segmentation (a), particle filtering allows to correctly estimate the silhouette parameters
on the next frames (b,d) and to match the proper reference view. Tracking can then be achieved (e).


