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Active Structure from Motion:
Application to Point, Sphere and Cylinder

Riccardo Spica, Paolo Robuffo Giordano, and François Chaumette

Abstract—In this paper, we illustrate the application of a
nonlinear active structure estimation from motion (SfM) strategy
to three problems, namely, 3D structure estimation for (i) a point,
(ii) a sphere and, (iii) a cylinder. In all three cases, an appropriate
parametrization reduces the problem to the estimation of a
single quantity. Knowledge of this estimated quantity and of
the available measurements allows for then retrieving the full
3D structure of the observed objects. Furthermore, in the point
feature case, two different parametrizations based on either a
planar or a spherical projection model are critically compared:
indeed, the two models yield, somehow unexpectedly, to different
convergence properties for the SfM estimation task. The reported
simulative and experimental results fully support the theoretical
analysis and clearly show the benefits of the proposed active
estimation strategy, which is in particular able to impose a desired
transient response to the estimation error equivalent to that of a
reference linear second-order system with assigned poles.

I. INTRODUCTION

THE problem of Structure from Motion (SfM), i.e., how
to recover the missing structure of the observed scene

from images taken by a moving camera, is a very classical
and well-studied topic in computer and robot vision. One
solution is to rely on prior knowledge of the scene as, e.g.,
known size of a tracked object. Alternatively, one can exploit
the possibility of observing the same scene from different
points of view, and fuse together the acquired images with the
known camera displacement among them. When processing
consecutive images over time, a possibility is to treat SfM as
a recursive/filtering task: images and camera motion can be
elaborated online for obtaining an incremental estimation of
the scene structure. Other approaches (e.g., bundle adjustment)
rely, instead, on global optimization methods meant to solve
SfM problems by processing altogether information acquired
over an extended time period. A recent discussion about the
pros/cons of both approaches in the context of Visual SLAM
can be found in [1].

Within the first class of (recursive) methods, a vast literature
exists for addressing SfM: for instance, as a non-exhaustive
list, Extended Kalman Filter (EKF)-based solutions have been
proposed in [2]–[5], and, along similar lines, an Unscented
Kalman Filter was exploited in [6]. All these strategies have
the considerable advantage of being ‘aware’, to some extent,
of the measurement and process noise (when modeled as
Gaussian distributions). On the other hand, they require a
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certain level of approximation of the system dynamics which
may affect the estimation performance. Other approaches
exploiting tools from (deterministic) nonlinear observation can
instead be found in [7]–[14] and references therein, while [15]
has tackled the more challenging problem of structure and
motion estimation, i.e., how to simultaneously recover the
missing structure along with the (partially) unknown camera
velocity. This class of methods does not typically involve any
linearization of the system dynamics and allows for some
formal characterization of the estimation error convergence.
However, presence of noise is not explicitly taken into account,
with the filter design being developed in a fully deterministic
setting. A recent experimental comparison of a EKF solution
versus a deterministic nonlinear filter in the context of SfM
for a quadrotor UAV can also be found in [16].

While all these works study the general issue of structure
estimation from motion in different contexts, much less atten-
tion has been devoted to the problem of actively imposing
a desired (e.g., optimized) convergence behavior to a SfM
estimation task by acting on the motion imposed to the camera
and on the employed estimation gains. For instance, in [17] an
active strategy for minimizing the effects of image noise and
discretization errors was proposed and experimentally tested,
but without the aim of also imposing a desired estimation
transient response. In [18], the problem of actively selecting
which features to track for improving the indoor localization
of a wheeled mobile robot is successfully addressed; however,
no attempt is made to actively shape the robot motion so as
to optimize the SfM convergence (the robot navigates in an
‘uninformed’ way w.r.t. the estimation task). In [19] an EKF-
based SfM estimation scheme for a UAV is integrated with a
path planning strategy aiming at minimizing the covariance
matrix of the estimated states at the end of the motion.
Nevertheless, one needs to assume full pre-knowledge of the
surrounding environment (e.g., obstacles) so as to numerically
propagate the EKF filter along all the edges of a randomly
constructed roadmap (the method is, thus, only amenable for
an off-line/planning use).

With respect to this state-of-the-art, this paper then tackles
the problem of designing an online and active algorithm for
structure from known and controlled motion, i.e., assuming
that the camera velocity can be measured and actively modified
by the robot actuators (as it is often the case in robotic applica-
tions). The active component of the scheme makes it possible
to impose an estimation error transient response equivalent
to that of a reference linear second-order system with desired
poles. The developments build upon the theoretical framework
presented in [20]: in a nonlinear context, the observability
properties of the states under consideration are not (in general)
time-invariant but may depend on the current state and on the
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current inputs applied to the system. It is then possible to
simultaneously act on the estimation gains and system inputs
(i.e., the camera velocity for SfM) in order to optimize the
observation process.

The methodology proposed in [20] can be applied to all
those systems in which an invertible function of the unknown
states can appear linearly in the system dynamics, as it is
indeed the case for SfM problems. We then exploit this
fact and propose three concrete active SfM applications: 3D
structure estimation for (i) a point feature, (ii) a spherical
target and, (iii) a cylindrical target. The estimation of the depth
of a point feature has already been well studied in the past
literature (see, e.g., [2], [7], [9], [11], [21], [22]) although by
never considering the active perspective taken in this work.
On the other hand, the machinery proposed for the spherical
and cylindrical objects represents a novel contribution also in
terms of the chosen parameterization. Indeed, we show that
a suitable transformation of the observed features allows to
express the 3D sphere/cylinder structures in terms of image
measurements and of only one unknown constant parameter
(the sphere/cylinder radius) rather than the classical (and time-
varying) scaled orientation of the limb surface in the camera
frame. This, of course, significantly simplifies the SfM task.

We conclude by highlighting that the ability of both charac-
terizing and optimizing the transient response of the estimation
error brings several added values compared to more classical
inactive estimation strategies: for instance, it allows obtaining
the ‘best’ estimation error convergence when subject to real-
world constraints such as limited camera velocity or upper
bounds on the estimation gains due to noise, discretization,
or other typical non-idealities. Furthermore, from a more
theoretical perspective, the proposed methodology can also
be used to get insights into the optimal camera trajectories
needed to estimate the scene structure for particular classes
of SfM problems (e.g., when dealing with point features
or specific 3D geometrical primitives). Finally, we note the
many similarities between the SfM approach adopted in this
work and the notion of “sensor-based” or “ego-centric” Visual
SLAM, see, e.g., [23] for a recent overview. In both cases,
a robot/camera builds a 3D model of the environment in
its own body/sensor frame via a filtering technique: an EKF
in [23] and similar works, and the deterministic filter (but
with a fully characterized and actively optimizable transient
response) derived from [20] in this paper.

The rest of the paper is organized as follows: Sect. II reviews
the SfM problem in the context of nonlinear state observation
and briefly summarizes the methodology developed in [20] for
actively imposing a desired transient behavior to the estimation
error. Section III then focuses on the three SfM problems
considered in this work. Subsequently, Sect. IV reports the
corresponding simulative and experimental results obtained
with a manipulator equipped with an eye-in-hand camera.
Finally, Sect. V concludes the paper and discusses some future
directions.

II. PRELIMINARIES
In this section, we briefly summarize the active estimation

framework originally proposed in [20]. This is then applied to

SfM case studies discussed in the next Sect. III.

A. A nonlinear observation scheme

Let (s ,χ) ∈ Rm+p be the state of a dynamical system in
the form {

ṡ = fm(s, u, t) + ΩT (t)χ
χ̇ = fu(s, χ, u, t)

(1)

where s ∈ Rm and χ ∈ Rp represent, respectively, a
measurable and unmeasurable component of x, and u ∈ Rv is
the system input vector. In formulation (1) vector χ is required
to appear linearly in the dynamics of s (first equation).
Furthermore, matrix Ω(t) ∈ Rp×m and vectors fm(·) ∈ Rm
and fu(·) ∈ Rp are assumed to be generic but known and
sufficiently smooth functions w.r.t. their arguments which are
all available apart from the unknown value of χ in fu(·).

SfM problems can be recast to formulation (1) by taking
s as a set of visual features measured in the image, u =
(v, ω) as the camera linear/angular velocity in camera frame,
and χ as a suitable (and locally invertible) function of the
unknown structure of the scene to be estimated. For instance,
in the point feature case, χ can be taken as the inverse of the
feature depth [9], and, for image moments of planar scenes,
χ can be taken as the normal vector of the observed plane
scaled by its distance from the camera optical center [10].
Furthermore, in SfM one has Ω(t) = Ω(s(t), v(t)) with, in
particular, Ω(s, 0) ≡ 0: the camera linear velocity v(t) plays
a key role for the resolution of SfM problems1.

For a system in form (1), a possible estimation scheme can
be devised as follows [9], [20]: let (ŝ , χ̂) ∈ Rm+p be the
estimated state, ξ = s− ŝ, z = χ− χ̂, e = (ξ, z) be the total
error vector, and consider the following observer{

˙̂s = fm(s, u, t) + ΩT (t)χ̂+Hξ
˙̂χ = fu(s, χ̂, u, t) + ΛΩ(t)Qξ

(2)

where H > 0, Λ = ΛT > 0 and Q = QT > 0
are positive definite gain matrices. Note that observer (2) is
function of only measured/known quantities, with in particular
a feedback action on the measurable error component ξ. The
corresponding estimation error dynamics is then given by ξ̇ = −Hξ + ΩT (t) z
ż = −ΛΩ (t)Qξ + (fu(s, χ, u)− fu(s, χ̂, u))

= −ΛΩ (t)Qξ + g(e, t)
(3)

with g(e, t) being a ‘perturbation term’ vanishing w.r.t. the
error vector e, i.e., such that g(0, t) = 0, ∀t. The origin of (3)
can be proven to be locally exponentially stable if and only
if (iff) the following Persistency of Excitation (PE) condition
holds ∫ t+T

t

Ω (τ)ΩT (τ) dτ ≥ γIp > 0, ∀t ≥ t0, (4)

1This is due to the well-known fact that, under perspective and spherical
projection, the motion in the image induced by pure rotations of the camera
(i.e., when v = 0) does not depend on the structure of the scene.
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for some T > 0 and γ > 0, with In representing the n × n
identity matrix2.

Remark II.1. We note that the local stability properties of the
error dynamics (3) are due to the perturbation term g(e, t)
which affects an otherwise globally exponentially stable error
system. Indeed, in the special case χ̇ = 0 (unknown but
constant parameters), one has g(e, t) ≡ 0 and global ex-
ponential convergence for the error system (3). This is, for
instance, the case of the structure estimation problems for
spherical and cylindrical objects considered in Sects. III-B
and III-C. We stress, however, that the estimation scheme (2)
is not restricted to this particular situation but can be applied
(with, in this case, only local convergence guarantees) to the
more general case of state observation problems in which
the unknown χ is subject to a non-negligible dynamics as
in (1). The depth estimation for a point feature discussed in
the following Sect. III-A falls in this class.

The PE condition (4) plays the role of an observability
criterium: convergence of the estimation error e(t) → 0 is
possible iff the square matrix Ω (t)ΩT (t) ∈ Rp×p remains
full rank in the integral sense of (4). We note that if m ≥ p,
that is, if the number of independent measurements s is larger
or equal to the number of estimated quantities χ, then it is
possible to instantaneously satisfy (4) by enforcing

Ω (t)ΩT (t) ≥ γ

T
Ip, ∀t. (5)

In the rest of this work we will only consider this (more
restrictive) observability condition.

B. An active estimation strategy

As clear from (4) and (5) (some measure of) the norm
of matrix ΩΩT determines the convergence properties of
the error system (3). Furthermore, since in the SfM case it
is Ω(t) = Ω(s(t), v(t)), it is meaningful to study how to
optimize the camera linear velocity v in order to affect matrix
ΩΩT and, as a consequence, to shape the transient response
of the error vector e(t). The active strategy developed in [20]
and summarized hereafter shows how to achieve this goal.

Let UΣV T = Ω be the singular value decomposition of
matrix Ω, where Σ = [S 0], S = diag(σi) ∈ Rp×p, and
0 ≤ σ1 ≤ . . . ≤ σp are the p singular values of Ω. Let also
Q = αIm and Λ = βIp, with α > 0, β > 0 (scalar gain
matrices). By designing the gain matrix H in (2) as

H = V

[
D1 0
0 D2

]
V T (6)

with D1 ∈ Rp×p > 0, D2 ∈ R(m−p)×(m−p) > 0, it is
possible to show that, under the change of coordinates

η =
1√
αβ
S−1UTz (7)

2The stability proof requires some additional technical assumptions on the
regularity of the vanishing disturbance g (locally Lipschitz in a neighbourhood
of the origin), on its growth bound w.r.t. ‖e‖ (which, since g(·) → 0 if
(v, ω)→ 0, can always be made small enough by limiting (v, ω)), and on
the norm of the initial error ‖e(t0)‖. The interested reader can find in [9] a
detailed derivation of the proof.

and in the approximation S−1UT ≈ const, the behavior of
vector η (and hence of the estimation error z = χ − χ̂)
is governed by the following linear (and almost diagonal)
dynamics

η̈ = (Π−D1)η̇ − αβS2η. (8)

System (8) can be interpreted as a (unit-)mass-spring-damper
system with diagonal stiffness matrix αβS2 and damping
matrix D1, together with an additional ‘perturbing’ term Π
whose full expression can be found in [20].

The convergence rate of (8) is then related to its slowest
mode dictated by the ‘stiffness value’ αβσ2

1 , with σ2
1 being

the smallest eigenvalue of the square matrix ΩΩT . Therefore,
for the sake of imposing a desired transient response to vector
η(t) (i.e., to the estimation error z(t) = χ(t) − χ̂(t)), one
can ‘place the poles’ of (8) by (i) shaping the damping
factor D1 in (6) (a free parameter), (ii) regulating the value
of the smallest eigenvalue σ2

1 by acting upon vector v, and
(iii) suitably choosing the gain αβ (a free parameter).

For what concerns the design of matrix D1, we first note
that, as explained in [20], matrix Π in (8) can be regarded as a
second-order perturbation term affecting the dissipative action
induced by D1. Therefore, neglecting the effects of matrix
Π and choosing D1 = diag(ci), ci > 0, allows obtaining a
completely decoupled transient behavior for (8)

η̈i + ciη̇i + αβσ2
i ηi = 0, i = 1 . . . p. (9)

One can then take, for instance, ci = c∗i = 2
√
αβσi in order

to impose a critically damped evolution to the estimation error
(coincident eigenvalues for (9)).

As for the regulation of σ1(t), being Ω = Ω(s, v), it is

˙(σ2
i ) = Jv,iv̇ + Js,iṡ (10)

where the Jacobian matrices Jv,i ∈ R1×v and Js,i ∈ R1×n

can be computed in closed form, see [20] for all the details. By
inverting the differential mapping (10), vector v̇ can then be
exploited so as to, e.g., asymptotically enforce σ2

1(t)→ σ2
1,des

for some desired value σ2
1,des > 0. We note that ensuring

σ2
1(t) → σ2

1,des > 0 also automatically satisfies the observ-
ability condition (5).

Finally, the following considerations hold for the choice of
gain αβ in (8). In the SfM context, the norm of matrix ΩΩT

is strongly related to the norm of the camera linear velocity
v. Roughly speaking, the ‘faster’ the motion (∼ larger ‖v‖),
the ‘larger’ the value of σ2

1 (∼ larger ‖ΩΩT ‖). Therefore, in
order to maximize the estimation convergence speed of (8)
(dictated by αβσ2

1), one can equivalently (i) travel at a larger
speed ‖v‖ for a given gain αβ, or (ii) increase the gain αβ for
a given ‖v‖. While increasing the gain αβ may always appear
more convenient in terms of reduced control effort, practical
issues such as noise, discretization or quantization errors, may
impose an upper limit on the possible value of αβ, thus
necessarily requiring a larger ‖v‖ for obtaining the desired
convergence speed. Furthermore, as in all SfM problems, a
‖v‖ 6= 0 is also mandatorily required for guaranteeing σ2

1 > 0
(a non-translating camera cannot estimate the scene structure).

Remark II.2. We note that the proposed strategy is an active
one since, in the general case, inversion of (10) will result
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in a camera linear velocity v optimized as a function of the
system measured state s in order to attain a desired σ2

1,des

over time. We also highlight the role played by the gain matrix
H weighting the feedback term in observer (2): the proposed
machinery in fact relies on a suitable state-dependent design
of the damping matrix H via the choice of D1 = diag(c∗i )
with c∗i = 2

√
αβσi. For the interested reader, this state-

dependent design is conceptually equivalent to the shaping
of the damping factor adopted in the context of impedance
control for robot manipulator arms, see, e.g., [24].

Remark II.3. We also note that, in general, it is not possible
to fully compensate for the term Js,iṡ when inverting (10).
Indeed, the expression in (1) implies a direct dependence of ṡ
from the unmeasurable χ, so that an exact evaluation of ṡ is
not obtainable in practice. A possible solution could be to use
an approximation ˆ̇s of ṡ obtained by evaluating fu(·) on the
current estimate χ̂. Another simple workaround is, however,
to just enforce ṡ ' 0 by imposing a constraint on the camera
motion. A combination of both strategies is, of course, also
possible. The next sections will present some examples in this
sense.

Remark II.4. It can be finally shown that, in the special
situation p = 1 (only one quantity to be estimated), if
σ1(t) ≡ const then S−1UT ≡ const in (7) and matrix Π
has no disturbing effects on (8). Therefore, in this case it is
always possible to exactly enforce the ideal estimation error
dynamics (9) by just keeping ‖Ω(t)‖2 = σ2

1(t) = const during
the camera motion. This situation will apply to all the case
studies discussed in the rest of the paper.

III. APPLICATIONS TO STRUCTURE FROM
MOTION

In this section we illustrate the application of the proposed
active estimation framework to three concrete SfM problems:
(i) estimation of the 3D coordinates of a point feature, (ii) esti-
mation of the 3D position and radius of a spherical target, and
(iii) estimation of the 3D position and radius of a cylindrical
target.

In the point feature case, the effects of the adopted projec-
tion model on the estimation convergence are also explicitly
considered by discussing the differences between the two
popular choices of planar and spherical projection models.
For the spherical and cylindrical targets, we instead propose
two novel minimal parameterizations that allow to express the
sphere/cylinder 3D structures in terms of measured visual fea-
tures and of a single unknown parameter (the sphere/cylinder
radius). This allows, in all three cases, to reduce the SfM task
to the estimation of a single unknown quantity (point feature
depth or sphere/cylinder radius), thus satisfying the require-
ments of Remark II.4 for exactly imposing the ideal dynam-
ics (9) to the estimation error.

A. Depth estimation for a point feature

1) Planar projection model: Let p = (x, y, 1) =
(X/Z, Y/Z, 1) ∈ R3 be the perspective projection of a 3D
point P = (X, Y, Z) onto the image plane of a calibrated

pinhole camera. As it is well know [25], the differential
relationship between the image motion of a point feature and
the camera linear/angular velocity u = (v, ω) ∈ R6 expressed
in camera frame is

[
ẋ
ẏ

]
=

−
1

Z
0

x

Z
xy −

(
1 + x2

)
y

0 − 1

Z

y

Z
1 + y2 −xy −x

u
(11)

where Z is the depth of the feature point. The dynamics of Z
is

Ż =
[
0 0 −1 −yZ xZ 0

]
u.

The expression in (11) is not linear in Z but it is linear in
1/Z. Therefore, by defining s = (x, y) ∈ R2 and χ = 1/Z,
with then m = 2 and p = 1, we obtain for (1)

fm (s, u, t) =

[
xy −

(
1 + x2

)
y

1 + y2 −xy −x

]
ω

Ω (s, v) =
[
xvz − vx yvz − vy

]
fu (s, χ, u, t) = vzχ

2 + (yωx − xωy)χ

, (12)

with the perturbation term g(e, t) in (3) taking the expression

g(e, t) = vz
(
χ2 − χ̂2

)
+ (yωx − xωy) z, (13)

so that g(0, t) = 0 as expected. Note that, once χ has been
estimated, one can obviously retrieve the 3D position of the
point feature as P = p/χ.

In the point feature case matrix ΩΩT reduces to its single
eigenvalue which, for a planar projection model, takes the
expression

σ2
1 = ‖Ω‖2 = (xvz − vx)2 + (yvz − vy)2. (14)

Furthermore, using (14), the Jacobian Jv,1 in (10) is given by

Jv,1 = 2

 vx − xvz
vy − yvz

(xvz − vx)x+ (yvz − vy) y

T . (15)

Since σ2
1 does not depend on ω, it is then possible to freely

exploit the camera angular velocity for fulfilling additional
goals of interest without interfering with the regulation of
σ2
1(t) (only affected by v). For instance, as in [17], one can

use ω for keeping s ' const so as to make the effects of ṡ
negligible when inverting (10) w.r.t. v̇, see Remark II.3.

We now note that σ2
1 in (14) depends on both the camera

linear velocity v and on the location p of the feature point
on the image plane. Since the value of σ2

1 directly affects the
convergence speed of the estimation error, it is interesting to
study what conditions on p and v result in the largest possible
σ2
1 (i.e., the fastest possible convergence for a given gain αβ).

Letting e3 = (0, 0, 1) being the camera optical axis, it is (by
inspection) [

ΩT

0

]
= [e3]× [p]× v

where [v1]× is the skew-symmetric matrix representing the
cross product operator for 3D vectors (i.e., [v1]× v2 = v1 ×
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v2). Therefore,

σ2
1 =

[
Ω 0

] [ΩT

0

]
= ‖ [e3]× [p]× v‖2

= ‖p‖2‖v‖2 sin2 (θp,v) sin2
(
θe3,[p]×v

)
where θp,v and θe3,[p]×v represent the angles between vectors
(p, v) and vectors (e3, [p]× v), respectively. The maximum
attainable value for σ2

1 is then

σ2
max = max

p,v
σ2
1 = ‖p‖2‖v‖2. (16)

This maximum is obtained when the camera linear velocity v
is such that p ⊥ v and e3 ⊥ [p]× v, i.e., rearranging in matrix
form [

pT

eT3 [p]×

]
v =

[
x y 1
−y x 0

]
v = 0. (17)

If p 6= e3 (point feature not at the center of the image
plane), system (17) has (full) rank 2 and admits the unique
solution (up to a scalar factor)

v = δ [p]
2
× e3, δ ∈ R.

This requires the linear velocity v to be orthogonal to p and
to lie on the plane defined by vectors p and e3 (i.e., v must
belong to a straight line as shown in Fig. 1a).

If p = e3 (point feature at the center of the image plane),
system (17) loses rank and any v ⊥ e3 is a valid solution,
see Fig. 1b.

It is then possible to draw the following conclusions: for
a given norm of the linear velocity ‖v‖ (i.e., the amount of
‘control effort’), system (17) determines the direction of v re-
sulting in σ2

1 = σ2
max (maximization of σ2

1). These conditions
are summarized in Figs. 1a and 1b. The value of σ2

max is,
however, also a function of the feature point location p which
can be arbitrarily positioned on the image plane. In particular,
σ2
max = ‖v‖2 for p = e3 and σ2

max = ‖p‖2‖v‖2 > ‖v‖2
∀p 6= e3, with lim‖p‖→∞ σ2

max(p) = ∞. The value of ‖p‖
(distance of the point feature from the image center) thus acts
as an amplification factor for σ2

max. Therefore,
1) the smallest σ2

max (i.e., the slowest ‘optimal’ convergence
for the depth estimation error) is obtained for the smallest
value of ‖p‖, i.e., when p = e3 =⇒ ‖p‖ = 1 (feature
point at the center of the image plane). It is worth noting
that in this case vz = 0 (from the condition v ⊥ p) and
σ2
max = ‖v‖2 = v2x+v

2
y: the camera moves on the surface

of a sphere with a constant radius (depth) pointing at the
feature point. Also, being in this case χ̇ = Ż/Z2 = 0, one
has g(e, t) ≡ 0 and global convergence for the estimation
error (see Remark II.1);

2) the largest σ2
max (i.e., the fastest ‘optimal’ convergence

for the depth estimation error) is obtained for the largest
possible value of ‖p‖. In the usual case of a rectangular
image plane centered at the origin, this translates into
keeping the feature point positioned at one of the four
image corners. However, compared with the previous
case, this results in a g(e, t) 6= 0 and only local
convergence for the estimation error.

e3

p

v

v

S

e1 e2

(a)

e3

p

v

v

v v

v

v

e1 e2

(b)

Fig. 1: Optimality conditions for the camera linear velocity v
as dictated by system (17). (a): when p 6= e3, vector v must
be orthogonal to p and lie on the plane S spanned by p and
e3 (that is, v must belong to a specific straight line). (b): when
p = e3, any v ⊥ e3 is a valid solution to (17).

2) Spherical projection model: We now develop the depth
estimation machinery for the spherical projection model. In
this case, the following quantity is taken as visual feature
measured on the image plane

s =
p

‖p‖ =
P

‖P ‖ ∈ S2,

where S2 represents the unit sphere and, as well-known [26],

ṡ =

[
1

‖P ‖
(
ssT − I3

)
[s]×

]
u,

and

d

dt

(
1

‖P ‖

)
= − 1

‖P ‖2
d‖P ‖
dt

= − s
T Ṗ

‖P ‖2 =
sTv

‖P ‖2 .

Hence by taking χ = 1/‖P ‖ one obtains for (1)
fm (s, u) = [s]× ω

Ω (s, v) = −vT
(
I3 − ssT

)
fu (s, χ,u) = χ2sTv

(18)

with m = 3, p = 1, and g(e, t) = (χ2 − χ̂2)sTv for
the perturbation term in (3). We note that, although in this
case m = 3, vector s is subject to the constraint ‖s‖ = 1,
thus resulting in only two independent measurements (as in
the previous case of planar projection). Moreover, from the
estimated χ one can easily retrieve P = s/χ.

For the spherical projection model, the eigenvalue determin-
ing the convergence of the estimation error is

σ2
1 = ΩΩT = vTv − (sTv)2,

with thus
Jv,1 = 2vT (I3 − ssT ). (19)

As before, σ2
1 does not depend on ω which can then be

exploited to fulfil any additional task of interest (e.g., keeping
s ' const during motion).
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As for the conditions on s and v that yield maximization
of σ2

1 , one clearly has

σ2
1 = σ2

max = max
s,v

σ2
1 = ‖v‖2 (20)

iff sTv = 0 (linear velocity orthogonal to the projection ray
passing through P ). We also note that, in this case, one has
χ̇ = 0 and g(e, t) ≡ 0 (constant unknown state and global
convergence for the estimation error) regardless of the location
of s on the image plane.

3) Comparison between planar and spherical projection
models: for a spherical projection model, maximization of
the eigenvalue σ2

1 imposes only one condition for the linear
velocity v (sTv = 0). When this condition is met, one has
σ2
1 = σ2

max = ‖v‖2 and global convergence for the estimation
error whatever the location of the feature point s. This is
equivalent to what was obtained for the planar projection case
in the special situation p = e3 (indeed the two projection
models coincide for p = s = e3). However, with a spherical
projection model one also loses the possibility to increase the
estimation convergence rate by suitably positioning the point
feature s on the image plane (since in this case σ2

max does
not depend on s).

It is then worth noting the complementarity of the two
cases: for a given ‖v‖, and provided the optimal condition
pTv = 0 is satisfied, the planar projection allows obtaining a
faster error convergence at the price of local stability (increase
of the perturbation g) by suitably positioning s = (x, y)
(the larger ‖s‖ the faster the convergence). The spherical
projection guarantees global error convergence for any location
of the feature point but at the price of being always subject to
the same convergence rate only function of the control effort
‖v‖.

B. Structure estimation for a spherical target

We now detail the application of the proposed estimation
machinery to the case of a spherical target. Consider a sphere
Os of radius R and let P 0 = (X0, Y0, Z0) be the coordinates
of its center in the camera frame. Let also

L : nTX + d = 0

represent the planar limb surface associated to the sphere in
the camera frame, where X ∈ R3 is any 3D point on the
plane, n ∈ S2 is the plane unit normal vector and d ∈ R the
plane distance to the camera center [27]. Figure 2 shows the
quantities of interest.

The depth Z of any point X lying on L can be expressed
in terms of its normalized image coordinates p = (x, y, 1) as

1

Z
=
X0

K
x+

Y0
K
y +

Z0

K
= χTp, (21)

where K = P T
0 P 0−R2 and χ = P 0/K = −n/d ∈ R3 rep-

resent unmeasurable quantities (analogously to Z for the point
feature case), see [28] for all the details. The interaction matrix
of a generic (i, j)-th order moment mij evaluated on the
image of Os depends linearly on χ, see [10], [27]. Therefore,
a first possibility to retrieve the sphere 3D parameters (P 0, R)
would be to implement the estimation scheme (2) with s

C

P 0

Os
L

dI n

R

Fig. 2: Spherical target Os and planar limb surface L.

being a suitable collection of image moments (e.g., area and
barycenter). It is in fact possible to show that (see Appendix A)

χ̇ = − v
K
− [ω]×χ+ 2χχTv

and that K can be expressed in terms of image moments
and of vector χ itself, so that, having estimated χ, one can

consequently retrieve P 0 = χK and R =
√
P T

0 P 0 −K.
Although conceptually valid, this solution requires the con-

current estimation of three time-varying quantities (vector
χ(t)). On the other hand, inspired by [29], we now describe
a novel representation of the sphere projection on the image
plane that allows to reformulate the structure estimation task in
terms of a single unknown constant parameter, i.e., the sphere
radius R.

To this end, define vector s = (sx, sy, sz) ∈ R3 as

sx =
xg
sza21

sy =
yg
sza21

sz =

√
1 + a21
a21

, (22)

where (xg, yg, n20, n11, n02) represent the barycenter and
normalized centered moments of order 2 measured from the
elliptical projection of the sphere Os on the image plane, and
a1 is the minor axis of the observed ellipse with [27]

a21 = 2

(
n20 + n02 −

√
(n20 − n02)2 + 4n11

)
. (23)

We thus note that vector s can be directly evaluated in terms
of measured image quantities.

From [27], [29] one also has

xg =
X0Z0

Z2
0 −R2

, yg =
Y0Z0

Z2
0 −R2

, a21 =
R2

Z2
0 −R2

(24)

which, when plugged in (22) and (23), result in the equivalent
expression s = P 0/R. Since vector s can be computed from
image measurements as in (22), estimation of the (unknown)
sphere radius R allows to recover the 3D sphere center as
P 0 = sR.

Exploiting now the results of [29], it is possible to show
that

ṡ =

[
− 1

R
I3 [s]×

]
u. (25)
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Since (25) is linear in 1/R, we can define χ = 1/R, with then
m = 3 and p = 1, and obtain for (1) and (3)

fm (s, u) = [s]× ω

Ω (s, u) = −vT

fu (s, χ, u) = 0

g(e, t) = 0

. (26)

We note that in this case it is always possible to obtain
global convergence for the estimation error since χ̇ = 0 and
therefore g(e, t) = 0 by construction (see Remark II.1). Fur-
thermore, matrix ΩΩT reduces again to its single eigenvalue
σ2
1 = ‖v‖2 and, if σ2

1(t) ≡ const > 0, the ‘ideal’ estimation
error dynamics (9) can be exactly obtained. One also has
Ω = Ω(v) and Jv,1 = 2vT .

We finally note the following facts: first, contrarily to the
previous cases, here ṡ has no effect on the regulation of σ2

1

which is only function of the camera linear velocity v. It
is then of course still possible to freely exploit the camera
angular velocity ω for, e.g., keeping the sphere at the center of
the image by regulating (sx, sy) to zero. Second, we note the
strong similarities with the previous optimal results obtained
for a point feature under a spherical projection model (σ2

max

in (20)): in both cases the maximum estimation convergence
rate for a given ‖v‖ does not depend on the position of the
observed object on the image plane.

C. Structure estimation for a cylindrical target

We now finally consider the case of SfM for a 3D cylindrical
object. A cylinder Oc can be described by its radius R > 0
and by its main axis a ∈ S2 passing through a 3D point P 0 =
(X0, Y0, Z0), with ‖a‖ = 1 and, w.l.o.g., aTP 0 = 0 (P 0 can
be chosen as the closest point on a to the origin of the camera
frame [17]). Moreover, analogously to the sphere, a cylinder
is also associated with a planar limb surface L such that (21)
holds for any point on L with projection p = (x, y, 1).
Therefore, a possibility is to estimate the three unknown
parameters of the limb plane L (vector χ) by exploiting (at
least) three image measurements, see [17] and Appendix B for
some details in this sense. However, following the previous
developments, we now propose a novel representation of the
cylinder projection on the image plane which, again, allows
to obtain the cylinder parameters (P 0, a, R) in terms of
image measurements and of the unknown but constant cylinder
radius R which, therefore, represents the only quantity to be
estimated.

Let (ρ1, θ1) and (ρ2, θ2) be the (measured) distance/angle
parameters of the two straight lines resulting from the projec-
tion of the cylinder on the image plane, and

n1 = (cos θ1, sin θ1, −ρ1), n2 = (cos θ2, sin θ2, −ρ2)
(27)

be the normal vectors to the two planes passing through the
origin of the camera frame and the two above-mentioned
projected lines3. Figure 3 gives a graphical representation
of the quantities of interest. Note that vectors n1 and n2

3The two planes are therefore tangent to the surface of the cylinder.

C

I

P 0

a

Oc

n1

n2

L P1

P2

n

R

Fig. 3: Camera C and cylindrical target Oc with the planar
limb surface L and the other planes of interest P1 and P2

can be directly evaluated from image measurements (the line
parameters). We then define vector s ∈ R3 as

s =
∆

‖∆‖2
(28)

with

∆ =
1

2

(
n1

‖n1‖
+

n2

‖n2‖

)
. (29)

Vector s is, thus, also directly obtainable in terms of image
quantities.

We now note that, from [30], an equivalent expression for
vectors n1, n2 in terms of the cylinder 3D geometry can be
obtained as

n1 =
1

N1



R
X0√
K
− α

R
Y0√
K
− β

R
Z0√
K
− γ


, n2 =

1

N2


R X0√

K
+ α

R
Y0√
K

+ β

R
Z0√
K

+ γ

 (30)

with

K =
√
P T

0 P 0 −R2

(α, β, γ) = [P 0]×a

N1 =

√(
R X0√

K
− α

)2
+
(
R Y0√

K
− β

)2
N2 =

√(
R X0√

K
+ α

)2
+
(
R Y0√

K
− β

)2
,

(31)
thus yielding

n1

‖n1‖
=

1

P T
0 P 0

RX0 − α
√
K

RY0 − β
√
K

RZ0 − γ
√
K


n2

‖n2‖
=

1

P T
0 P 0

RX0 + α
√
K

RY0 + β
√
K

RZ0 + γ
√
K


. (32)
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Plugging (32) in (29) results in the equivalent expression

∆ =
R2

P T
0 P 0

s

which, using (28), finally yields the following relationship
between image quantities and cylinder 3D structure

s =
∆

‖∆‖2
=
P 0

R
. (33)

As for the cylinder axis a, exploiting (30) one has

[n2]×n1 =
2R

N1N2

√
K

Z0β − Y0γ
X0γ − Z0α
Y0α−X0β

 =
2R

N1N2

√
K

αβ
γ


×

P 0

=
2R

N1N2

√
K

[
[P 0]× a

]
×P 0 =

2RP T
0 P 0

N1N2

√
K
a

(34)

where in the last step the property aTP 0 = 0 was used. Since
‖a‖ = 1, from (34) it is

a =
[n2]×n1∥∥[n2]× n1

∥∥ . (35)

The cylinder axis a can then be directly obtained in terms of
only measured quantities.

We now note that, as in the sphere case, the only unknown
left is the cylinder radius R: once known, the cylinder 3D
structure can be fully recovered from image measurements as
P 0 = Rs from (33) and a from (35).

An estimation scheme for R can be obtained exploiting the
following differential relationship whose derivation is given
in Appendix C

ṡ =

[
− 1

R

(
I3 − aaT

)
[s]×

]
u. (36)

Note the similarity of (36) with (25) for the sphere case.
Being (36) linear in 1/R, one can then apply observer (2)

by choosing χ = 1/R with m = 3 and p = 1, and obtaining
fm (s, u) = [s]× ω

Ω (s, u) = −vT
(
I3 − aaT

)
fu (s, χ, u) = 0

g(e, t) = 0

. (37)

Note how, again, being χ̇ = 0 it is g(e, t) = 0 (global
convergence for the error system (3) as in the sphere case).

Matrix ΩΩT reduces to its single eigenvalue

σ2
1 = ΩΩT = ‖v‖2 − (aTv)2. (38)

It is worth comparing (38) with the result obtained for the
sphere (σ2

1 = ‖v‖2). In the cylinder case, the convergence
rate of the estimation error is affected by both the norm and
the direction of the linear velocity v. In particular, for a
given ‖v‖ = const, the maximum value for σ2

1 is obtained
when v has a null component along the cylinder axis a
(aTv = 0) with, in this case, σ2

1 = σ2
max = ‖v‖2. Intuitively,

any camera motion along the cylinder axis does not provide
any useful information to the estimation task. Furthermore,
as in all previous cases, keeping a σ2

1(t) = const allows
to exactly enforce the ideal estimation error dynamics (9),
see Remark II.4.

Finally, from (38) one has

˙(σ2
1) = Jv,1v̇ + Ja,1ȧ = Jv,1v̇ + Ja,1[a]×ω (39)

with Jv,1 = 2vT
(
I3 − aaT

)
and Ja,1 = 2vTavT . Al-

though (39) also depends on the angular velocity ω, it is
possible to fully compensate for the effects of Ja,1[a]×ω (a
known quantity) when inverting (39) w.r.t. v̇ as discussed in
Sect. IV-D. Therefore, one can act on v̇ to regulate the value of
σ2
1(t) and, at the same time and in a decoupled way, exploit the

camera angular velocity ω for implementing additional tasks
of interest such as keeping the cylinder axis a at the center of
the image plane by enforcing (sx, sy) = 0.

IV. SIMULATION AND EXPERIMENTAL RESULTS
In this section we show some experimental and simulation

results meant to validate the theoretical developments of the
previous sections. The experiments were run by employing
a greyscale camera with a resolution of 640 × 480 px and a
framerate of 30 fps. The camera was mounted on the end-
effector of a 6-dofs Gantry robot commanded in velocity
at a frequency of 100Hz. All the image processing and
feature tracking were implemented via the open-source ViSP
library [31]. Some snapshots of the three experiments are
shown in Fig. 4 where the result of the image processing is
highlighted in red.

A video of the reported experiments (including the three
cases of point, sphere and cylinder) is also attached to the
paper for the reader’s convenience.

A. Comparison of planar and spherical projection models

We start by comparing via simulation results the effects
of adopting a planar and spherical projection model for the
depth estimation of a point feature as extensively discussed
in Sect. III-A1 and Sect. III-A2. We considered three cases
differing for the location on the image plane at which the point
feature was (purposely) kept exploiting the camera angular
velocity ω:

1) in case I the point feature was kept at the center of the
image plane (red line in the following plots);

2) in case II the point feature was kept at one of the corners
of an image plane with the same size of the camera used
in the experiments (green line in the following plots);

3) in case III the point feature was kept at one of the corners
of an image plane with a size five times larger than case II
(blue line in the following plots).

In all cases, a constant camera velocity v(t) ≡ v(t0) = const
was kept during motion, with the initial condition v(t0) chosen
so as to comply with the optimality conditions discussed in
Sects. III-A1 and III-A2 for letting σ2

1 = σ2
max (e.g., with

v(t0) being a solution of (17) in the planar projection case).
Figure 5a shows the behavior of z(t) for the three cases

when using a planar projection model. We can then note how
the convergence rate of the estimation error increases from
case I (slowest convergence) to case III (fastest convergence)
as predicted by the theory (for the same ‖v‖ a larger ‖p‖ re-
sults in a larger σ2

max). Similarly, Fig. 5b reports the behavior
of σ2

1(t) for the three cases: as expected, σ2
1(t) results largest
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(a) (b) (c)

Fig. 4: Camera snapshots for the point feature (a), the sphere (b) and the cylinder (c) experiment.

for case III. Note also how σ2
1(t) for case II (green line) is only

slightly larger than case I (red line). This is due to relatively
small size of the image plane of case II whose dimensions
were set as those of the real camera used for the experiments.
Finally, Fig. 5c shows the behavior of the perturbation term
g(e, t) in the three cases: here, one can verify how g = 0 for
case I, with then an increasing |g| for cases II and III. Indeed,
as discussed in Sect. III-A1, the ‘amplification’ effect on σ2

max

obtained by increasing ‖p‖ comes at the price of an increased
magnitude of the perturbation g. This is also evident in Fig. 5a
where the ideal response of (9) is plotted with dashed lines for
the three considered cases. We can thus note how z(t) in case I
presents a perfect match with its corresponding ideal response,
with then an increasing (albeit very limited) mismatch in the
other two cases due to the increased effect of the perturbation
g.

As for the spherical projection model, Fig. 5d reports the
behavior of the estimation error z(t) for the three cases under
consideration, together with the ideal response (9). Here, the
symbol zs(t) is used to denote the estimation error in the
spherical projection case in order to distinguish it from the
error obtained with the planar projection model. All the plots
result perfectly superimposed as expected from the analysis of
Sect. III-A2. Indeed, in the spherical projection case, σ2

max =
‖v‖2 regardless of the location of p and g(t) ≡ 0. However,
absence of perturbation terms is obtained at the expense of the
convergence rate of zs(t), which indeed results slower or equal
to that of z(t) in the planar projection case. This is shown in
Fig. 5e where the behavior of z(t)− zs(t) is reported for the
three cases. We can then note how z(t) − zs(t) = 0 only in
case I, as the planar and spherical models coincide when the
feature point is at the center of the image plane.

These results then fully confirm the validity of the theoreti-
cal analysis reported in Sects. III-A1 and III-A2. However, we
also note the marginal effects of the two projection models on
the estimation performance when applied to an image plane
of size comparable to that of the real camera used in our
experimental setup. Therefore, in the following experimental
results we will only consider the case of planar projection
model.

B. Depth estimation for a point feature

We here report some experimental results for the depth
estimation of a point feature under a planar projection model
(Sect. III-A1). The following experiments are meant to demon-
strate how the proposed active estimation framework can be
exploited to select online the ‘best’ camera motion. As visual
target, we made use of a circular white dot of 5mm radius
painted on a planar black surface and sufficiently far from the
camera in order to safely consider it as a ‘point feature’.

Figure 6a shows the evolution of the estimation error z(t) =
1/Z(t) − 1/Ẑ(t) for two experiments4 in which ‖v(t)‖ =
‖v0‖ but with its direction being either optimized in order to
maximize the estimation convergence rate (case I, red line) or
kept constant so that v(t) = v0 = const (case II, blue line).
This effect was obtained by using the following control law5

v̇ =
v

‖v‖2 k1 (κdes − κ) + k2

(
I3 −

vvT

‖v‖2
)
JTv,1 (40)

with k1 > 0, k2 ≥ 0, κ = 1
2v

Tv, κdes = 1
2v

T
0 v0, and

Jv,1 given by (15). In fact, the first term in (40) enforces
the constraint ‖v(t)‖ = ‖v0‖ (same control effort in both
cases), while the second term allows to implement either case I
(k2 > 0) or case II (k2 = 0) (maximization of σ2

1) within the
null-space of the first constraint. In both cases, the angular
velocity ω was exploited for keeping the point feature at the
center of the image plane (x, y) → (0, 0). We note that,
as discussed in Sect. III-A1, when (x, y) = (0, 0) one has
σ2
max = v2x+v

2
y from (16) and σ2

1 = σ2
max iff vz = 0 (circular

motion around the point feature). The experiments were run
with the following parameters: αβ = 103 for gains Q and Λ,
c1 = c∗1 for D1 in (6), v(t0) = v0 = (0.03, 0,−0.04) m/s,
k1 = 5 and k2 = 104, thus resulting in the maximum value
σ2
max = 0.0025 for the eigenvalue σ2

1 .
As clear from Fig. 6b, while in case II the camera gets

closer to the point feature, the use of the active strategy of
case I results in a null component of v along the projection

4The ground truth Z0(t) was obtained from a previous offline estimation
of the 3D position P 0 in the world frame, and by then using the information
on the camera position provided by the robot forward kinematics.

5The value of v̇ resulting from this (and following) optimizations was
numerically integrated so as to obtain the commanded v(t) sent to the robot
low-level controller.
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Fig. 5: Simulation results comparing the planar and spherical projec-
tion models for the depth estimation of a point feature. The following
color coding is adopted for the three considered cases: red–case I,
green–case II, blue–case III. (a) behavior of the estimation error
z(t) in the planar projection case (solid lines) with superimposed
the corresponding ideal response (9) (dashed lines). (b) behavior of
σ2
1(t) for the three cases with, again, the largest σ2

1(t) in case III.
(c) behavior of the perturbation term g(e, t) for the three cases. (d)
behavior of the estimation error zs(t) for the spherical projection
model in the three cases. (e) behavior of z(t)− zs(t).
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Fig. 6: Experimental results for the point feature case. (a):
behavior of the estimation error for case I (solid red line)
and case II (solid blue line), and for an ‘ideal’ second order
system (9) with desired poles at σ2

max (dashed black line).
The two vertical dashed lines indicate the times T1 = 4.95 s
and T2 = 9.85 s at which the estimation error drops below the
threshold of 5mm. (b): Camera trajectories for case I (red line)
and case II (blue line) with arrows indicating the direction of
the camera optical axis. (c): behavior of σ2

1(t) for case I (red
line) and case II (blue line).

ray of the point feature (i.e., vz = 0) and in an associated
circular trajectory centered on the tracked point as predicted
by the theoretical analysis of Sect. IV-A. This then allows to
move faster in the ‘useful’ directions (while keeping the same
constant ‖v‖), and, thus, to increase the value of σ2

1 towards its
theoretical maximum σ2

max = 0.0025 (Fig. 6c), resulting in an
overall faster convergence for the estimation error (Fig. 6a).
Furthermore, Fig. 6a also reports the ideal response of (9)
with desired poles at σ2

max (dashed black line). We can then
note the almost perfect match with case I (solid red line):
indeed, as explained in Remark II.4, imposing a σ2

1(t) = const
allows to exactly obtain the ideal behavior governed by (9).
It is finally worth noting the accuracy of the reconstructed
depth: Fig. 6a reports two vertical dashed lines indicating, for
the two cases under consideration, the times T1 = 4.95 s and
T2 = 9.85 s at which the estimation error z(t) becomes smaller
than 5mm. We then obtained a standard deviation of approx.
0.8 and 0.3mm evaluated on a time window of 1 s after the
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times T1 and T2, respectively. These results then also confirm
the robustness of the proposed estimation approach despite the
unavoidable presence of noise and discretization in the image
acquisition. Note also that, as expected, the estimation error in
the (active) case I reaches ‘convergence’ (i.e., drops below the
threshold of 5mm) significantly faster than case II (T1 < T2).

C. Structure Estimation for a Spherical Target

We now discuss some experimental results concerning the
estimation of the radius of a spherical target: indeed, as
explained in Sect. III-B, estimation of R allows to fully recover
the sphere 3D position P 0 = sR where vector s is directly
obtainable from image measurements, see (22). As object to
be tracked, we made use of a white table tennis ball placed
on a black table and with a radius of 1.9 cm. As explained
in Sect. III-B, the convergence rate of the estimation error
for the sphere case only depends on the norm of the linear
velocity ‖v‖ and not on its direction. This fact is proven by
the first experiment where the estimation task is run twice
starting from two different positions and imposing two differ-
ent camera velocities but with same norm. These values were
used during the experiments: αβ = 2 · 103 for gains Q and
Λ, c1 = c∗1 = 2

√
αβσ1 for D1 in (6), and v = (−0.05, 0, 0)

m/s for case I and v = (0, 0.045, 0.02) m/s for case II, with
‖v‖ = 0.05 m/s in both cases. The camera angular velocity
ω was exploited to keep (sx, sy) ' (0, 0) (centered sphere).

Figure 7a shows the behavior of the estimation errors (solid
blue and red lines): note how the error transient response for
the two cases is essentially coincident, and also equivalent to
that of the reference second order system (9) with the desired
poles, i.e., by setting σ2

1 = ‖v‖2 = const and c1 = c∗1 in (9)
(dashed black line). The higher noise level in case II (red
line) is due to the larger distance between the camera and
the spherical target (see Fig. 7b) which negatively affects the
estimation task. The standard deviation of the radius estimation
error, computed on a time window of 1 s after z(t) has become
smaller than 1mm (vertical dashed lines in the plot), is 0.3mm
for case I and 0.2mm for case II: we can note, again, the
very satisfactory results obtained with the proposed estimation
scheme in terms of accuracy of the reconstructed sphere radius.
Note also how, in the two cases, the estimation error z(t) drops
below the threshold of 1mm at essentially the same time, as
expected (same error transient respose).

Since the direction of the velocity does not play any role
in this case, no optimization of σ2

1 can be performed under
the constraint ‖v‖ = const. On the other hand, the analysis
of Sect. II-B clearly indicates the importance of choosing a
proper value of c1 for the damping matrix D1 in (6). To show
this fact, we report here three experiments characterized by
the same camera trajectory of the previous case I, but by
employing three different values for c1, that is, c∗1, 2c∗1 and
0.5c∗1. These correspond to a critically damped, overdamped
and underdamped response for the ideal system (9), respec-
tively. The experimental results reported in Fig. 8 show that the
behavior of the estimation error z (solid lines) has an excellent
match with that of (9) (represented by dashed lines), thus fully
confirming (i) the validity of the proposed theoretical analysis,
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Fig. 7: Experimental results for the estimation of the radius
of a sphere using different constant camera velocities with the
same norm. (a): behavior of the estimation error z(t) for the
two cases (solid blue and red lines), and for an ‘ideal’ second
order system with poles at the desired locations (dashed black
line). The vertical dashed lines indicate the times at which the
estimation error z(t) drops below the threshold of 1mm. (b):
camera trajectories for case I (blue line) and case II (red line)
with arrows indicating the direction of the camera optical axis.
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Fig. 8: Experimental results for the estimation of the radius of
a sphere with c1 = c∗1 (blue line), c1 = 2c∗1 (green line) and
c1 = 0.5c∗1 (red line). The dashed lines represent the response
of an ‘ideal’ second order system with the corresponding
poles. Note again the almost perfect match between the plots.

and (ii) the importance of choosing the ‘right’ damping matrix
D1 for optimizing the convergence speed in addition to a
proper regulation of σ2

1 .

D. Structure Estimation for a Cylindrical Target

In this final section we report some experimental results
concerning the active estimation of the radius of a cylindrical
object. Indeed, as in the sphere case, knowledge of R allows to
fully recover the 3D point P 0 = Rs, with vector s from (33)
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and the cylinder axis a in (35) being directly obtainable from
image measurements. For these experiments we used a white
cardboard cylinder placed on a black table. The radius of the
cylinder was approximately 4.2 cm.

In the cylinder case, the convergence rate of the estimation
error depends both on the norm of the camera linear velocity v
and on its direction w.r.t. the cylinder axis a, see (38). It is then
interesting to optimize the direction of v under the constraint
‖v‖ = const for maximizing the eigenvalue σ2

1 (i.e., so as to
obtain the fastest convergence rate for a given ‘control effort’
‖v‖).

From (39), maximization of σ2
1(t) w.r.t. vector v can be

obtained by choosing

v̇ = JTv,1 − J†v,1Ja,1[a]×ω, (41)

with A† being the pseudoinverse of a matrix A, i.e., by
following the gradient of σ2

1 w.r.t. v and by compensating
for the (known) effects of input ω. In order to additionally
enforce the constraint ‖v‖ = const during the eigenvalue
maximization, eq. (41) can be modified as

v̇ =
v

‖v‖2 k1 (κdes − κ) + k2

(
I3 −

vvT

‖v‖2
)
(JTv,1 − J†v,1Ja,1[a]×ω),

(42)
with k1 > 0 and k2 > 0. Analogously to the point feature case,
the first term in (42) asymptotically guarantees ‖v(t)‖ = ‖v0‖
while the second term projects (41) onto the null-space of the
constraint ‖v(t)‖ = const. As for the angular velocity ω, we
exploited it for keeping the axis of the cylinder at the center
of the image plane by regulating (sx, sy) to (0, 0).

We now present three experimental results structured as
follows: in the first experiment (case I), the update rule (42)
is fully implemented (k1 > 0, k2 > 0) for actively optimizing
the direction of v. In the second experiment (case II), the
camera starts from the same initial pose and velocity as in
case I, but (42) is implemented with k1 > 0 and k2 = 0,
i.e., without performing any optimization of σ2

1 . Finally, in
the third experiment (case III), the camera starts from a
different initial pose and with a different velocity direction
(but same norm) w.r.t. the previous two cases, and (42) is
again fully implemented. This last case is meant to show how
the convergence properties of the estimator are not affected by
the direction of the camera linear velocity as long as it stays
orthogonal to the cylinder axis a.

The experiments were run with the following conditions:
αβ = 500 for gains Q and Λ, c1 = c∗1 for D1 in (6), k1 = 10,
k2 = 1 for cases I and III, and k2 = 0 for case II. As for
the linear velocity, we set v(t0) = v0 = (−0.01, 0.05, 0.05)
m/s for cases I and II, and v(t0) = v0 = (−0.05, 0.05, 0.01)
m/s for case III (note how ‖v0‖2 = 5.1× 10−3 m2/s2 in all
three cases).

The behavior of σ2
1(t) is shown in Fig. 9a: as explained

at the end of Sect. III-C, under the constraint ‖v‖ = const,
one has maxv σ

2
1 = ‖v‖2 as the largest possible value for

σ2
1 (obtained when vTa = 0). It is then possible to verify

that, indeed, σ2
1(t) → ‖v0‖2 in cases I and III despite the

different initial conditions of the experiments (different camera
pose and direction of v). The optimization in (42) results in a
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Fig. 9: Experimental results for the estimation of the radius of
a cylinder with the following color coding: blue – case I, red
– case II, green – case III. (a): behavior of σ2

1(t) for the three
cases (coincident for cases I and III and larger than in case II).
(b): behavior of z(t). The three vertical dashed lines indicate
the times T1 = 2.74 s , T2 = 4.78 s and T3 = 2.66 s at which
the estimation error drops below the threshold of 2mm. Note
how T1 ≈ T3 and T1 < T2 as expected. (c): two views of the
camera trajectories for the three cases with arrows indicating
the direction of the camera optical axis.

null component of v along a, thus allowing to move faster in
the ‘useful’ directions (while keeping a constant ‖v‖), and to
increase the value of σ2

1 to its maximum possible value. Also,
note how the value of σ2

1(t) for case II results smaller than
in the other two cases (as expected) since no optimization is
present in this case.

The behavior of the estimation error z(t) is shown
in Fig. 9b: again, we can note that the transient response for
cases I and III results essentially coincident and in almost
perfect agreement with that of the reference system (9) with
desired poles (dashed black line). As expected, the response
for case II (red line) is slower than in cases I and III. As in the
point feature case, Fig. 9b reports, for the three cases under
consideration, the times T1 = 2.74 s, T2 = 4.78 s and T3 =
2.66 s at which the estimation error drops below the threshold
2mm (vertical dashed lines). The standard deviation of the
error evaluated on a time window of 1 s after convergence has
been ‘reached’ resulted in the values of 0.4, 0.6 and 0.7mm,
respectively. We can then appreciate, again, the high accuracy
of the proposed approach in estimating the cylinder radius



SUBMITTED TO THE IEEE TRANSACTIONS ON ROBOTICS 13

R while also optimizing online for the camera motion. The
higher estimation error in case III can be ascribed to the
larger distance between the camera and the observed target,
which increases the effect of discretization errors. Note also
how T1 ≈ T3 < T2 thanks to the active optimization of the
error convergence rate. Finally, Fig. 9c depicts the camera
trajectories for the three experiments with arrows indicating
the direction of the optical axis. In case II the camera simply
travels along a straight line (v(t) ≡ v0), while in cases I
and III the direction of v is suitably modified resulting in a
trajectory lying on a plane orthogonal to a.

V. CONCLUSIONS

In this paper we have addressed the problem of active
SfM for recovering the 3D structure of a point feature and
of spherical and cylindrical objects by exploiting a novel
active estimation strategy tailored to the three cases under
consideration. For the depth estimation of a point feature, two
possibilities differing in the adopted projection model (planar
or spherical) were proposed and critically compared. The
results showed the complementarity of the two models in terms
of attainable convergence rates and basin of attraction for the
estimation error. In the spherical and cylindrical cases, we
instead showed how an adequate choice of the measured visual
features allows to reduce the SfM task to the estimation of a
single unknown constant quantity (the sphere/cylinder radius
R) in place of the classical (and time-varying) three parameters
(scaled normal vector of the planar limb surface). Availability
of this quantity allows to then retrieve the full 3D structure
of the observed targets. The reported experimental results
fully confirmed the validity of the theoretical analysis and, in
particular, the ability of the proposed active estimation strategy
to impose, in all three cases, a desired transient response to
the estimation error equivalent to that of a reference linear
second-order system with desired poles.

We are currently investigating the use of similar active
strategies for dealing with more complex 3D scenes. A pos-
sibility in this sense could be to decompose the SfM problem
in two phases by (i) extracting and classifying, possibly from
an initial measurement in the form of a point cloud, a set of
primitive shapes belonging to the classes described in our work
(points, spheres, cylinders or other 3D geometries), or also to
other classes such as 2D planar patches made of discrete/dense
sets of points; (ii) performing an (active) estimation of the
whole scene structure by applying the same strategy presented
here and by either sequencing the estimation of single scene
components, or considering an “extended” system obtained
by concatenating the observable and unobservable components
corresponding to each of the basic shapes/classes.

We are also investigating how to extend our solution to
problems involving the estimation of more parameters than
the number of available measurements (i.e., with m < p), thus
requiring to fulfil the more general observability condition (4).
Finally, we are also interested in the use of the proposed
active strategy in the context of vision-based manipulation
tasks. Some preliminary results in this context are reported
in [32] where it is shown, and experimentally proven, that an

online optimization of the estimation convergergence rate can
improve the performance in executing visual servoing tasks.

APPENDIX A
TIME-DERIVATIVE OF THE LIMB SURFACE PARAMETERS

FOR A SPHERICAL TARGET

Differentiation of χ from (21) w.r.t. time yields

χ̇ =
Ṗ 0K − P 0K̇

K2
=
Ṗ 0K − 2P 0P

T
0 Ṗ 0

K2
(43)

which, being Ṗ 0 = −v− [ω]×P 0 and exploiting the property
P T

0 [ω]×P 0 = 0, can be rewritten as

χ̇ = − v
K
− [ω]×P 0

K
+ 2

P 0P
T
0 v

K2
= − v

K
− [ω]×χ+ 2χχTv.

(44)
Letting sz = Z0/R (sz > 1), one then has

χTχ− 1

s2z
χ2
z =

X2
0 + Y 2

0 + Z2
0

K2
− R2

Z2
0

Z2
0

K2
=

1

K
. (45)

This then shows how 1/K can be expressed in terms of
χ and of s2z , with sz being directly obtainable from image
measurements, see (22).

APPENDIX B
ESTIMATION OF THE LIMB SURFACE PARAMETER FOR A

CYLINDRICAL TARGET

In order to estimate the parameters of the limb surface
associated to a cylindrical object, one could consider as
measurement the 2 + 2 angle-distance parameters (θi, ρi) of
the straight lines resulting from the projection of the cylinder
on the image plane. From [17], [27], the interaction matrix in
this case is given by:

L =


λρ1c1 λρ1s1 −λρ1ρ1 (1 + ρ21)s1 −(1 + ρ21)c1 0
λθ1c1 λθ1s1 −λθ1ρ1 −ρ1c1 −ρ1s1 −1
λρ2c2 λρ2s2 −λρ2ρ2 (1 + ρ22)s2 −(1 + ρ22)c2 0
λθ2c2 λθ2s2 −λθ2ρ2 −ρ2c2 −ρ2s2 −1


(46)

with si = sin θi, ci = cos θi, and{
λρi = − (χxρici + χyρisi + χz)
λθi = χyci − χxsi . (47)

Therefore, being (46) and (47) linear in the unknown χ, one
can again apply the estimation scheme (2) with s taken as
the vector of measured quantities on the image plane, i.e.,
s = (ρ1, θ1, ρ2, θ2).

As for the dynamics of χ, since (21) still holds for a
cylindrical object (see [27]), one can again exploit (43) with,
however, in this case

Ṗ 0 = −
(
I3 − aaT

)
v − [ω]×P 0

and thus

χ̇ = −
(

1

K
I3 − 2χχT

)(
I3 − aaT

)
v − [ω]× χ.

Finally, one can invoke (45) in order to express 1/K as a
function of χ and s2z , with sz being the third element of vector
s in (33).
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APPENDIX C
DERIVATION OF EQUATION (36)

We note that the cylinder axis a can be determined by the
intersection of two planes Pi : rTi X − di = 0, i = 1, 2, with

r1 =
[a]×P 0

‖P 0‖
, d1 = 0, r2 = − P 0

‖P 0‖
, d2 = ‖P 0‖, (48)

see Fig. 3. In particular, plane P1 passes through the camera
optical center, it is orthogonal to plane P2, and both planes
contain the axis a passing through P 0 (by construction).

Since Rs = P 0 and P 0 belongs to the cylinder axis a,
we have RrTi s − di = 0, i = 1, 2 (the point Rs belongs
to both planes Pi). Taking the time derivative of these latter
constraints (with R = const), one has

rTi ṡ =
1

R
ḋi − sT ṙi, i = 1, 2. (49)

Since ṙi = [ri]× ω and ḋi = rTi v (see [10]), eq. (49) can be
rewritten as

rTi ṡ =
1

R
rTi v − sT [ri]× ω, i = 1, 2. (50)

Finally, from aTP 0 = 0 and P 0 = Rs we have aTs = 0
implying that

aT ṡ = −sT ȧ = −sT [a]× ω. (51)

We now note that equations (50) and (51) provide three
linear constraints for ṡ which, by using (48), can be rearranged
in matrix form as the following linear system

P T
0

‖P 0‖
aT(

[a]×P 0

)T
‖P 0‖

 ṡ =
1

R



P T
0

‖P 0‖
v

−P T
0 [a]×ω

‖P 0‖aTω +

(
[a]×P 0

)T
‖P 0‖

v

. (52)

It is easy to verify that the 3 × 3 matrix on the left hand
side of (52) is orthonormal: by then solving (52) for ṡ and
performing some simplifications we finally obtain the sought
result

ṡ =

[
− 1

R

(
I3 − aaT

)
[s]×

]
u. (53)
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