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Efficient Iterative Pose Estimation using an
Invariant to Rotations

Omar Tahri, Helder Araujo, Youcef Mezouar, and François Chaumette, Senior Member, IEEE,

Abstract—This paper deals with pose estimation using an
iterative scheme. We show that using adequate visual information,
pose estimation can be performed iteratively with only three
independent unknowns, which are the translation parameters.
Specifically, an invariant to rotational motion is used to estimate
the camera position. In addition, an adequate transformation is
applied to the proposed invariant to decrease the nonlinearities
between the variations in image space and 3-D space. Once
the camera position is estimated, we show that the rotation
can be estimated efficiently using two different direct methods.
The proposed approach is compared against two other methods
from the literature. The results show that using our method,
pose tracking in image sequences and the convergence rate for
randomly generated poses are improved.

Index Terms—Invariant to rotation, pose estimation, projection
onto sphere.

I. Introduction

POSE estimation (also known as extrinsic camera calibra-
tion) consists on the determination of the position and

orientation of a camera with respect to an object coordinate
frame using the image information. Pose estimation is a classic
problem in computer vision [6], [15]. Nevertheless, there is a
recent renewed interest as a result of automated navigation and
model-based vision systems.

Numerous methods to estimate the pose have been proposed
in the literature and giving an exhaustive list of them is
certainly impossible. Nevertheless, they can be divided into
several categories according to the features used or the nature
of the estimation method, namely direct methods or iterative
methods. The geometric features considered for the estimation
of the pose are often points [6], segments [7], contours, conics
[18], or image moments [22]. Another important issue is the
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registration problem. Purely geometric [7], or numerical and
iterative [6], [2], [16] approaches may be considered. Linear
approaches give closed-form solutions free of initialization [1],
[8], [14]. However, the estimated pose using such methods is
sensitive to image noise and to errors on camera parameters.
Full-scale nonlinear optimization techniques [16] minimize
the error between the observation and the projection of the
feature using the model, that is the reprojection error. The
main advantage of the nonlinear and iterative approaches
is their accuracy. The main drawback is that they may be
subject to local minima and, worse, divergence, if not correctly
initialized. Furthermore, they usually require several iterations
to minimize the cost function and generally they are more
time consuming than the direct methods. These problems (i.e.,
local minima, divergence, and time cost) are mainly due to
nonlinearities in the mapping between 3-D and image space.
The nonlinearities are also usually the main reason for the
failure of filtering strategies of the pose [13]. This occurs
especially when the initial state is not accurate or when abrupt
motions happen (for instance, for extended Kalman filter [21]).

In this paper, we deal with the selection of visual infor-
mation that decreases the effect of the nonlinearities between
the variations in the image space and the 3-D space. First,
we will show that the iterative estimation of the pose can
be expressed as a minimization without constraints of a cost
function on three unknowns only, which are the translation
parameters. More precisely, to estimate the camera position
separately from the rotation, an invariant to rotation computed
from the point projections onto the unit sphere will be used.
Furthermore, these visual features are chosen to minimize the
changes on their corresponding Jacobian matrices with respect
to the camera position. Second, we will also show that once
the camera position is obtained using an iterative method, the
rotation can be computed directly, that is, it is obtained without
any iterative method. Therefore, the convergence speed and
rate are only function of the translations.

In the next section, we recall the unified projection model
and some basic definitions. Section III describes the method
we propose. Section IV compares this method with two
iterative methods from the literature.

II. Definitions

A. Notations

In the sequel, the following notations will be used:
• P = (X , Y , Z ): 3-D point coordinates;
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Fig. 1. Unified image formation.

• Ps = (xs, ys, zs): projected point onto the unit sphere;
• Pv: virtual points defined by linear combination of the

projected points onto the unit sphere;
• m = (x , y, 1 ): coordinates of projected point onto the

image plane in metric units;
• p: coordinates of projected point onto the image plane in

pixels;
• dij =

√
2 − 2P�

si
Psj

: distance between two projected
points Psi

and Psj
on the unit sphere;

• the variables followed by ∗ are computed for the camera
pose to be estimated;

• all the scalars are in italic;
• all the matrices and vectors are in bold.

B. Camera Model

Central imaging systems can be modeled using two con-
secutive projections: spherical and then perspective. This geo-
metric formulation, called the unified model, was proposed by
Geyer and Daniilidis in [9]. Consider Fm the frame attached
to a virtual unitary sphere as shown on Fig. 1. The frames
attached to the sphere Fm and to the perspective camera Fp

are related by a simple translation of −ξ along the Z-axis. Let
P be a 3-D point with coordinates P = (X, Y, Z) in Fm. The
world point P is projected onto

m =
(

x, y, 1
)

=
(

X
Z+ξ‖P‖ ,

Y
Z+ξ‖P‖ , 1

)
(1)

and then mapped to the homogeneous image-plane coordinate
p = Km, where K is a 3 × 3 matrix of camera and mirror
intrinsic parameters. The matrix K and the parameter ξ can
be obtained from calibration using, for example, the methods
proposed in [17]. In the sequel, the imaging system is assumed
to be calibrated. In this case, the inverse projection onto the
unit sphere can be obtained from

Ps = γ
(

x, y, 1 − ξ

γ

)
(2)

where

γ =
ξ +

√
1 + (1 − ξ2)(x2 + y2)

1 + x2 + y2
.

Fig. 2. Relation between 3-D distance and distance between projected point
on the sphere.

The projection onto the unit sphere from the image plane
is possible for all sensors obeying the unified model. In other
words, it encompasses all sensors in this class [9]: perspective
and catadioptric cameras. A large class of fisheye cameras are
also concerned by this model [4], [3].

C. Pose Estimation

Pose estimation consists in determining the rigid transfor-
mation cMo between the object frame Fo and the camera
frame Fc in unknown position using the corresponding object
image. It is well known that the relationship between an object
point with coordinates Pc = [Xc, Yc, Zc, 1]� in Fc and
Po = [Xo, Yo, Zo, 1]� in Fo can be written as

Pc =c Mo Po =

[
cRo

cto
031 1

]
Po. (3)

The matrix cMo can be estimated by minimizing the modulus
of the error in the image

e =‖ s(cMo) − s∗ ‖ (4)

where s∗ is the value of a set of visual features computed
in the image acquired with the camera in unknown position
and s(cMo) is the value of the same set of features computed
from the object model, the transformation cMo, and the camera
model.

III. Pose Estimation Method

In this section, we first propose new features to estimate the
camera position separately from the rotation. We then propose
a method for the direct estimation of the rotation once the
translational part of the pose has been determined.

A. Position Estimation Using an Invariant to Rotation

1) Invariant to Rotations: Let dij be the distance between
two projected points on the unit sphere

dij =
√

2 − 2 P�
si

Psj
. (5)

It can easily be shown that the distance dij is an invariant to any
rotational motion applied to the camera frame. Indeed, if we
apply a rotational motion to the camera frame, the projected
points on the sphere undergo also the same rotation. In this
case, we have P′

si
= RPsi

, where P′
si

and Psi
are the projections

of a 3-D point onto the unit sphere corresponding the two
cameras orientations and R is the matrix defining the rotation.
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Therefore, it can be obtained that P
′�
si

P′
sj

= Psi
R� R Psj

=
P�

si
Psj

since R� R = I, which proves the invariance of dij to
rotational motion applied to the camera frame. Therefore, the
variation of dij only depends of the translation. Furthermore,
the Jacobian matrix that links the variation of dij with respect
to translational displacement is given by

Jdij
= −

P�
si

JPsj
+ P�

sj
JPsi

dij

(6)

where JPsi
and JPsj

are the Jacobian matrices that relate
the variations of the point coordinates on the unit sphere to
the camera translational displacements. This Jacobian has the
following form [11]:

JPsi
=

−I + Psi
P�

si

‖ Pi ‖ (7)

where ‖ Pi ‖ is the distance of the 3-D point to the center of
the sphere. After inserting (7) in (6), we obtain

Jdij
= − 1

dij

((
− 1

‖ Pj ‖ +
P�

si
Psj

‖ Pi ‖

)
P�

si

+

(
− 1

‖ Pi ‖ +
P�

si
Psj

‖ Pj ‖

)
P�

sj

)
. (8)

Further, to the invariance to rotation, which allows sepa-
rating the estimation of the camera position and orientation,
it is also possible to decrease the nonlinearities between the
image space and 3-D space. Indeed, the distance dij on the
sphere behaves as function which is approximately inversely
proportional to the point depths ‖ Pi ‖. This means that its
corresponding Jacobian matrix depends on the square of the
inverse of the point depths. On the other hand, the inverse of
the distance behaves approximately as a linear function of the
points depths. This should allow obtaining more linearizing
properties between the image space and 3-D space. So, we
propose to use sij = 1/dij for all possible combinations of
two projected points. Let us consider the case when the mean
distance R of the points to the sphere center is such that
R ≈‖ Pi ‖≈‖ Pj ‖ as shown in Fig. 2. In this case, we have

Jsij
≈ (−1 + P�

si
Psj

)

R

(Psi
+ Psj

)�

d3
ij

. (9)

Note that −1 + P�
si

Psj
= − d2

ij

2 , then (9) can be written as

Jsij ≈ ‖ Psi + Psj ‖
2R dij

(Psi + Psj )�

‖ Psi + Psj ‖ . (10)

From Fig. 2, we have
dij

Dij

=
1

R
. (11)

By combining (11) with (10), we obtain

Jsij ≈ ‖ Psi + Psj ‖
2Dij

(Psi + Psj )�

‖ Psi + Psj ‖ . (12)

Note that
(Psi

+Psj
)�

‖Psi
+Psj

‖ is the unitary vector that passes through
the middle of the two points Psi

and Psj
and also ‖ Psi

+
Psj

‖≈ 2 if R >> Dij . This means that the Jacobian matrix Jsij

behaves as a constant matrix when the point depth increases.

2) Noise Propagation from Image Space to the New
Feature Space: Applying nonlinear transformations on data
obtained from the sensor space changes the noise distribution.
For instance, if the image noise is Gaussian white, the noise
on invariants features is no more Gaussian white since the
applied transformation is nonlinear. In practice, if the noise
level is low, the use of invariants sij allows obtaining adequate
performances. If the noise level increases, the propagation of
noise from the image to the feature sij should be taken into
account. Let us start with the sensitivity of a projected point
onto the sphere with respect to noise in the image plane.
Taking the derivative of (2), the variation in the coordinates
of the point projected onto the sphere as a function of the
variation in the coordinates in the image points (noise-meters)
is obtained by (using the first-order approximation)

�Ps = JPs/m�m (13)

where

JPs/m =

⎡
⎢⎣

γ + x
∂γ
∂x

x
∂γ
∂y

0

y
∂γ
∂x

γ + y
∂γ
∂y

0
∂γ
∂x

∂γ
∂y

0

⎤
⎥⎦ (14)

with

∂γ

∂x
= x

1+x2+y2

(
(1−ξ2)√

1+(1−ξ2)(x2+y2)
− 2γ

)

∂γ

∂y
= y

1+x2+y2

(
(1−ξ2)√

1+(1−ξ2)(x2+y2)
− 2γ

)
(15)

where γ and ξ have been defined in Section II-B. Therefore,
the variation of Ps with respect to image points in pixels is
obtained by

�Ps = JPs/mK−1�p. (16)

Furthermore, from dij =
√

2 − 2P�
si Psj , we have

�dij = − 1

dij

(P�
sj �Psi + P�

si �Psj). (17)

As a result of (14) and (17), the variation of sij = 1
dij

with
respect to noise in the coordinates of the image points (in
pixels) is obtained by

�sij = Jsij/p´

[
�pi

�pj

]
(18)

where Jsij/p =
[

P�
sj

JPsi/mi K−1 P�
si

JPsj/mj K−1
]

/d3
ij . In order to

take into account the nonlinear mapping from the image point
coordinates to the features sij , each visual feature should
be weighted by 1

‖Js∗
ij

/p∗ ‖ computed using the image points

coordinates corresponding to the pose to be computed. More
precisely, we use all possible combinations of swij = 1

dij

1
‖Js∗

ij
/p∗ ‖

as measure to estimate the camera position.
3) Direct Estimation of the Rotation: We now present two

direct methods to determine the rotation once the translation
has been estimated.
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Fig. 3. Definition of vector basis from two projected points

Fig. 4. Definition of vector basis from N projected points

a) Method based on an orthonormal basis computation:
In [5] and [23], an angle-axis representation of a rotation
matrix R computed from two projected points on the sphere
has been considered to control rotational motions for visual
servoing application. The idea behind the rotation formula
given in these works is equivalent to attaching an orthonormal
frame basis to each camera pose using two projected points
onto the unit sphere. More precisely, let Ps1 and Ps2 be two
projected points on the sphere for a pose 1 of the camera
and P∗

s1 and P∗
s2

their corresponding projected points for a
camera pose 2. From Ps1 and Ps2 , it is possible to define an
orthonormal basis cRs = [v1; v2; v3] (Fig. 3) such that

v1 = Ps1 (19)

v2 =
Ps2 − (P�

s2
Ps1 )Ps1

‖ Ps2 − (P�
s2

Ps1 )Ps1 ‖ (20)

v3 = v1 × v2. (21)

and similarly an orthonormal basis c∗Rs∗ using points P∗
s1

and P∗
s2

. If only a rotational motion is considered, the rotation
matrix R between the two camera poses is determined by the
matrix that transforms the vector basis cRs to c∗Rs∗

R = c∗Rs∗ cR�
s . (22)

For the sake of robustness, all projected points on the sphere
should be used and not only two. In this paper, we propose a
way to define the rotation matrix using all the points. The idea
is based on the fact that the rotation matrix given by (22) can
be obtained from two real projected points as well as from two

virtual points rigidly attached to the set of projected points.
Let us consider

Pv1 =
N∑
i=1

a1iPsi
, Pv2 =

N∑
i=1

a2iPsi
(23)

two virtual points obtained by a linear combination of the real
set of projected points on the sphere. Then, from Pv1 and Pv2

an orthonormal basis cRn can be defined as follows:

vn1 =
Pv1

‖ Pv1 ‖ (24)

vn2 =
Pv2 − P�

v2
vn1vn1

‖ Pv2 − P�
v2

vn1vn1 ‖ (25)

vn3 = vn1 × vn2. (26)

Lemma 1: If only a rotational motion is considered, the
rotation matrix R between the two camera poses is determined
by the matrix that transforms the vector basis cRn into c∗Rn∗

R = c∗Rn∗ cR�
n (27)

where
cRn = [vn1; vn2; vn3]

and
c∗Rn∗ = [v∗

n1; v∗
n2; v∗

n3]

are computed using (23)–(26).
The proof of the previous lemma is detailed in the appendix.

To define the vector basis cRn and c∗Rn∗, it is necessary to
determine the parameters a1i and a2i in (23). More precisely,
we have to define two virtual points P∗

v1
and P∗

v2
and then

express them as linear combinations of the projected points on
the sphere P∗

si computed for the camera pose to be estimated.
For the sake of simplicity, P∗

v1
and P∗

v2
are chosen to be

unitary and perpendicular to each other. For such case, the
basis [P∗

v1
; P∗

v2
; P∗

v1
× P∗

v2
] is orthonormal.

In any given frame basis, [P∗
v1

; P∗
v2

; P∗
v1

× P∗
v2

], each pro-
jected point onto the sphere can be expressed as

P∗
si = b1iP∗

v1
+ b2iP∗

v2
+ b3iP∗

v1
× P∗

v2
. (28)

Let B be the 3 × N matrix that defines the coordinates of
all the projected points on the new frame basis. We have

P∗
st = Pv∗ B (29)

where

P∗
st = [P∗

s1 P∗
s2 . . . P∗

sN ],

P∗
v = [P∗

v1
P∗

v2
P∗

v1
× P∗

v2
]

and

B = P�
v∗ P∗

st . (30)

In practice, a1i and a2i have to be chosen such that their
corresponding virtual points are robust to noise. Our choice is
based on characteristic features of 3-D structure; the center
of gravity of the directions defined by the points and the
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principal axis of the directions (also defined by the points).
More precisely, the first virtual point is defined by

P∗
v1

=
1

‖ ∑N
i=1 P∗

si ‖
N∑
i=1

P∗
si (31)

which corresponds to a1i = 1
‖∑N

i=1 P∗
si‖

. The second virtual point
P∗

v2
is chosen as the unitary vector perpendicular to P∗

v1
that

lays on the plane defined by P∗
v1

and the major principal axis
of the set of the projected points on the sphere (see Fig. 4).
The choice of the main principal axis as second axis allows
having the majority of the points in its direction. Now as P∗

v1

and P∗
v2

have been determined, the matrix B can be computed
using (30). From (28), it can be obtained that

P∗
si − b1iP∗

v1
= b2iP∗

v2
+ b3iP∗

v1
× P∗

v2
. (32)

By replacing P∗
v1

by
∑N

i=1 P∗
si

‖∑N
i=1 P∗

si‖
, we obtain for all the projected

points onto the sphere

P∗
stC =

[
P∗

v2
P∗

v1
× P∗

v2

]
B23 (33)

where B23 is composed by the two last rows of B and C is
an N × N matrix defined by clm = 1 − b1l

‖∑N
i=1 P∗

si‖
if l = m and

clm = − b1l

‖∑N
i=1 P∗

si‖
for l �= m. By inverting (33), we obtain[
P∗

v2
P∗

v1
× P∗

v2

]
= P∗

st C B23
+. (34)

The parameters a2i are then obtained as the first column
of the matrix C B23

+. Now as the coefficients a1i and a2i are
defined, the vector basis for each camera pose can be obtained
using (24)–(26).

This way of obtaining the rotation matrix by building an
orthogonal basis from a set of points has dual application
in practice; it allows a direct estimation of rotation for pose
estimation problem, but it can also provide a rotation vector
from a set of N projected points on the sphere to control
the rotational motions in image-based visual servoing. In the
next paragraph, we recall another direct way of recovering
the rotation matrix between two set of projected points on the
sphere.

b) Direct estimation of the rotation by solving an orthog-
onal Procrustes problem (OPP): The rotation matrix could
also be directly obtained by solving the orthogonal Procrustes
problem between two sets of projected points on the sphere.
We recall that the OPP is defined as the least-squares problem
transforming a given matrix F into a given matrix F′ by an
orthogonal transformation R so that the sum of squares of the
residual matrix E = RF − F′ is minimal [12]. Mathematically,
this problem can formulated as follows: [19]:

RF = E + F′ (35)

RR� = I (36)

tr(E�E) is minimal. (37)

In our context, the matrices F and F′ are composed by the set
of all projected points onto unit sphere that is Pst and P∗

st . The

Orthogonal Procrustes Problem can be solved by computing
the SVD decomposition of P∗

st P�
st

P∗
st P�

st = U�V�. (38)

The rotation matrix between the two camera poses is then
given by

R = UV�. (39)

4) Pose Estimation Algorithm: The pose estimation
method is divided into two steps: first, we determine the trans-
lation between the initial pose and the pose to be estimated
using the invariant to rotation as feature as follows.

• Project the image points corresponding to the pose to be
computed onto the sphere using (2).

• Compute the value of features vector st
∗ for the pose to

be estimated by stacking the features s∗
wij = 1

d∗
ij

1
‖Js∗

ij
/p∗ ‖ .

• The camera pose is set up at its initial value

cMo = iMo =

[
iRo

ito
01×3 1

]
.

Minimization loop: while (‖ st − st
∗ ‖≤ ε) where ε is defined

by the user.
• Project the 3-D points of the object onto the unit sphere

using the object model and the current value of the pose
cMo.

• Compute the current value of features vector st corre-
sponding to st

∗ by stacking the features swij = 1
dij

1
‖Js∗

ij
/p∗ ‖ .

• Compute the Jacobian matrix Jst corresponding to st (Jst

is a l×3 matrix, l is the number of used distances between
projected points on the sphere).

• Compute the translational displacement using
�t = −λJ+

st
(st − st

∗) (λ is a scalar gain that tunes the
convergence speed and J+

st
is the pseudo-inverse of Jst ).

• Update cMo by adding the translational motion �t.
After the end of the minimization loop described previously,

the matrix cRi that defines the rotation between the initial
camera pose (defined by iMo) and the camera pose to be
computed can be directly obtained using one of the two
methods presented in Section III-A3. Besides, the rotation
between the object frame and the camera frame is then
obtained by cRo = cRi

iRo. This means that if the translational
motion is well estimated using an invariant to rotations,
the correct pose will be obtained. Let us remind that the
iterative minimization process is nothing but a minimization
without constraints of a cost function on three unknowns only.
Therefore, the convergence speed and rate are only function
of the translations.

IV. Validation Results

In this part, our pose estimation method is compared to two
nonlinear and iterative methods proposed respectively by [2]
(method A in the following) and by [16] (method L in the
following). The method L is a globally convergent algorithm
that minimizes error in object space; the error between the
observation and the projection of the features using the model.
On the other hand, the method A minimizes an error defined in
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the image and improves the classical Lowe’s pose-estimation
algorithm. A comparison of several iterative methods has
been made in [10] and showed that the method A is the
most accurate of the considered methods. When the pose is
estimated using our method, the direct estimation of rotation
is obtained using the first method given by (27), except when
it is indicated that the orthogonal Procrustes method has been
used.

A. Results for Pose Tracking

In this paragraph, the ability of each method to track the
pose of the camera with respect to a set of points for image
sequences with abrupt motions is tested. A camera model with
focal scaling factors Fx = Fy = 800 pixels/m and principal
point coordinates ux = vx = 400 pixels has been used to
compute the image points. For our method, the scalar gain λ

has been set to 1.
The first sequence of 300 images is obtained using 9

noncoplanar points defined in the object frame by [Fig. 5(a)]:

X1=

⎡
⎢⎣

0.2 −0.2 −0.2 0.2 0 0 0.1 −0.13 0.4
0.2 −0.2 0.2 −0.2 0 0.15 0.01 0 0.4
1.01 1.02 0.96 1.03 1. 1. 1. 1.2 1.3

1 1 1 1 1 1 1 1 1

⎤
⎥⎦ .

(40)
White Gaussian noise with standard deviation equal to 0.5

has been added to the coordinates of each point in the image.
Furthermore, the identity matrix has been used to initialize
iMo for the first image of the sequence (the initial set of points
is assumed to be in front of the camera close to the optical
axis and at 1 m distance from the image plane). The computed
pose for each image is used as initialization to determine the
pose for the following one using each method. The evolution
of the real-pose parameters of the camera with respect to the
object frame is shown in Fig. 6. Let us consider the pose error
defined by

Te =

[
Re te

01×3 1

]
= T−1

r Tc (41)

where Tr and Tc are, respectively, the real and the estimated
poses. If the correct pose is obtained, Te is equal to the identity
matrix (‖ te ‖= 0 and Re = I3). Let θe be the norm of
the rotation vector θeu corresponding to the rotation matrix
Re (recall that θeu is linked to Re by Rodrigues’ formula).
The errors ‖ te ‖ and θe on the estimated poses using our
method, method A and method L are shown, respectively, in
Figs. 7–9. From these plots, it can be seen that the estimated
values using the three methods are similar and very near to
the real ones. Furthermore, the errors on the estimated pose
obtained using the three methods are similar.

The second image sequence is obtained using less points
(five noncoplanar points) [Fig. 5(b)]:

X2 =

⎡
⎢⎢⎣

0.2 −0.2 −0.2 0.2 0
0.2 −0.2 0.2 −0.2 0.4
1.01 1.01 0.95 1.03 1.

1 1 1 1 1

⎤
⎥⎥⎦ . (42)

A stronger white Gaussian noise with standard deviation equal
to 2 has been added to the coordinates of each point. The

results obtained using our method, method A and method L
are shown, respectively, in Figs. 11–13. From Fig. 11, it can be
seen that the estimated values of the pose using our method
follow closely the real ones. On the other hand the method
A diverged and was not able to estimate the pose (Fig. 12).
Finally, as it was mentioned in [20], method L is affected by
local minima. Indeed from the plots, it can be noticed that the
pose switched several times to local minima (Fig. 13).

B. Convergence for Random Poses

In this paragraph, we compare the convergence rate for
random poses using our method, method L and method A.
The following setup has been used:

• an object composed of eight coplanar points defined as
follows has been considered [Fig. 5(c)];

X3=

⎡
⎣ −0.4 0.4 −0.4 0.4 0.42 −0.09 0.32 −0.32

−0.4 −0.4 0.4 0.4 −0.28 0.32 0 0
1. 1 1. 1 1 1 1 1

⎤
⎦ . (43)

• random poses have been generated as follows:

– 1000 random rotational motions are firstly applied
to the point coordinates defined in the object frame.
The norm of the rotation around the x-axis and the
y-axis range from −π

2 to π
2 , while the rotation angle

around the optical axis ranges from 0 to 2π;
– for each generated rotation, a translational motion

with respect to the optical axis that ranges from 1
to 4 m is applied to the point coordinates defined
in the object frame. Furthermore, the translational
motion with respect to the x-axis and the y-axis are
chosen such that the points coordinates belongs to
the image limits [1 800; 1 800] pixels.

The error on the pose is calculated using ‖ te ‖ and θe

computed from (41). Furthermore, for all methods, the identity
matrix is used as the initial value of the pose matrix. Fig.
14(a) and (b) gives the distribution of ‖ te ‖ and θe using the
three different methods and using perfect data (no noise on the
point coordinates in the image). In other words, for each value
of ‖ te ‖ and θe, the plot gives the percentage of the errors
smaller or equal to these values. From these figures, it can
be seen that our method achieves a convergence rate around
90%, while method L and A achieve convergence rates around
70% and 50%, respectively. The case of nonconvergence to the
global minimum using our method and method L are due to
convergence to local minima. Conversely, in the case where the
method A is used, the nonconvergences to the global minimum
are due to both divergence and convergence to local minima.

Now, we test the convergence rate of the three methods
using the same setup, but with 1 pixel Gaussian noise on the
point coordinates in the image. In this experiment, the method
of rotation estimation by solving the OPP is also tested. The
results obtained using each method are given in Fig. 15. From
this figure, it can be noticed that the accuracy of all the pose
estimation methods decreased. However, our iterative method
gives more accurate estimation of the poses. From Fig. 15(b), it
can be noticed that the rotation estimation by solving the OPP
gives slightly better results than the first method to estimate the
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Fig. 5. Object used for validations. (a) Object corresponding to X1. (b)
Object corresponding to X2. (c) Planar object corresponding to X3.

Fig. 6. Real values of the pose for the image sequence 1 versus image
number. (a) Translation vector entries in meter. (b) Rotation vector entries
in degrees.

Fig. 7. Error on the estimated pose parameters using our method for the
image sequence 1 versus image number. (a) ‖ te ‖ and (b) θe.

rotation. On the other hand, as mentioned previously, the direct
method recovering the rotation by building an orthonormal
basis from a set of projected points has a dual use since it can
also be used in image-based visual servoing [5], [23]. This
does not seem possible using the formulation of rotation as an
OPP.

As has been previously shown, the pose estimation can be
performed as an iterative minimization without constraints for
only three parameters that are the translation parameters tx,
ty, and tz. This limits the space that has to be searched for to
find the global optimum. Since the method we propose allows

Fig. 8. Error on the estimated pose parameters using method A for the image
sequence 1 versus image number. (a) ‖ te ‖ and (b) θe.

Fig. 9. Error on the estimated pose parameters using method L for the image
sequence 1 versus image number: (a) ‖ te ‖ and (b) θe.

Fig. 10. Real values of the pose for the image sequence 2 versus image
number: (left) translation vector entries in meter, (right) rotation vector entries
in degrees.

a high convergence rate, this makes possible preinitializing
the iterative algorithm at random starting points. The low
dimensionality of the space permits also to spot the local
minima. Let us consider the following case where the object
point coordinates are defined by (44) and the translational
motion to be computed is defined by the vector [0.7 0.4 2]m.
Fig. 16 shows the cost function ‖ s∗

t − st ‖ as color level
for 5 values of tz and tx and ty ranging from −2 to +2m.
From this figure, we can spot the positions of the local and
global minima with respect to each other (the position of the
minimal value of the cost function for each value tz is marked
by a cross in the images). We also note from Fig. 16(d) and
(e) that no local minimums exist for tz > 2m.

X4 =

⎡
⎣ −0.4 0.4 −0.4 0.4 0.5

−0.4 −0.4 0.4 0.4 0.6
1. 1 1. 1 1

⎤
⎦ . (44)
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Fig. 11. Error on the estimated pose parameters using our method for the
image sequence 1 versus image number: (left) ‖ te ‖ and (right) θe.

Fig. 12. Error on the estimated pose parameters using method A for the
image sequence 1 versus image number: (left) ‖ te ‖ and (right) θe.

Fig. 13. Error on the estimated pose parameters using method L for the
image sequence 1 versus image number: (left) ‖ te ‖ and (right) θe.

Fig. 14. Percentage of convergence with perfect data. (a) ‖ te ‖ and (b) θe.

Fig. 15. Percentage of convergence with 1 pixel Gaussian noise on image
point coordinates: (left) ‖ te ‖ and (right) θe.

Fig. 16. The cost function as a color level. (a) Result for tz = 1.6m.
(b) Result for tz = 1.8m. (c) Result for tz = 2m. (d) Result for tz = 2.2m.
(e) Result for tz = 2.4m.

V. Conclusion and Future Work

In this paper, we have proposed a new pose estimation
method from a set of matched points based on an invariant to
rotations. The proposed method has been validated and com-
pared to two different nonlinear methods. The results obtained
show that the proposed method achieves better tracking of the
pose for image sequences but also a higher rate of convergence
compared to the other methods considered. Future works will
be devoted to extend this method to model-free pose estimation
and also to camera calibration from a set of points.

Appendix: Proof of the Lemma 1

If only a rotational motion is considered between the two
camera poses we have

P∗
v1

=
N∑
i=1

a1iP∗
si

=
N∑
i=1

a1i
c∗RcPsi

= c∗Rc Pv1 (45)

P∗
v2

=
N∑
i=1

a2iP∗
si

=
N∑
i=1

a2i
c∗RcPsi

= c∗Rc Pv2 . (46)

By combining these equations with (24), we obtain

v∗
n1 =

c∗Rc Pv1√
P�

v1
c∗R�

c
c∗Rc Pv1

(47)
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from which, we obtain

v∗
n1 = c∗Rc vn1. (48)

Identically, it is possible to prove that

v∗
n2 = c∗Rc vn2 (49)

Combining (48), (49) and (26) it yields

v∗
n3 = c∗Rc vn3 (50)

Therefore, by combining (48)–(50), one obtains

c∗Rn∗ = c∗Rc
cRn. (51)

Finally, by multiplying both sides of the last equation by cR�
n ,

we obtain

c∗Rn∗ cR�
n = c∗Rc

cRn
cR�

n = c∗Rc (52)
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