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Dealing With Constraints in Sensor-Based
Robot Control

Olivier Kermorgant and François Chaumette

Abstract—A framework is presented in this paper for the control
of a multisensor robot under several constraints. In this approach,
the features coming from several sensors are treated as a single
feature vector. The core of our approach is a weighting matrix
that balances the contribution of each feature, allowing the tak-
ing of constraints into account. The constraints are considered as
additional features that are smoothly injected in the control law.
Multisensor modeling is introduced for the design of the control
law, drawing similarities with linear quadratic control. The main
properties are exposed and we propose several strategies to cope
with the main drawbacks. The framework is validated in a complex
experiment, illustrating various aspects of the approach. The goal
is the positioning of a six-DOF robot arm with 3-D visual servoing.
The considered constraints are both eye-in-hand and eye-to-hand
visibility, together with joint limit avoidance. The system is thus
highly overdetermined, yet the task can be performed while ensur-
ing several combinations of constraints.

Index Terms—Joint limit avoidance, sensor-based control, sen-
sor fusion, visibility constraint, visual servoing.

I. INTRODUCTION

NAVIGATION or manipulation tasks are often subject to
several constraints. They can be inherent to the controlled

system (joint limits, limited velocity), related to the sensors (vis-
ibility constraint) or coming from the environment (obstacles).
In this perspective, the goal is thus to perform the desired task
while ensuring the constraints.

A popular approach in this field is path planning. The poten-
tial field method [13], [25] is a common technique for gener-
ating collision-free trajectories. This method has been applied
to visual servoing in [35], where the trajectory is planned in
the image space and allows ensuring the visibility and the joint
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limit constraints. Predictive control has also been used in visual
servoing [1]. In this case, the whole trajectory is not planned,
but the objective function takes into account the prediction over
a finite horizon. Path planning in sensor space has also been de-
signed through LMI optimization [6], [10]. The main drawback
of such schemes is that they require a model of the environment,
and may not cope with unexpected obstacles.

On the other hand, reactive schemes such as sensor-based
control have been used to cope with the constraints. They are
often less complex to design than path-planning schemes and
require less knowledge of the environment. The task function
approach [39] is a popular technique for building sensor-based
control laws. When dealing with several sensors, each sensor
signal is given a reference signal and considered an independent
component of the global task function. Each sensor thus cor-
responds to a particular task. A classical scheme, often named
the gradient projection method (GPM), is to draw a hierarchy
between the different tasks and to build a control scheme that
prevents lower subtasks to disturb higher ones [17]. This is a
classical way to combine sensor-based tasks and constraints
such as joint limit avoidance in redundant systems [30], [45].
However, a common issue is when upper tasks constrain all the
robot’s degrees of freedom (DOF), preventing lower subtasks
from being performed. A solution can be to build a new operator
that projects a subtask on to the norm of the main tasks [34],
freeing some DOF that can then be used by secondary tasks.
Task sequencing techniques [29] can also be used to make the
task hierarchy dynamic.

With another formulation, sensor-based control laws can be
designed without imposing a strict hierarchy between the tasks.
Here, the data coming from different sensors are treated as a
unique higher dimensional signal. This is the approach chosen
in [28] to fuse two cameras, and a force sensor and a camera,
where the designed control law is equivalent to a weighted sum
of the subtask control laws. In the general case, using several
sensors raises the question of balancing their contributions in
the control law during the servoing. Optimal methods such as
linear quadratic (LQ) control [36], [37] can be applied in this
approach; however, the balance is often tuned by hand after
several trials [44]. As we will see, our approach shares a similar
formulation but avoids the manual tuning of the weights.

More recently, several schemes have been designed with a
weighting at the level of the features; in [9] it allows addressing
the problem of outliers in robust visual servoing, while in [5] it
defines a task in terms of a desired region instead of a desired
position. In [15], the visual features are deactivated in the case
of visibility lost. Recently, the framework of varying-feature
set [31] has unified these approaches, with an emphasis on the

1552-3098 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



KERMORGANT AND CHAUMETTE: DEALING WITH CONSTRAINTS IN SENSOR-BASED ROBOT CONTROL 245

continuity of the control law in the case of Jacobian rank change,
while signal components are added or removed from the control
law. Yet, all these schemes were initially designed for only one
sensor and to cope with specific issues in visual servoing. In this
paper, this framework is naturally extended to the multisensor
case. Recent methods have been proposed to perform a sensor-
based task under several unilateral constraints with the GPM
framework [11], [30] or cascade of quadratic programs [19]. We
will show that our nonhierarchical control law ensures several
constraints while performing a multisensor task. In this paper,
there is no concept of priority between the different tasks; only
the global error is taken into account. This allows defining a
real multisensor task that is performed in all sensor spaces at
the same time, as presented in [24] in the case of multicamera
visual servoing.

The main contribution of this paper is to propose a canon-
ical weighting at the level of the features with an automatic
computation of the weights. It allows avoiding any difficult and
cumbersome manual tuning. Instead of balancing between the
tasks, a multisensor task is defined, and then the features them-
selves are balanced with a weighting function that takes into
account the several sensors and constraints. As we will see, bal-
ancing at the level of the features allows focusing on the most
critical constraints, which is not the case if all the constraints
are considered as a single task and share the same weight. This
approach does not require any hierarchy between the tasks and
shows nice properties in the sensors space and in the robot
behavior.

The proposed approach is a generic framework that embeds
our previous works on multicamera visual servoing [24], robot
positioning while ensuring the visibility constraint [23], and
avoiding the joint limits [22]. In this paper, all these issues
are addressed within a homogeneous framework. As we will
show, this allows regrouping very easily all the tasks and con-
straints into a single experiment. The robot can thus perform
eye-in-hand/eye-to-hand cooperation, together with joint limit
avoidance while ensuring the visibility constraint in both im-
ages. As far as we know, this is the first time such a complete
and complex configuration is considered.

This paper is organized as follows. The general modeling of a
multisensor robot is presented in Section II. We also show how
the proposed weighting of the signal error can take unilateral
constraints into account. Then, the control law, its stability anal-
ysis, and its main properties are described in Section III. Several
additional strategies are presented in Section IV for specific is-
sues that may occur in practice. Finally, experimental results are
presented in Section V.

II. MULTISENSOR MODELING

This section presents the general modeling of a multisensor
robot. First, we define the global kinematic model, then we in-
troduce the weighted signal error that will be used in the control
law. We propose a generic weighting function that allows both
balancing the sensor features and taking into account unilateral
constraints.

Fig. 1. Multisensor model.

A. Kinematic Model

We consider a robotic system that is equipped with k sensors
providing data about the robot pose in its environment. The robot
joint positions are denoted q and we define n = dim(q). Each
sensor Si delivers a signal si of dimension mi with

∑k
i=1 mi =

m and we assume m ≥ n. A signal component is called a sensor
feature. In the case of a motionless environment, the signal time
derivative is directly related to the sensor velocity vi expressed
in the sensor frame by

ṡi = Livi (1)

where Li is named the interaction matrix of si [4], [39] and
is of dimension mi × 6. Its analytical form can be derived for
many features coming from exteroceptive sensors. It depends
mainly on the type of considered sensory data s and on the
sensor intrinsic parameters. Li may also depend on other data;
for instance the interaction matrix of an image point that is
observed by a camera depends on the depth of that point, which
is not actually measured in the image [4].

Now, we consider a reference frame Fe in which the robot
velocity can be controlled. This frame can be for instance the
end-effector frame for a robot arm as shown in Fig. 1. The screw
transformation matrix allows expressing the sensor velocity vi

wrt the robot velocity ve

vi = iWeve . (2)

iWe is given by [38]

iWe =
[

iRe

[
ite

]
×

iRe

03×3
iRe

]

(3)

where iRe ∈ SO(3) and ite ∈ R3 are, respectively, the rotation
matrix and the translation vector between Fe and Fsi .

[
ite

]
×

is the 3 × 3 skew-symmetric matrix related to ite . Denoting
eJq ∈ Rm×n the robot Jacobian, we have

ṡi = Li
iWe

eJq q̇. (4)

Denoting s = (s1 , . . . , sk ) the m-dimensional signal of the mul-
tisensor set, (4) allows linking the signal time variation with the
joint velocity

ṡ = Js q̇ (5)
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with

Js = LWe
eJq =

⎡

⎢
⎢
⎣

L1 . . . 0
...

. . .
...

0 . . . Lk

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1We

...
kWe

⎤

⎥
⎥
⎦

eJq (6)

where L ∈ Rm×6k contains the interaction matrices of the sen-
sors and We ∈ R6k×6 contains the transformation matrices. In
the following, we assume Js is of full rank n. We will mention
in Section III-B1 that this assumption could be relaxed, but this
paper focuses on the full rank case. We now define the weighted
error that will be used in the control law.

B. Weighted Error

The goal of a sensor-based control is to design a control law
that makes the robot reach a desired value s∗ of the sensor
features. This desired value may be obtained by teaching-by-
showing, or through a model at the desired pose; for example
in [32], visual servoing is performed with the desired value
being the projection of the object model at the desired camera
pose.

1) Weighted Error: We define the weighted multisensor sig-
nal error as

eH = He (7)

where e is the sensor error defined as e = s − s∗, and H is a
diagonal positive semidefinite weighting matrix that depends on
the current value of s. As in all varying-feature-set schemes [31],
each component hi of H may vary in order to ensure specific
constraints, manage priorities or add or remove a sensor or a
feature from the control law. In the case of k sensors, H yields

H =

⎡

⎢
⎢
⎣

H1 . . . 0
...

. . .
...

0 . . . Hk

⎤

⎥
⎥
⎦ (8)

where Hi is the weighting matrix for sensor Si .
2) Weighting Canonical Form: Weighting can be performed

for several purposes. First, the most simple goal is to balance
the disparate sensor contributions during the scheme. As in
LQ control, this amounts to optimizing the system behavior by
defining a specific weight for each sensor feature. In this paper,
we propose also using the weight of a sensor feature to take into
account unilateral constraints on that feature. We thus define a
generic weighting by

∀i ∈ [1,m] : hi = ht
i + hc

i (9)

where ht
i is tuned for the general balance of the feature, and

where hc
i allows taking potential constraints into account. Clas-

sical control laws such as visual servo schemes usually use the
simplest weighting that corresponds to H = Im , that is

∀i, ht
i = 1 and hc

i = 0. (10)

Each weight (ht
i)i may also be tuned independently, as in LQ

control. In practice, several trials are often necessary to deter-
mine the best weighting [44]. In varying-feature-set schemes

Fig. 2. Generic weighting hc for the basic constraints.

[9], [15], the weights ht
i vary between 0 and 1 depending on

the confidence in each sensor feature. In this paper, we do not
focus on the tuning of this weight term, and we set ht

i = 1 if
the feature si is always used for the actual navigation task, and
ht

i = 0 if the feature si only corresponds to a constraint to be
ensured. We now explicit the generic formulation for the term
hc

i handling the constraints.
A constraint is usually expressed by an inequality on the value

of a sensor feature. This is typically the case for joint limits
or image visibility, and is also valid when range sensors are
measuring the distance to the obstacles. Singularity avoidance
can also be considered by setting a lower bound for det(J�

s Js).
In all cases, this corresponds to having to keep the feature value
si in an interval [s−i , s+

i ]. In that case, a safe interval [ss−
i , ss+

i ]
can be defined by

{
ss−

i = s−i + ρi(s+
i − s−i )

ss+
i = s+

i − ρi(s+
i − s−i )

(11)

where ρi ∈ [0,0.5] is a tuning parameter. The weighting term hc
i

handling the constraint is then given by

hc
i =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

si − ss+
i

s+
i − si

, if si > ss+
i

ss−
i − si

si − s−i
, if si < ss−

i

0, otherwise

(12)

where hc
i is represented in Fig. 2. Similar to a repulsive field [25],

the weight is null in the safe region and continuously increases
to ∞ as the feature approaches the limit. A constraint is said
to be active when its weight hc

i is non-null. The next section
presents the control law and its main properties. In particular,
the weights in case of one or several active constraints are studied
in Section III-C5.

III. CONTROL LAW

We now present the generic control law that is associated
with the weighted error defined in (7) and its link with the
LQ approach. The main properties for sensor fusion are then
presented. In particular, when only one constraint is considered,
we show in Section III-C that a sufficient weight ensures that
the corresponding feature error is decreasing and that a minimal
weight can be determined. We then expose additional strategies
that can be used for specific issues.
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A. Weighted Control Scheme

In the task function approach [39], the task error etask ∈ Rn

is defined by

etask = C(s − s∗) = Ce (13)

where C ∈ Rn×m is named the combination matrix and allows
us to take into account the redundancy between the sensor fea-
tures. A classical controller is then

q̇ = −λetask = −λCe. (14)

A popular choice that tries to ensure an exponential decrease

of etask is C = Ĵ
+
s , that is an estimation of the Moore–Penrose

pseudo-inverse of Js . In our case, J+
s = (J�

s Js)−1J�
s since Js

is full rank. This strategy can be seen as a particular case of
LQ control [36]. In this framework, a cost function F has to be
minimized and is defined with

F = (s − s∗)�Q(s − s∗) + q̇�Rq̇ (15)

where Q and R are weighting matrices that are usually tuned in
order to obtain an optimal behavior of the robot. The selection
of the elements of Q and R may be computed from a pole
placement tuning or considerations on the variance of observed
data [44]. In practice, several trials are often necessary to obtain
the desired behavior. The corresponding control input yields
[26]

q̇ = −λ(Ĵ
�
s QĴs + R)−1 Ĵ

�
s Q(s − s∗). (16)

This control law is the same as (14) for the particular weighting
Q = Im and R = 0.

When considering the weighted error eH instead of e, the
associated Jacobian is JH = HJs . In this case, control law (14)
yields

q̇ = −λ(HĴs)+eH = −λ(HĴs)+He. (17)

The combination matrix of e is thus given by

C = (HĴs)+H. (18)

When compared with LQ control, this combination matrix corre-
sponds to the particular weighting Q = H2 and R = 0. Indeed,
in this case the LQ scheme (16) yields

q̇ = −λ(Ĵ
�
s H2 Ĵs)−1 Ĵ

�
s H2(s − s∗) (19)

= −λ((HĴs)�(HĴs))−1(HĴs)�H(s − s∗) (20)

= −λ(HĴs)+H(s − s∗) = −λC(s − s∗). (21)

The main difference between our scheme and classical LQ con-
trol is about the use of the weighting matrix Q. In LQ control,
it is usually tuned in order to obtain an optimal behavior of the
robot. In the proposed scheme, we focus on the balance between
the different features and sensors and potential constraints. Ac-
tually, the two strategies may be used in a complementary way:
if both H and Q are defined from their respective frameworks,
a global scheme can be designed by using the weighting matrix
H�QH. In addition, a control cost matrix R �= 0 could be used
if needed.

As for the estimation of Js , the most popular choices are
summarized in [24], showing the induced behaviors. From (6),
computing Js amounts to choosing how to estimate the interac-
tion matrices Li and the transformation matrices iWe .

1) Interaction Matrices: Several possibilities exist for the
interaction matrices [4]. Two classical choices are to use the
current interaction matrix, or its value at the desired pose L∗.
In this case, the interaction matrix is constant. Another popular
strategy is the mean interaction matrix 1/2(L + L∗), which was
recently shown as an approximation of second-order minimiza-
tion [41].

2) Transformation Matrices: If the sensors are rigidly at-
tached to the effector, then all transformation matrices are con-
stant and can usually be estimated in an offline calibration step.
In the other case, for instance in eye-to-hand configuration, We

is not constant and the desired value W∗
e depends on the final

3-D pose of the sensors wrt the effector. This pose is generally
unknown in sensor-based control. The most plausible choice is
thus to estimate the current transformation matrices from the
robot geometrical model and calibration.

In the following, we assume that an estimation of the current
matrices L and We is available, which allows us to estimate
Js in real time. We now study the properties of the proposed
scheme.

B. Control Scheme Properties

This section explores the basic properties of the control law.
First, we expose the condition for control law continuity and
study the case of null weights. We then show local asymptotic
stability.

1) Continuity and Influence of Null Weights: The continuity
of varying-feature-set control laws has been studied in [31]. In
the general case, continuity is ensured under three conditions:
H and Js are continuous and the pseudo-inverse operator is
continuous for HJs . The latter is ensured under the assumption
that HJs is full rank, which implies in particular that there are
always at least n nonnull weights. The case of rank change is
solved in [31] with a generalized pseudoinverse; however, in
this paper we use the classical pseudoinverse and assume HJs

is full rank. Usual sensor features have a continuous Jacobian
Js . The formulation of the weighting matrix in Section II-B2 is
also continuous; hence, the control law is continuous.

Control law (17) is designed to ensure that Hė = −λHe,
which is different from classical design ė = −λe. This dif-
ference clearly appears for configurations with null weights.
Assuming s = (s1 , s0) where features s0 have null weights
(H0 = 0), the control law (17) can be written as

q̇ = −λ

[
H1 Ĵ1

H0 Ĵ0

]+ [
H1e1

H0e0

]

= −λ

[
H1 Ĵ1

0

]+ [
H1e1

0

]

= −λ [ (H1 Ĵ1)+ 0 ]
[
H1e1

0

]

= −λ(H1 Ĵ1)+H1e1 . (22)

The scheme is thus equivalent to the control law for active
features only. In particular, it is different from not taking
into account the weighting matrix in the pseudoinverse. More
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precisely, in [16], the combination matrix is defined as C =
Ĵ

+
s H, inducing the following:

q̇ = −λĴ
+
s He (23)

= −λ

[
Ĵ1

Ĵ0

]+ [
H1e1

0

]

. (24)

The zeroed error components are thus still taken into account
and the system behaves exactly as if the desired values for
e0 had been reached, which induces an undesired conservative
behavior to ensure the useless constraints e0 = 0. This is not
the case with our approach.

2) Local Asymptotic Stability: Varying-feature-set schemes
usually neglect the time variation of H by assuming the weight-
ing matrix is varying slowly, or that it is null at the convergence
as in region-reaching visual servoing [5]. Actually, when H is
integrated into the combination matrix and assumed to be vary-
ing wrt s, the stability analysis is the same as with a varying
Js [4]. As for classical IBVS schemes, a direct consequence
is that global asymptotic stability cannot be proven as soon as
redundant features are involved (m > n). From (6) and (18), the
task error variation yields

ėtask = Cė + Ċe = (CJs + O)q̇

= −λ(CJs + O)etask (25)

where O ∈ Rn×n = 0, when etask = 0 [4]. With the combi-
nation matrix from (18), this scheme is known to be locally
asymptotically stable (LAS) in a neighborhood of e = 0 if [18]

CJs = (HĴs)+HJs > 0. (26)

The system is thus LAS, when HJs and HĴs are full rank and
when the Jacobian Js is sufficiently well estimated, which is the
case in general. In this case, potential local minima correspond

to configurations where H2(s − s∗) ∈ Ker Ĵs
�

. We will see in
Section IV-A how to deal with this issue. Let us also note that
determining theoretically the convergence domain seems to be
out of reach. However, as we will see in Section V, it reveals to
be surprisingly large in practice.

C. Particular Case of One Constraint

In this section, we focus on the case where only one active
constraint is involved. In that case, we show that a sufficiently
high weight induces the decreasing of the corresponding feature
error. In particular, we determine the minimal weight ensuring
the corresponding constraint is respected. Dealing with several
active constraints simultaneously is finally discussed at the end
of this section.

1) Sufficient Weight: We assume the reference value s∗i of the
feature si is in the confidence interval. A sufficient condition
for the associated constraint to be ensured is that the error ei =
si − s∗i decreases. We now show that this can be ensured at each
iteration if the associated weight is high enough. A classical
Lyapunov function that is associated with the weighted error is
V (eH ) = 1

2 e
�
HeH . Assuming that we are in the domain of local

stability, the time derivative of V yields

V̇ =
∂V

∂eH
ėH =

m∑

i=1

h2
i ei ėi < 0. (27)

The error ei decreases iff ei ėi < 0, which is equivalent to

h2
i > − 1

ei ėi

∑

j �=i

h2
j ej ėj . (28)

Hence, in any configuration there exists a sufficiently high
weight hi that ensures that the corresponding feature error norm
is decreasing. Note that if ėi = 0 or ei = 0, then the correspond-
ing constraint is de facto ensured.

This property that a sufficient weight exists has been recently
highlighted in [21], where the parallel is drawn with the GPM
approach and constrained optimization.

Isolating the particular feature si , the control law (17) can be
written as the minimum-norm solution to

min
q̇

‖HiJiq̇ − Hi ė∗i ‖2 + hi ‖Ji q̇ − ė∗i ‖2 (29)

where ė∗ is such that Hė∗ = −λHe, and Xi denotes a value
that is related to all features except si . It has been shown in [42]
that the solution to (29) when hi tends to infinity is exactly the
solution to the constrained minimization

{
minq̇ ‖HiJiq̇ − Hi ė∗i ‖

2

s.t. Jiq̇ = ė∗i .
(30)

Note that (30) corresponds to the GPM approach with feature si

used as the priority task and the other features as the secondary
task. At a given iteration and if the Jacobian Ji is sufficiently
well estimated, the condition ėiei < 0 is ensured with the system
(30) since in this case, ėiei ≈ ė∗i ei = −λe2

i < 0. Hence, coming
back to (29), there exists a value hmin

i such that

∀hi > hmin
i , ėiei < 0. (31)

The decrease of the error, and hence the corresponding con-
straint, can thus be ensured with a finite weight at any given it-
eration. We now explicit the computation of this minimal weight.

2) Minimal Weight: We denote si the feature corresponding
to the considered constraint. The goal here is to disturb the task
ei as little as possible by determining the weight hi that is as
small as possible, yet sufficiently high to ensure the correspond-
ing constraint.

The time variation of the constrained feature is given by

ṡi = Ji q̇ = −λJi(HJs)+H(s − s∗) (32)

= −λJi(J�
s H�HJs)−1(J�

i H2
i ei + h2

i J
�
i ei). (33)

We now show that ensuring ṡi = 0 leads to a linear condition
on h2

i .
We have

(J�
s H�HJs)−1 =

adj(J�
s H2Js)

det(J�
s H2Js)

=
1

D(h)
A(h) (34)

where D(h) is a strictly positive polynomial of (h2
i ), being the

determinant of a symmetric invertible matrix, and A(h) is the
adjugate matrix of J�

s H2Js , that is the matrix of the cofactors.
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Fig. 3. Activation function for lower and upper bounds.

Fig. 4. Configurations C1 (left) and C2 (right). The feature approaches the
nearest limit in C1, while it goes away in C2.

A is an n × n full rank symmetric matrix. The constrained
feature time variation thus yields, up to the scale factor λ

D

ṡi ∝ −JiA(J�
i H2

i ei + h2
i J

�
i ei). (35)

We now show that JiA does not depend on hi . To do so, it
is sufficient to show that J1A does not depend on h1 , as any
permutation of the rows of s, J, and H would lead to the same
control law. Let Q and R be the QR decomposition of J�. We
have

JA = R�Q�adj(QRH2R�Q�) (36)

= R�Q�adj(Q�)adj(RH2R�)adj(Q) (37)

= R�adj(RH2R�)adj(Q) (38)

as Q�adj(Q�) = det(Q�)In = In . R being upper triangular,
h1 only appears in the first element of RH2R�. From the
adjugate matrix properties, the first row of adj(RH2R�) does
not depend on h1 . Thus, as R� is lower triangular, the first row of
JA does not depend on h1 , which concludes the demonstration
that can be extended to all indexes.

We denote the two hi-independent scalars
{

ci = −JiAJ�
i H2

i ei

ai = JiAJ�
i ei .

(39)

From (35), ṡi is thus linear wrt h2
i and can be written as

ṡi ∝ ci − h2
i ai . (40)

This leads to two configurations C1 and C2 that are represented
in Fig. 4:

1) Approaching the constraint (C1): If ci and ai have the
same sign, then the robot is going toward the constraint.
In that case there exists a positive h2

i such that ṡi is null.
2) Avoiding the constraint (C2): If ci and ai do not have the

same sign, then the robot is moving away from the con-
straint; self-avoidance occurs and the avoidance scheme
can be ignored.

From this observation, we define the values sa− and sa+

where the feature has to stop
{

sa−
i = s−i + ρa(s+

i − s−i )

sa+
i = s+

i − ρa(s+
i − s−i )

(41)

where ρa < ρ is a tuning parameter. The minimal value can thus
be computed analytically from (40)

hmin
i =

⎧
⎨

⎩

√
ci

ai
if

ci

ai
> 0 (C1)

0 else (C2)
(42)

where hmin
i = 0 corresponds to the configurations where self-

avoidance occurs.
Such a minimal weight ensures that the constraint is ensured at

least when si = sa
i since in this case we have ṡi = 0. However,

as we do not need to ensure the constraint before si = sa
i , the

minimal weight is smoothly taken into account with an injection
function.

3) Injection Function: We address the injection of hmin with
the following form of the weights:

∀i, hc
i = μi(si)hmin

i (43)

where μi(si) ∈ [0, 1] is a continuous function.
To ensure the continuity of HJs and He, weights must be

null at feature activation and deactivation, and increasing as
the constrained feature values vary from the safe limit to the
physical limit. In our case, the injection function is null when
si = ss

i and equal to 1 when si = sa
i . Such a function can be

defined with a sigmoid

μi =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
2

(

1+tanh

(
1

sa+
i − si

− 1

si − ss+
i

))

if ss+
i < si < sa+

i

1
2

(

1− tanh
(

1
sa−
i − si

− 1
si − ss−

i

))

if sa−
i < si < ss−

i

1 else

(44)

where μi is C∞ and smoothly increases the weight as the feature
reaches the limit, with μi(sa−

i ) = μi(sa+
i ) = 1 and μi(ss−

i ) =
μi(ss+

i ) = 0. The proposed injection function is represented in
Fig. 3. This allows activating the feature as progressively as
possible, hence with the smallest disturbance on the main task.

4) Example in Simulation: The proposed minimal weight
is illustrated in simulation. The simulation setup is voluntarily
simple and consists of a 2-D Cartesian robot that has to reach a
point. The task Jacobian is thus I2 . The constraint is to keep a
minimum distance to the wall that is present. The simulation is
represented in Fig. 5. The robot starts in x0(0, 4). The measured
distance to the wall is d = 2, while the desired distance has been
set to d∗ = 4. The activation values are defined as da = 1 and
ds = 3. Denoting ex the task error and ed the error related to
the constraint, the variables from (39) yield

Jx = I2 Jd = [1 0] A = I2 ed = −2. (45)

From (39), we thus have a = −2 and c = [−10]ex .
1) If the desired position is x1(−2, 0), then we have c = −2.

From (42), the minimum weight is thus hmin = 1. As
d = 2, the actual weight will be h = μ(d)hmin = 0.5 ×
hmin = 0.5. As long as d > da the robot will thus ap-
proach the wall if the task requires so. The weight is
represented in Fig. 5(b). We can see the initial value is
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Fig. 5. Minimal weight in simulation. (a) Robot trajectory and (b) correspond-
ing weight. The dotted line shows the trajectory with the generic weight (12).
The minimal weight value is 0.5 at the beginning, and then it increases as the
robot approaches the wall. The minimal weight is null once the robot has passed
the wall. (a) Trajectory to x1 . (b) Weight to x1 .

Fig. 6. Weights for configuration C1 (upper bound) and C2 (lower bound). In
C1 (indicated by the red line), the feature is going toward its limit and a non-null
weight has to be used (here hm in = 0.5). In C2 (indicated by the green line),
the other features induce the avoidance; hence, the weight can be null in the
activation area. If the feature still approaches the limits, the generic weighting
hc is used in both cases.

indeed 0.5, and then increases as the robot comes nearer
to the wall. This means the weight is not high enough to
have ḋ = 0 at this position, which is the desired behavior
as we want the robot to stop approaching the wall only at
da = 1.

2) If the desired position is x2(2, 0), then we have c = 2; self-
avoidance occurs, as can be guessed in Fig. 5(a). This also
occurs at the end of the task to x1 once the wall is passed,
inducing a null weight and a straight line trajectory.

5) Ensuring Several Constraints: In the case of several con-
straints having to be ensured simultaneously, coupling terms
appear since a system of equations (40) is highly nonlinear. A
solution still exists to stop all the endangered constraints (for
instance q̇ = 0 is always a solution) but it would be difficult to
compute analytically the corresponding set of optimal weights.
The minimal weighting (42) can thus be used together with
the generic weighting (12). With this strategy, the weighting is
minimal in [sa−, sa+ ] but is still robust to multiple avoidance.
Such a weighting is represented in Fig. 6. We have assumed
that C1 holds for the upper bound with an optimal weight of
hmin = 0.5 and that C2 holds for the lower bound; hence, the
optimal weight is null. If the feature goes out of [sa−, sa+ ],
then the generic weighting is used for both bounds. In this case,
an endangered constraint will have its weight increased until
it reaches a sufficient value, which explains why the generic
weighting (12) is not bounded. As the sufficient and minimal
weights for one constraint depend on the other constraints [see
(28) and (42)], this can lead to a general increasing of the weights
corresponding to all the endangered constraints until avoidance.

In the general case, the induced behavior is satisfactory even if
it remains possible to define a task under constraints that would
be impossible to perform. In such a case, weights cannot be
proven to be finite anymore since the system is no more stable
and (27) does not hold. Finally, the sole generic weighting may
also be used, leading to a less optimal behavior as seen with the
dotted trajectory in Fig. 5(a). We now highlight practical issues
for the presented system.

IV. POTENTIAL ISSUES

Three undesired behaviors may be encountered in the pre-
sented system. First, as in all sensor-based approaches, local
minima may appear as soon as the system is overdetermined,
that is m > n. Reaching a desired position where the constraints
are active is a second issue. Finally, having potentially high
weights may cause oscillations in some cases. In this section,
we propose several strategies for each of these issues.

A. Escaping From Local Minima

The main drawback of the proposed scheme, as for all redun-
dant reactive sensor-based schemes, is the potential existence
of local minima. Indeed, as soon as m > n only local stabil-
ity can be proven. As no planning is considered with a higher
level controller, the approach that has been investigated is to
detect that a local minimum has been reached, and try to escape
from it. A local minimum is easily detected as it is necessarily
a configuration where the end-effector velocity is almost null,
while some of the weighted error components H(s − s∗) are
not null. The detection condition can thus be defined by two
parameters vε and eε such as a local minimum corresponds to a
configuration where

‖ve‖ < vε and ‖H(s − s∗)‖ > eε. (46)

Once a local minimum has been detected, we allow the sys-
tem to perform nonoptimal motion in terms of the sensor-based
task, by increasing the weights corresponding to the active con-
straints. This can be seen as a random walk [2], where we use the
structure to compute the escaping motion. We denote ec the set
of features that regroups the active constraints, and et the other
features. The corresponding strategy to modify the weighting
matrix is described in Algorithm 1; the weights Hc are artifi-
cially increased by a multiplicative factor α, until reaching a
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Fig. 7. Joint position and weights while escaping from a local minimum.
Oscillations appear in h3 (indicated by a red line), inducing small oscillations
in the robot motion. (a) Joint positions q. (b) Joint weights Hq .

configuration where
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
Hc 0

0 Ht

]2

(s − s∗) ∈ Ker Ĵ
+
s

[
αHc 0

0 Ht

]2

(s − s∗) /∈ Ker Ĵ
+
s .

(47)

In this case, the obtained motion is null if α = 1, while it is
not with the obtained α > 1. This may not be true for any
given α but in this case Algorithm 1 will carry on increasing
α and eventually lead to a configuration that is out of the null
space. Meanwhile, if α makes the weights reach very high val-
ues, the system is slowed down by the adaptive gain detailed in
Section IV-C. α is always equal to 1 as long as no local minimum
has been reached. During normal convergence, α is slowly set
back to 1. The proposed algorithm makes the active constraints
more repulsive, which can be seen as a temporary hierarchy
between the active constraints and the other features. Still, such
a hierarchy seems natural as constraints have of course to be
ensured. On the opposite, going out of a local minimum often
prevents us from performing optimally the positioning task, as
the escaping motion is usually opposed to the motion that is
induced by the task. That is why we temporarily increase the
weights of the constraints. The tuning of α+ and α− may be dif-
ficult. In practice, α has to reach a sufficiently high value in order
to ensure that the robot will not go back to the same local min-
imum. A condition to allow the escape from a local minimum
is that α+α− > 1. This corresponds to α increasing faster than
it decreases back to 1. The values we used are α+ = 1.05 and
α− = 0.99. This strategy is inspired by simulated annealing [3],
where the parameter α acts as the annealing temperature. We
now show two simulation examples of the proposed algorithm.

1) Joint Limits: The induced behavior is represented in
Fig. 7 for a simulation of joint limit avoidance in visual ser-
voing. A local minimum occurs around iteration 10. We can see
in Fig. 7(a) that the joint positions are barely evolving from iter-
ation 20 to 70, and that joint limit avoidance is active for joint 3.
The joint weights are artificially increased as seen in Fig. 7(b).
As the most critical joint is q3 , the corresponding weight is far
more important than the others. This allows escaping from the
local minimum and induced oscillations are very small in prac-
tice. Finally, it is interesting to note that local minima rarely
occur wrt the number of features compared with the available
DOFs. In particular, in [23], we have performed exhaustive sim-

Fig. 8. Two-Dimensional Cartesian robot escaping from a local minimum.
(a) Without the proposed strategy the robot is stuck in the indicated position.
(b) The corresponding weights (one per wall) are quickly increasing at the
beginning, before slowly decreasing. (a) Trajectory. (b) Weights.

ulations fusing 2-D and 3-D visual servoing. No local minima
have been found in this configuration.

2) Two-Dimensional Cartesian Robot: We use the robot
setup presented in Section III-C4. Walls are set up such that
a local minimum exists, as shown in Fig. 8(a). Without the pro-
posed algorithm the robot ends up in the indicated position. The
proposed strategy allows the robot escaping the local minimum
and uses the structure of the task to find an exit. In Fig. 8(b),
we can see that the corresponding weights are quickly increased
before slowly decreasing. This illustrates the balance between
α+ and α−. Of course, as it is only a reactive scheme some local
minima still exist, particularly when the situation is symmetri-
cal. Indeed, in this case increasing the weight would only lead
to going backward. Complex traps such as U-shapes may not
be escaped either; in such cases a planning strategy should be
used.

B. Reaching an Unsafe Position

If the desired position is outside the safe area, that is
s∗ ∈]s−, ss−]∪]ss+ , s+], the main task cannot be perfectly per-
formed as it does not correspond to the global minimum of the
complete weighted task. Indeed, denoting s = (st , sc) where
st corresponds to the main task and sc to the constraints, the
desired position is defined by

q∗ = arg min
q

(
e�t H2

t et

)
�= arg min

q

(
e�H2e

)
(48)

where e�H2e = e�t H2
t et + e�c H2

cec . A sufficient condition to
overcome inequality (48) is to ensure that Hc = 0 in a neigh-
borhood of the desired position.

To do so, we introduce a progress parameter ξ(‖et‖) smoothly
making the constraint weights null when the main task gets close
to completion

ξ(‖et‖)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if ‖et‖ ≤ e0

1, if ‖et‖ ≥ e1

1
2

(

1+ tanh
(

1
e1 − ‖et‖

− 1
‖et‖ − e0

))

, else

(49)
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Fig. 9. Oscillations in a corridor. Without the adaptive gain, the robot oscillates
between the two walls (green line). The adaptive gain allows drawing a smooth
trajectory (indicated by the dotted blue line).

where e0 and e1 are defined so that the constraints are to-
tally ignored when the main task is close to completion,
that is ‖et‖ < e0 . The corresponding weighting matrix yields
H = Diag(Ht , ξ(‖et‖)Hc) and is equal to H∗ = Diag(Ht , 0)
in the vicinity of the desired position. The desired position can
thus be reached. Finally, depending on the situation, one may
or may not use this progress parameter; indeed in some config-
urations it is preferable to converge to a compromise between
the desired position and the constraints, typically if the desired
position lies outside of the boundaries of the constraints.

C. Avoiding Oscillations

The generic weights (12) increase when approaching the con-
straints. When several constraints are reached, this may lead to
oscillations or even to violating the constraints due to discretiza-
tion. In our case, an efficient way to cope with this issue is an
adaptive gain depending on ‖H‖ that slows the system in the
vicinity of the constraints. The LAS analysis in Section III-B2
is of course still valid with a varying gain, since it can be consid-
ered part of the varying combination matrix. The control gain λ

involved in (17) is given by

λ(‖H‖) = (λ0 − λ∞)e−
λ′0

λ0 −λ∞ ‖H‖ + λ∞ (50)

where
1) λ0 = λ(0) is the gain in 0, that is for very small weights.
2) λ∞ = lim‖H‖→∞ λ(‖H‖) is the gain to infinity, that is for

very high weights.
3) λ′

0 is the slope of λ at ‖H‖ = 0.
In practice, we have used the values λ0 = 1, λ∞ = 0.1, and

λ′
0 = 0.5. The proposed strategy is illustrated in simulation in

Fig. 9, with the 2-D Cartesian robot setup. This time the walls
draw a corridor. If the gain is too high, oscillations appear
(shown by the green line). This is not the case if the adaptive
gain is used (shown by the dotted blue line).

Finally, in the case of opposed constraints, hence, several in-
creasing weights, such as adaptive gain, would eventually make
the robot stop if no solution exists. This seems an acceptable
behavior in such a bad situation.

We now present the experimental results that illustrate various
aspects of the proposed scheme.

Fig. 10. Experimental setup. (a) Eye-in-hand camera with a 3-D landmark.
(b) Observed object. (c) Eye-to-hand camera.

Fig. 11. Integration of various subsystems. Hybrid eye-in-hand features for
the visibility constraint, eye-to-hand cooperation, and joint positions to avoid
joint limits.

V. EXPERIMENTAL RESULTS

In order to illustrate the proposed approach, experiments are
carried on a 6-DOF Gantry robot. The control laws are imple-
mented using ViSP software [33]. We first detail the experimen-
tal setup and its calibration. The sensors and constraints are then
introduced one after the other in the control law.

The eye-in-hand camera observes a fixed object, the CAD
model of which is known. Its edges are tracked to allow for
the pose estimation at camera rate (30 Hz) [8]. The eye-in-hand
camera carries a landmark that allows its 3-D tracking in the eye-
to-hand view [32]. The carried landmark is composed of 30 dots.
Both cameras are calibrated. The pose between the eye-in-hand
camera and the landmark cMo2 is roughly calibrated. The eye-
to-hand camera pose wrt the robot reference frame f Mc2 is also
roughly calibrated (see Fig. 11). Fig. 12 represents the two initial
images. The robot translation joints 2 and 3 are represented in
Fig. 12(b). Joint 2 thus corresponds to a horizontal motion, while
joint 3 corresponds to a vertical motion in the eye-to-hand view.
The initial and desired poses make it necessary for the robot to
move away from the observed object in order to keep it entirely
in the field of view (FoV). As we will see, this backward motion
makes the end-effector approach not only the upper limit of the
eye-to-hand image, but also some joint limits.

As the desired position is out of the safe joint interval, the
joint weights are progressively set to 0 (49) according to the
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Fig. 12. Initial images. (a) The object is large in the eye-in-hand image.
(b) Three-dimensional landmark approaches the top of the eye-to-hand image.
(a) Eye-in-hand initial image. (b) Eye-to-hand initial image.

Fig. 13. (a) Without the visibility constraint, the observed object leaves the
FoV in case 0. (b) Moving landmark leaves the FoV in case 1. (a) Case 0:
eye-in-hand image. (b) Case 1: eye-to-hand image.

strategy exposed in Section IV. The adaptive gain (50) is also
computed from the activation matrix norm. We now present the
system behavior, while the constraints are added one after the
other.

A. Pure Position-Based Visual Servo (Case 0)

As previously said, the pose between the eye-in-hand cam-
era and the object is estimated at each iteration of the control
scheme. It is thus possible to perform position-based visual
servo (PBVS) [43].

The corresponding 3-D features are s3d = (c∗tc ,
c∗θuc). They

describe the transformation between the current and the desired
camera pose. The associated desired features is a null vector,
and the interaction matrix L3d is known to be block-diagonal,
inducing decoupled translational and rotational motions [4]. In
perfect conditions, the corresponding camera trajectory is a 3-D
straight line. The associated weighting is classically constant,
which corresponds to H3d = I6 . Furthermore, this ensures that
the matrix HJs is full rank, which is a condition for the control
law continuity.

The main drawback of PBVS is the lack of control in the
image: control is done only in the 3-D space and does not ensure
that the observed object stays in the FoV. In our case, this lack
of control clearly appears in Fig. 13(a). After few iterations,
the object leaves the FoV and the task cannot be performed
anymore. We thus add the visibility constraint into the scheme.

Fig. 14. Case 1. (a) The weighting is quite small for the visibility constraint.
(b) Joint positions are inside their limits but joint 2 (indicated by the green line)
approaches the upper bound. (a) Visibility weights H2d . (b) Joint positions q.

B. Adding the Visibility Constraint (Case 1)

The visibility constraint in visual servoing has been previ-
ously addressed through switching control law [14], or visual
planning [7], [12], [20], [40]. Here, we define a set of 3-D
points (ox1 , . . . ,

oxp) that are attached to the observed object,
typically the nodes of the CAD model. As the camera pose cMo

is estimated in real time, the 2-D coordinates of the projection
of the 3-D points can easily be computed together with their
depth. The visibility constraint is taken into account by adding
the feature vector s2d as the Cartesian coordinates of these 2-D
points. The well-known analytical expression of the interaction
matrix of an image point depends both on its image coordinates
(x, y) and on its depth Z [4]. The interaction matrix of s2d

can thus be computed in real time. Similarly, the corresponding
desired features s∗2d = (x∗, y∗) are computed from the desired
camera pose c∗Mo . Let (x−, x+ , y−, y+) be the image borders;
a safe region can be defined as in (11). In this experiment, we
use ρ = 5%. Finally, the feature vector is defined by

s =
[
s3d

s2d

] · · · PBVS (dim. 6)

· · · Visibility (dim. 2 × 12)
(51)

where the dimensions of the feature vectors are detailed: six
components for the PBVS, and 2 × 12 for the visibility con-
straint (12 nodes in the object CAD model). The corresponding
weighting matrix is H = Diag(I6 ,H2d), where H2d is derived
from (9) using ht = 0 and hc given by (12). We can note that
the global minimum corresponds to the desired pose; indeed,
if s3d = s∗3d , then cMo = c∗Mo , and s2d = s∗2d . Hence, the
progress parameter (49) is not used for this constraint, as the
robot will converge to the desired pose even if some constraints
are active. The resulting images are shown in Fig. 16. The ac-
tive nodes are plotted in orange for the visibility constraint. This
time the object stays in the FoV during the whole scheme. The
visibility weights H2d are represented in Fig. 14(a). Their value
remains small (h < 3) and yet allows ensuring the constraint.
Several features are active around iteration 240. The maximum
value is obtained around iteration 600 for only one 2-D feature.
This corresponds to one of the nodes approaching the left border
during the rotation around the optical axis (see the video accom-
panying this paper). Joint positions [see Fig. 14(b)] stay inside
their limits, yet no avoidance is specified in this experiment.
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Fig. 15. Case 2. Visibility constraints in (a) eye-in-hand and (b) eye-to-hand are competing at iteration 240. (c) At this time, joint 2 passes its upper limit.
(a) Eye-in-hand weights H2d . (b) Eye-to-hand weights Hext . (c) Joint positions q.

Fig. 16. Case 2: This time the camera goes to the right of the eye-to-hand image
while ensuring the eye-in-hand visibility constraint. (a) Eye-in-hand view (iter.
240). (b) Eye-to-hand view (iter. 240).

Finally, Fig. 13(b) shows that the 3-D landmark goes out of the
eye-to-hand view around iteration 240, that is when the camera
moves away from the object to keep it in the FoV.

C. Adding the Eye-to-Hand Visibility Constraint (Case 2)

We now take into account the visibility constraint in the eye-
to-hand view. The modeling is the same as previously exposed.
The considered points are the 30 points from the 3-D landmark.
We denote sext the corresponding 2-D features. The global fea-
ture vector is thus s = (s3d , s2d , sext), and the weighting matrix
is H = Diag(H3d ,H2d ,Hext), where Hext is defined exactly
as H2d .

The resulting images are shown in Fig. 16. This time, the
3-D landmark stays in the eye-to-hand FoV. The eye-in-hand
visibility constraint can still be ensured as the camera moves to
the right instead of moving up. As seen in Fig. 15(c), this makes
joint 2 (shown by the green line) pass its upper limit (which
is not the real limit so that it has been possible to realize this
experiment).

The corresponding weights are represented in Fig. 15. Adding
a new constraint makes the visibility weights H2d increase when
compared with the previous section. Indeed, eye-in-hand and
eye-to-hand visibility constraints are competing around iteration
240 which makes the eye-in-hand weights pass 10, while one
of the eye-to-hand weights reaches 5. As previously mentioned,
the maximum weight is reached around iteration 600 for the
visibility constraint.

Fig. 17. Case 3. The camera cannot move to the right anymore when the
observed object is large in the eye-in-hand image. (a) This time the 3-D landmark
comes toward the eye-to-hand camera while rotating around the optical axis (b).
(a) Eye-in-hand view (iter. 240). (b) Eye-to-hand view (iter. 240).

D. Adding the Joint Limit Avoidance (Case 3)

We now take into account the joint positions in the task. The
global feature vector yields

s =

⎡

⎢
⎢
⎢
⎣

s3d

s2d

sext

q

⎤

⎥
⎥
⎥
⎦

· · · PBVS (dim. 6)

· · · Eye-in-hand visibility (dim. 2 × 12)

· · · Eye-to-hand visibility (dim.2 × 30)

· · · Joint positions (dim. 6).

(52)

The corresponding weighting matrix is thus H = Diag(H3d ,
H2d ,Hext ,Hq), where Hq regroups the joint weights. We use
the strategy exposed in Section III-C2; Hq corresponds to the
optimal weighting (43). The activation and safe areas are defined
with ρ = 10% and ρa = 5%. For this constraint, the progress
parameter (49) is used as the desired position is likely to lie in
the joint unsafe area.

Fig. 17 shows the eye-in-hand and eye-to-hand images that
correspond to iterations 240, when the main difficulty occurs;
some 2-D points are very near to the image border in both views.
We can see in Fig. 19(c) that at the same time one of the joint
limits is avoided very closely. This corresponds to a configu-
ration where the camera has to move away from the object in
order to keep it in the FoV, but has its motion limited by both
the eye-to-hand visibility constraint and the joint limit. The val-
ues of the weights are represented in Fig. 18 and clearly reflect
this phenomenon. Indeed, all three curves indicate that the con-
straints are endangered at the same time. Several weights reach
their maximum around iteration 240. The corresponding values
are higher than in the previous cases: the eye-in-hand visibility
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Fig. 18. Weights of the different subsystems. (Left) eye-in-hand 2-D points. (Middle) Eye-to-hand 2D points. (Right) Joint positions. All constraints occur
around iteration 300, making the weights have significative values. The adaptive gain (shown by a black curve) shows the system slows down at this moment.
(a) Eye-in-hand weights H2d . (b) Eye-to-hand weights Hext . (c) Joint weights and adaptive gain.

Fig. 19. General behavior of the robot. Camera velocity (left) shows some oscillations when passing the vicinity of all constraints. PBVS error (middle) indicates
that the visual servoing is performed during the task. Joint positions (right) highlight the limit being avoided. (a) Camera velocity setpoint. (b) PBVS error.
(c) Joint positions.

constraint has some weights reaching 20, while the eye-to-hand
and the joint weights reach 5. As previously announced these
values are still acceptable and do not endanger the condition-
ing of H and the whole system is stable. Reducing artificially
the joint limit would typically lead to a configuration where
the task could actually not be performed without violating the
constraints and the robot would have stopped at this position.

As previously mentioned, a second peak value is reached
for one visibility weight around iteration 600. This time, the
corresponding value is less than 10, compared with 25 in case
2. This constraint is thus less endangered by the trajectory from
case 3 than the one from case 2. As for the general behavior of
the robot, Fig. 19(a) reveals that some oscillations appear in the
velocity setpoint. This is due to the high number of constraints
that are near to violation at the same time. We can note in
Fig. 18(c) that the adaptive gain is reduced by 10 at this time.
This is clearly visible in Fig. 19(a) that the system slows down
around iteration 240. The measurement of the joint positions
in Fig. 19(c) shows that the general motion remains smooth
all along the task and, especially, even when joint 2 is near
its limit. Finally, Fig. 19(b) represents the PBVS error. Even
if the corresponding weighting matrix is the identity, the other
weights prevents the PBVS from decreasing exponentially. The
convergence is still satisfactory and oscillations are quite small.

E. Comparison Between the Several Cases

Fig. 20 compares the trajectories corresponding to the exper-
iments presented. This shows very clearly that the end effec-

Fig. 20. Three-dimensional trajectories for the presented cases, observed from
the eye-to-hand camera. Pure PBVS (indicated by the cyan line) begins by a
straight line, before getting inconsistent when the tracker loses the object. Case 1
(indicated by the blue line) corresponds to the trajectory that reaches the highest
point, as the eye-to-hand visibility is not taken into account. Case 2 (indicated
by the green line) makes the camera go to the right instead of going up. Finally,
case 3 (indicated by the red line) forces the camera to draw another trajectory
in order to ensure all the constraints.

tor has many available trajectories to perform the positioning
task. However, not all of them respect the constraints; actu-
ally, only the last configuration (case 3, indicated by red) does.
When performing only PBVS (case 0, indicated by cyan), the



256 IEEE TRANSACTIONS ON ROBOTICS, VOL. 30, NO. 1, FEBRUARY 2014

trajectory is a straight line until the failure due to the tracker
losing the object. When not using the eye-to-hand image, the
camera tends to go up (case 1, indicated by blue). On the op-
posite, the runs that use the eye-to-hand camera share a lower
trajectory. In particular, the camera going right instead of going
up is clearly visible for case 2 (shown by the green line). We
highlight that no local minimum is reached for any combina-
tion of features. The implicit concurrency allows adding new
constraints without having to model the potential coupling.

F. Other Experiments

The presented experiment illustrates the general properties
of our approach. In complementary works, we have also high-
lighted specific aspects through other types of experiments. In
particular, exhaustive simulations have been carried out for the
visibility constraint (see case 1). We have simulated 9900 ser-
voings, that is a large set of combinations for 100 initial and
final poses, showing that 98% converge while ensuring the vis-
ibility constraint with the maximum weight being less than 20.
The other cases converge with higher weights, or with a smaller
control gain. In [23], our approach has also been compared with
other control laws that address the visibility constraint. The
joint limit avoidance has been validated in [22] on a six-DOF
robot arm Adept Viper850 for several positioning tasks in visual
servoing. Finally, the proposed framework has also been used
in ultrasound images in [27], to maintain the visibility of an
anatomic element of interest during tele-echography.

VI. CONCLUSION

This paper has proposed a generic approach to multisensor
and multiconstraint fusion in sensor-based control. The litera-
ture classically addresses this issue by a hierarchical approach
or by performing a weighted mean of the velocities that are com-
puted for each task. We proposed performing the data fusion at
the level of the features, by introducing a dynamic weighting
matrix. While some tuning aspects are similar to LQ control,
activation and deactivation of the features is part of the varying-
feature-set approach, which has been recently formalized for
one sensor [31]. The general idea is that a robotic system can
handle a high-dimensional task and several constraints without
having to explicit the hierarchy or perform a manual tuning of
the feature weights. The main properties of the proposed control
law have been exposed, concurring to the classical conditions
on the system rank with local asymptotic stability and potential
local minima in the case of redundancy. The scheme is generic
even for sensors that are not rigidly attached to the end-effector
frame. The main drawbacks of the proposed scheme are related
to its nature being only reactive. The additional strategies that
are proposed for the particular cases of local minima and un-
safe desired position both consist in modifying the activation
matrix independently from its initial design in terms of sub-
system integration. This can be viewed as the beginning of a
higher level controller that takes into account the global config-
uration and balances the weighting matrix so that the induced
trajectory avoids or escapes local minima. The versatility of
the approach has been illustrated by considering a multisensor

multiconstraint task. Several experiments have shown that the
proposed approach can handle various combinations of sensors
and constraints for a positioning task. Future work will consist
in extending this framework to other types of sensors such as
laser range or haptic devices. Other strategies, such as relaxing
some constraints, could also increase the convergence domain
of the proposed scheme. This could be suitable, for instance, for
the visibility constraint, where some parts of the object could
be allowed to leave the field of view.
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Nantes, France, in 1987. He received the Ph.D. degree
in computer science from the University of Rennes,
Rennes, France, in 1990.

Since 1990, he has been with Inria Rennes,
where he is currently a Senior Research Sci-
entist and the Head of the Lagadic Group.
His research interests include robotics and com-
puter vision, especially visual servoing and active
perception.

Dr. Chaumette received the AFCET/CNRS Prize for the Best French Thesis
in automatic control in 1991. He also received the 2002 King-Sun Fu Memorial
Best IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION Paper Award. He
was an Associate Editor of the IEEE TRANSACTIONS ON ROBOTICS from 2001 to
2005 and is now on the Editorial Board of the International Journal of Robotics
Research.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


