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A dense and direct approach to visual servoing using
depth maps

Céline Teulière and Eric Marchand

Abstract—This paper presents a novel 3D servoing approach using
dense depth maps to perform robotic tasks. With respect to position-
based approaches, our method does not require the estimation of the 3D
pose (direct), nor the extraction and matching of 3D features (dense) and
only requires dense depth maps provided by 3D sensors. Our approach
has been validated in various servoing experiments using the depth
information from a low cost RGB-D sensor. Positioning tasks are properly
achieved despite noisy measurements, even when partial occlusions or
scene modifications occur. We also show that, in cases where a reference
depth map cannot be easily available, synthetic ones generated with
a rendering engine still lead to satisfactory positioning performances.
Application of the approach to the navigation of a mobile robot is also
demonstrated.

Index Terms—dense sensor-based control, depth map, visual servoing.

I. INTRODUCTION

Most of the robotic positioning tasks are still achieved today by
estimating first the relative pose between the robot and the scene or
the object of interest, and then using a pose-based control scheme,
as initially proposed in [29]. However, the pose estimation problem
itself is complex in its general formulation. Also known as the 3D
localization problem [17], this problem has been widely investigated
by the computer vision community but remains non-trivial for vision
sensors alone, in particular in low-textured environments. Using range
data, a range flow formulation has been proposed [14][11] to estimate
the 3D pose of a mobile robot. Alternatively, the alignment of
successive 3D point clouds using ICP [2], [5] has become a very
popular method. Many variants have been proposed in the literature
[23] and the development of the so-called RGB-D cameras attracted
a lot of attention on these methods in the recent years [27], [21],
[13], [22]. Some work also consider crude global alignment using a
global voting scheme within a transformed space [18].

In this paper, we propose to perform robotic tasks without recon-
structing the full 3D pose between the robot and its environment,
but using a sensor-based servoing scheme, the considered data
being directly the depth map obtained from a range sensor. Our
approach is thus related to other sensor-based methods, such as
image-based visual servoing (IBVS) [3], where a robotic task is
expressed directly as the regulation of a visual error. In IBVS, the
visual error is usually defined as the difference between a current
and a desired set of geometric features (points, straigth lines, etc.)
selected from the image, to control the desired degrees of freedom.
Therefore, IBVS schemes usually require the extraction of visual
features from image measurements, and their matching in successive
frames. However, those steps, based on image processing techniques,
are often considered as the bottleneck of visual servoing methods.
In the tracking literature, dense approaches that do not require
matching have already been proposed, based on the “brightness
constancy constraint” [12], [1], [25]. In [9] this constraint is used
in a stereo system to track planes and is applied to mobile robot
localization. Recently, some visual servoing work also proposed
to use all the image directly, without any extraction or matching
step, by minimizing the difference between the current image and a
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reference image. This approach is referenced as photometric visual
servoing [7][6]. However, luminance-based approaches are not always
applicable since they require texture, and stable lighting condition,
or an accurate knowledge of the materials and light sources to model
image formation [26].

In our work we propose to use the dense depth map obtained from
a range sensor as a visual feature for positioning task wrt. non planar
scenes, without any feature extraction or matching step. This is a
major difference with respect to approaches such as [20] where 3D
points have to be matched. We derive a new control law for a robot
positioning or navigation using this feature directly. Our approach is
thus both direct (without any 3D pose estimation) and dense (without
feature extraction or matching). A first version of this work has been
presented in [28]. We provide here an extended version, with new
experimental results underlying the strong potential of this approach.
To the best of our knowledge, this is the first work proposing such
a dense depth-based visual servoing.

II. DIRECT DENSE DEPTH MAP SERVOING

This section presents the heart of our approach, i.e. how to control
a robot using dense depth maps. We first introduce what we call a
depth map and what it means to use it as feature (Section II-A).
Then we derive the fundamental equations necessary to compute our
control law (Sections II-B and II-C).

A. Depth map sensing

There are multiple technologies of sensors capable of providing
depth (or range) information. Most range sensors without contact are
active, and based on the time of flight (ToF) principle: the idea is to
send waves of known velocity and measure the time it takes them
to go from the sensor and come back after reflection on the scene.
This can be achieved by sending light pulses. Another approach
consists in using a modulated signal and measuring the phase shift.
In each case, the depth information is derived knowing the velocity
of the sent signal (eg: Laser scans, sonars, radars, ToF or RGB-
D cameras). Another existing technology for active range sensing
is based on structured light: known patterns (stripes, dots, ...) are
projected onto the scene and the depth information is deduced from
their deformation. This technology is used for instance in the recent
Microsoft Kinect or Asus Xtion pro devices, based on PrimeSense
technology [10]. Depth can also be measured with passive sensors
such as cameras: by matching image features in two different views
of a calibrated stereo rig, depth can be computed from geometry. The
depth information is sparse when a finite set of features are matched,
but dense depth maps can also be obtained [24].

In the following, we consider a range sensor capable of providing
dense depth maps. Without loss of generality, the range measurements
are expressed in sensor centered cartesian coordinates. We also
consider that the depth map is represented according to a perspective
projection model (see Figure 1). This is a natural choice for any
range sensor based on perspective cameras (stereo pairs, or structured
light such as the Kinect sensor used in our experiments). It is also
very general since any dense depth map coming from other sensors
(laser, radar, etc.) can be converted with such a perspective projection.
Formally, we denote by Z(x, y, t) the depth at time t of the 3D point
of coordinates (X,Y, Z) in the sensor frame, with X = xZ and
Y = yZ, (x, y) being the metric image coordinates. Figure 2 gives
an example of depth map obtained from Microsoft Kinect RGB-D
sensor, where the depth values have been scaled to greyscale levels.
White pixels correspond to unavailable depth values, i.e. pixels where
the sensor could not compute any depth information. Note also that
for better visualisation purpose, we applied histogram equalization
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Fig. 1. Sensor frame representation.

on the depth maps shown throughout the paper, but the experiments
use the depth map directly.

(a) (b)

Fig. 2. Example of static scene (a) and corresponding depth map representa-
tion (b) acquired from Microsoft Kinect sensor. The darkest pixels correspond
to the smallest depths. White pixels correspond to unavailable data.

The next section shows how such dense depth maps can be used
to control a robot.

B. Modeling

Let us consider that a robot end effector is equipped with a range
sensor (Figure 3).

Fig. 3. ADEPT Viper robotic system equipped with a Microsoft Kinect sensor.

We express a positioning task as the regulation of the feature Z to
a desired value Z∗. Here, Z = (Z1, ..., ZN ) is a vector containing the
N depth values corresponding to the current dense depth map. The
desired value Z∗ thus corresponds to a reference depth map acquired
at the desired robot pose.

Therefore, the control law to design aims at regulating the follow-
ing error to zero:

e = Z− Z∗ =


...

Zi − Z∗i
...

 (1)

An illustration of such an error is given in Figure 4.
In analogy with the visual servoing framework [3] we denote by LZ

the interaction matrix associated to the feature Z, and characterized
by the relation:

∂Z

∂t
= LZv (2)

where ∂Z
∂t

is the temporal variation of the depth and v = (v, ω)
is the sensor instantaneous velocity, with v the translational velocity,
and ω the rotational velocity.

We now derive the expression of the matrix LZ which will be
required in the control law (Section II-C). In the following, we
consider the continuous formulation of the depth map as a surface
Z(x, y, t). Assuming that the scene is rigid and the surface Z(x, y, t)
is smooth1, taking its full derivative leads to:

Ż =
dZ

dt
=
∂Z

∂x
ẋ+

∂Z

∂y
ẏ +

∂Z

∂t
, (3)

where (ẋ, ẏ) is the 2D velocity of the image point (x, y). Equation
(3) is known as the range flow constraint equation [30] or elevation
rate constraint equation [14]. It is very similar to the brightness
change constraint equation that is used in the computation of optical
flow [15] and used in direct photometric visual servoing methods
[6]. The main difference is that in the luminance case, an additional
assumption is made to constrain the brightness time derivative to be
zero.

From equation (3), the temporal variation of the depth is immedi-
ately deduced:

∂Z

∂t
= Ż −Aẋ−Bẏ, (4)

where A = ∂Z
∂x

and B = ∂Z
∂y

. Therefore, the interaction matrix LZ

related to one depth value is expressed by:

LZ = LPZ −ALx −BLy. (5)

The matrices Lx, Ly defined such that ẋ = Lxv and ẏ = Lyv
are the well-known interaction matrices of image point coordinates,
given by [3]:

Lx =
[−1

Z
0 x

Z
xy −(1 + x2) y

]
(6)

Ly =
[
0 −1

Z
y
Z

1 + y2 −xy −x
]
, (7)

and LPZ is the interaction matrix related to the coordinate Z of a
3D point, such that Ż = LPZv. It is given by [3][20]:

LPZ =
[
0 0 −1 −yZ xZ 0

]
. (8)

Finally, replacing (6), (7) and (8) in (5), we get:

LZ =
[
A
Z

B
Z

−Z+xA+yB
Z

Zwx Zwy Zwz

]
, (9)

where Zwx = −yZ−xyA−(1+y2)B, Zwy = xZ+(1+x2)A+xyB
and Zwz = xB − yA. Note that this expression underlines one of
the main differences between our approach and sparse 3D approaches
[20], as discussed in Appendix A. The full interaction matrix LZ of
size N × 6 corresponding to the entire depth map is thus the stack
of the 1× 6 matrices LZi :

LZ =

LZ1

...
LZN

 . (10)

C. Control law

We consider the following control law:

v = −λL+
Z (Z− Z∗) (11)

where λ is a scalar gain parameter and L+
Z denotes the pseudo-inverse

of LZ defined by L+
Z = (LZ

>LZ)
−1LZ

>. Note that exactly the same
demonstration as for IBVS as given in [4] Section 24.3.4 allows

1The points in the surface where this assumption do not hold will be
discarded by the M-estimation process presented in section III.
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Fig. 4. The task error is the difference of depth maps Z− Z∗.

demonstrating the local asymptotic stability (LAS) of this control
law under the condition that L+

ZLZ > 0 in the neighborhood of
Z = Z∗. This condition is ensured as soon as LZ is of full rank 6
since L+

ZLZ = I6 in that case.
The interaction matrix given by (10) has to be of full rank for

the system to be stable. For instance, a fully planar scene would
lead to a rank 3 matrix where only 3 degrees of freedom (dof)
could be controlled to form a plane-to-plane virtual linkage. The
interpretation of this is that an infinite number of poses would lead
to the same depth map perception. However the full-rank assumption
is easily fulfilled in real world scenarios where depth variations are
discriminative enough to avoid indetermination. Typically, observing
points from 3 non parallel planes is sufficient.

III. PRACTICAL ISSUES AND ROBUSTNESS IMPROVEMENTS

In the previous section, we presented our depth map based servoing
method. When testing it, we found that this method was efficient in
simulation sequences, with perfect data, but we had to face some
practical issues in real conditions, in particular, in our case, using
a Kinect sensor. This section presents the modifications we had to
undertake in order to improve the robustness of the servoing task
with respect to noisy and incomplete measurements (Section III-A)
and to scene perturbations and occlusions (Section III-B).

A. Noisy and incomplete measurements

As illustrated in Figure 2-b the depth map acquired by a Kinect
sensor is noisy and incomplete. In practice, we only considered the
pixels for which a depth value was available both in the reference
Z∗ and the current Z depth maps. This means that the number N of
depth values in Z and (10), is inferior to the size of the depth map.
In the experiments presented in this paper, about 80% of the total
number of pixels could typically be used.

In addition, we reduced the noise by applying a standard 3 × 3
Gaussian filter on the depth maps, the convolution being computed
only with the valid neighbors.

Similarly, the spatial gradient was computed using a standard 3×3
derivative kernel taking into account the valid neighbors only.

B. Occlusions and scene modifications

Another issue to take into account is the possibility of partial
occlusions or scene modifications during the servoing process. To
reduce the effect of such events on the task achievement, we use
robust M-estimation [16]. We thus introduce a modification of our
task objective (1) allowing uncertain measures to be less likely
considered or in some cases completely rejected. The new task error
is given by [8]:

e = D(Z− Z∗) (12)

where D is a diagonal weighting matrix: D = diag (w1, ..., wN ). The
new control law thus becomes:

v = −λ(DLZ)
+D(Z− Z∗), (13)

The weights wi in D are computed using Tukey’s estimator. The
reader can refer to [16] for details on M-estimation.

IV. EXPERIMENTAL RESULTS

In this section we first provide the experimental validation of our
approach for positioning tasks (Section IV-A). Then its application
to the navigation of a mobile robot is proposed (Section IV-B).

A. Positioning tasks

In our positioning tasks, a Kinect sensor has been mounted on
a ADEPT Viper robot (see Figure 3). In each experiment, the task
is expressed as the minimization of the error (12) between a fixed
desired depth map and the current one. The control law (13) is
computed with a fixed gain λ = 2.5. The depth maps are acquired
using the LibFreenect2 driver through the ViSP library [19], with a
resolution of 320× 240 pixels.

In terms of computation, each iteration requires the computation of
3× 3 gradients in each (non-discarded) pixel which is very fast. The
most costly step is to fill the N×6 interaction matrix LZ to compute
the control law. Note that L>ZLZ used to compute the pseudo-inverse
is a 6 × 6 matrix which is very fast to invert. Without any specific
optimization, the code runs in about 60 ms per frame on a standard
laptop. The method is suitable for real-time experiments.

1) Using a synthetic depth image to define the desired position: In
the first experiment, we consider the case where the desired position is
defined in a simulation environment using a model of the scene. This
kind of approach can typically be beneficial in applications where a
3D model is known but one wants to define different tasks without
the need for depth maps acquired in situ. In that case we render the
desired depth image from a 3D model of the scene instead of using
one acquired from the sensor.

For this experiment, we built a 3D model of the scene using the
ReconstructMe3 software. We then defined the 3D pose we wanted
the robot to reach, with respect to this model. The desired depth map
corresponding to this pose was rendered using Ogre3D4 using the
actual depth camera calibration parameters. In this case the depth
sensor thus needs to be calibrated.

2http://openkinect.org/
3http://reconstructme.net
4http://www.ogre3d.org/
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Figure 6 (1-b) shows an example of such a rendered image for
the model of Figure 5. The white points in this image correspond
to unmodeled areas, for which the rendering gives an infinite depth
value. They are treated as unavailable data, as for Kinect depth maps,
and are excluded from the feature set (see Section III).

Fig. 5. 3D model used for generating the desired depth map in Figure 6.

The positioning task consists for the robot in minimizing the error
between this rendered depth map and the current one acquired by the
Kinect sensor.

The results of this experiment are shown in the Figures 6 and 7.
The first image (1-a) shows the RGB view provided by the Kinect for
the initial position. This image is never used in the control scheme
and is only given here for a better understanding of the setup. The
depth maps are shown in the second row, and the last row gives the
corresponding error, i.e. the difference between the desired and the
current depth maps, unavailable data being discarded as explained in
III-A. The difference images are scaled so that a plain grey frame
(3-b) corresponds to a null error, and thus to the good achievement
of the task. Figure 6 (3-a) gives a vizualization of the error in the
initial position.

The corresponding quantitative values for the task error, the 3D
positioning errors and the velocities are given in Figure 7. Figure 7 (b)
shows the repartition of the depth errors in the initial frame of figure
6 (3-a). The maximum error is about 50 cm in depth. The peak at
0 corresponds mostly to white pixels of Figure 6 (1-b) that are not
considered.

Note that one iteration corresponds to one execution of the control
loop, that is the computation of (13) for the current image and the
transmission of this velocity command to the robot. Figures (c) and
(d) show that with an initial error of 15cm in translation and 10◦ in
rotation, the positioning task is properly performed, as indicated by
the low residuals. Here the final accuracy depends on the quality of
the model. To evaluate the final accuracy of the system itself we thus
consider in the next experiment a desired depth map acquired at the
desired position.

2) Robustness to occlusions and scene changes: In the second
experiment, we evaluate the robustness of our approach with respect
to partial occlusions or modifications of the observed scene. First,
the desired depth map is acquired at the desired position, then the
robot is moved to the initial state in which the servoing is launched.
The goal here is to regulate the error between this reference depth
map and the current depth map. The initial scene is illustrated in
Figure 9 (1-a). During the task achievement, someone entered the
sensor field, removed an object and put it back several times. Some
selected frames of this sequence are shown in Figure 9. The full
video of this sequence is provided as supplementary material. The
initial and final positions are illustrated in the first and last columns,
while columns (b) and (c) show examples of occlusions. Note that at
the end of the sequence the white bear has been completely removed

(1-a) (1-b)

(2-a) (2-b)

(3-a) (3-b)

Fig. 6. First experiment. First column corresponds to the initial position. The
RGB view from the Kinect (1-a) is not used in the algorithm. (2-a) Initial
depth map, where white parts correspond to unavailable data. (3-a) Difference
between the initial and desired depth maps. Second column corresponds to
the end of the motion. The desired depth map (1-b) was rendered using a 3D
model of the scene. (2-b) shows the final depth map, which minimizes the
difference (3-b) with the desired one (1-b).
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Fig. 7. First experiment. (a) Task error, (b) histogram of depth errors (m)
corresponding to the initial frame, (c) translational part of positioning error,
(d) rotational part of positioning error, (e) translational velocities, (f) rotational
velocities.
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from the scene, and the final depth map (Figure 9 (2-d)) is thus
different from the desired one (Figure 8 (b)). This difference appears
in the final difference image (Figure 9 (4-d)) and the task error
function (Figure 8 (a)). However, despite the scene modifications and
occlusions, the positioning task is successfully achieved, as shown
by the convergence of the positioning errors in Figure 8 (c). The
robustness of our control scheme to perturbations is the result of
the use of M-estimation (see III-B). The effect of M-estimation is
illustrated on the third row of Figure 9, where the relative weights of
each data in equation (12) are represented. Black pixels correspond
to rejected values and brightest ones to inliers. Figure 9 (3-b), (3-c),
and (3-d) show that the perturbations are correctly detected since the
corresponding pixels are given a smaller weight.

Figures 8 (c) show that with an initial error of 17cm in translation
and 20◦ in rotation, the positioning task is properly achieved with
a remaining error of less than 3mm in translation and 0.4◦ in
rotation. Given the low depth resolution of the sensor and its noisy
measurements, this corresponds to a good achievement of the task.

Finally, note that in this scene the smoothness assumption was
not verified everywhere since large depth discontinuities exist at the
border of the objects, for example between the table and the floor.
This experiment thus shows that the method is successful beyond its
initial assumption. This is due to the fact that the points corresponding
to discontinuities are a minority and are detected as outliers by the
M-estimator.
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Fig. 8. Second experiment. (a) Task error, (b) desired depth map, (c)
positioning errors, (d) velocities.

3) Experimental analysis of the convergence domain: We want
to underline that the above experiments are examples from a large
number of experiments that we performed using different initial
poses and scenes. As for IBVS approaches, only the local asymptotic
stability can be demonstrated (see [4]). Thus we can only assess the
performances in terms of convergence domain from experiments. In
order to empirically evaluate the convergence domain we run multiple
positioning tests from different initial positions and recorded the
convergence succes and failure. One test is deemed to have converged
if both the norm of the transation error vector and the norm of the
rotation error vector get smaller than 1 cm and 1◦ respectively, in less
than 500 iterations. Those tests were performed using the 3D model
of Figure 5 in simulation, without adding occlusions. Simulation
allows us to handle exhaustive testing with hundreds of different

initial positions. The initial poses are chosen so that the camera center
is placed on a regular 3D grid centered on the desired pose in x
and y, and with z varying from 0.3 m to 4.7 m where the desired
z camera position corresponds to 1.5 m. The orientation is set so
that the desired and initial depth maps overlap. This setting leads to
large variations of x-axis and y-axis rotations, from −60◦ to 60◦.
We also considered rotation around z-axis, by running one full set
of simulations with 0◦ z-axis rotation and another one with 30◦ z-
axis rotation. Figure 10 shows the resulting convergence domains,
which as can be seen are considerable. Note that joint limits are not
considered in this simulation test. From Figure 10 we can see that the
convergence domain has an approximate radius of more than 1 meter
along the x and y directions in this setting, and even more in the z
axis where convergence can be obtained from more than 2 m above
the desired position. The methods handles indeed easily a large initial
error on the depth axis which generates a large velocity component
on this axis to compensate for the important depth map error. Note
that the convergence domain is scene-dependant, and large structural
elements with smoothly varying depth (planes or large rocks in this
example) will generally lead to a larger convergence domain than
scenes with high frequency depth variations.
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Fig. 10. Experimental evaluation of the convergence domain. Result are given
for zero z-axis rotation in column (1) and 30◦ z-axis rotation in column (2).
The first row shows for both cases the convex hull of the points from where the
system successfully converged. Rows (b) and (c) shows slices at the desired
y and z planes respectively. The poses that converged are shown by green
circles and those that diverged by red crosses.

B. Non honolomic robot navigation using depth map memory

In the experiments above, we considered positioning tasks on a 6
dof robot, in various conditions. In this part, we propose to apply
our depth-based approach to a navigation task on a wheeled robot
(Pioneer P3-DX). We assume here that we have stored a sequence of
depth maps acquired during a manual navigation stage. These depth
maps can be considered as a sensory memory that is then used for
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(1-a) (1-b) (1-c) (1-d)

(2-a) (2-b) (2-c) (2-d)

(3-a) (3-b) (3-c) (3-d)

(4-a) (4-b) (4-c) (4-d)

Fig. 9. Selected frames of the second experiment. Columns correspond to frames 1, 15, 69 and final frame respectively. Those frames illustrate occlusions
and object removal (1-b) (1-c) (1-d). The first row gives the RGB view from the Kinect, which is not used in the algorithm but shows the setup. The depth
maps are represented in the second row. The images of the third row represent the weights of each pixel in the M-estimation. Black pixels are discarded.
Frames (3-b) (3-c) (3-d) show that occluded areas are given a very low weight. Fourth row: difference between the initial and desired depth maps.

the autonomous navigation. The navigation task is thus defined as
a succession of positioning tasks using the successive stored data as
desired depth maps (see Figure 11). In this case, each positioning sub-
task is performed in a similar manner as in the previous experiments,
but controlling 2 dof only: the forward translational motion and the
in-plane rotation. The switch from one reference depth map to the
next is based on a simple threshold on the error decrease.

Figure 12 shows some samples from our navigation sequence. The
first row represents the robot during the learning phase, that is when
it was manually controlled and acquiring the reference depth maps.
The second row gives the autonomous navigation results. Although
no ground truth measurement was available for this task, this figure
shows that the robot closely follows the path of the learning phase,
using the stored maps as references.

Figure 13 provides typical depth maps from this navigation se-
quence, along with the corresponding errors when the reference frame
is changed. Note that since the robot is non-holonomic, one cannot
ensure its convergence to the 3D position corresponding to the desired
depth map, which explains that the error images are not as good as
for the previous 6 dof positioning tasks. Note also that one possible
indetermination can occurr in the case of a long corridor with no

Sensory path

Fig. 11. A sequence of depth maps has been acquired in a manual navigation
step. The navigation task is then defined using each depth map from the
memory as an intermediate desired depth map for the controller.
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door to mark a depth variation, since several different poses would
lead to the same depth map (the interaction matrix would then be
rank deficient). This however would not be an issue for tasks such as
moving forward while being centered in a corridor. This experiment
shows the feasibility of the approach for indoor navigation.

V. CONCLUSIONS

We have demonstrated that it is possible to use a dense depth map
directly to control robot motion. The goal position can be defined
by a single depth map either directly acquired from that position or
synthetically rendered. The main advantage of our approach is that it
does not require any pose estimation, feature extraction or matching
step. Moreover, when the depth map is obtained from an active sensor,
the resulting approach is not sensitive to illumination changes as
photometric approaches can be. Some limitations can appear with the
use of active sensors such as Kinect RGB-D camera, in particular the
noise and the absence of some measurements. We show however that
those issues can be overcome thanks to the use of M-estimators and
basic image pre-processing.
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APPENDIX

Depth information has already been used in position-based visual
servoing. For example, [20] proposed to use the 3D coordinates
(X,Y, Z) of a set of 3D points as features to be regulated in a propor-
tional control law. In other words, the positioning task was expressed
as the regulation of the feature P = (X1, Y1, Z1, ..., XN , YN , ZN )
to a reference feature P∗ = (X∗1 , Y

∗
1 , Z

∗
1 , ..., X

∗
N , Y

∗
N , Z

∗
N ) corre-

sponding to the 3D coordinates of the set of points at the desired
robot position. The interaction matrix related to a single 3D point is
then given by [3][20]:

LP =

−1 0 0 0 −Z Y
0 −1 0 Z 0 −X
0 0 −1 −Y X 0

 . (14)

At first sight, the depth components of this kind of 3D feature
(X1, Y1, Z1, ..., XN , YN , ZN ) could seem very close to the vector
formulation Z = (Z1, ..., ZN ) that we defined in Section II-C.
However, a key difference with respect to our approach is that [20]
uses a sparse set of 3D features. Consequently, in [20] a matching
step is required to determine the feature values through the sequence,
and the range flow equation (3), based on a smoothness assumption,
does not hold in the sparse case. On the contrary, one of the key
advantages of the method we propose, is that it does not require any
feature extraction nor matching step and uses directly the dense depth
information from the range sensor thanks to the range flow equation.
That is why the interaction matrix related to the depth map is given
by (9) while the interaction matrix related to the depth of point is
given by the last row of (14).
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(1-a) (1-b) (1-c) (1-d)

(2-a) (2-b) (2-c) (2-d)

Fig. 12. Extracted frames from the navigation experiment. The first row corresponds to the manual navigation step where the depth maps are memorised.
The second row shows the autonomous navigation using this sensory memory.

(1-a) (1-b) (1-c) (1-d)

(2-a) (2-b) (2-c) (2-d)

Fig. 13. Extracted frames from the navigation experiment. The first row shows the depth map observed before switching to a new reference frame. The error
images are shown on the 2rd row.


