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Abstract. The large size of histological images combined with their very
challenging appearance are two main difficulties which considerably com-
plicate their analysis. In this paper, we introduce an interactive strategy
leveraging the output of a supervised random forest classifier to guide a
user through such large visual data. Starting from a forest-based pixel-
wise estimate, subregions of the images at hand are automatically ranked
and sequentially displayed according to their expected interest. After
each region suggestion, the user selects among several options a rough es-
timate of the true amount of foreground pixels in this region. From these
one-click inputs, the region scoring function is updated in real time using
an online gradient descent procedure, which corrects on-the-fly the short-
comings of the initial model and adapts future suggestions accordingly.
Experimental validation is conducted for extramedullary hematopoesis
localization and demonstrates the practical feasibility of the procedure
as well as the benefit of the online adaptation strategy.

1 Introduction

Analyzing histological images is usually an extremely challenging task. Due to
the complex appearance of objects of interest, the accuracy of fully-automatic
techniques is generally insufficient for clinical use, e.g. in the case of mitosis
detection [1] for which a variety of automatic approaches has been recently com-
pared quantitatively [2]. In fact, the accurate identification of patterns within
such images is often only achievable by well-trained human experts and remains
prone to inter-experts disagreements in some cases [3]. Moreover, histological
data are very tedious to process for a human because of their large dimension,
which commonly reaches tens of thousands of pixels along each direction. When
aiming at finding rare objects within images of this size, a manual search for
these instances requires a painstaking exploration of the whole content, and a
huge amount of time is spent scrolling through uninteresting background areas.

To overcome this, we propose to leverage fully-automatic pixelwise classi-
fication techniques to recover candidate areas of interest (i.e. where positive
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Fig. 1. Summary of our approach

instances are found), leaving the task of interpreting the visual content within
these regions to an expert user. To this end, assuming that an available auto-
matic method provides a label confidence at each pixel, an intuitive strategy
would be to rank subregions of the images in decreasing order of confidence and
display them accordingly one after the other. Having thereby patterns of interest
shown early in the process, an exhaustive search would not be necessary any-
more. However, such a scenario relies entirely on the accuracy of the automatic
detector and can fail if the latter suffers from difficulties on the images at hand.
In the case of detectors based on supervised learning procedures, difficulties may
arise due to the common mismatches between the training and test data, caused
by e.g. differences in noise or illumination. In this context, it would be beneficial
to allow the user to interact after each suggestion (in particular after wrong ones)
so that the procedure can be adapted to the characteristics of the test data and
eventually avoid mistakes for the upcoming region suggestions.

Online transfer learning (OTL) frameworks [4, 5] address this problem by
combining (i) a kernel-based classifier pre-trained on some source data, and
(ii) an online classifier continuously trained on arriving instances from the tar-
get data, given by the user input in our case. On the closely related problem
of domain adaptation, an unsupervised algorithm based on Gaussian process
regression was introduced to adapt the decision boundary of a face detector
to a test image [6]. In the case of medical data, random forest classifiers [7, 8]
demonstrated high accuracy and tractability and are especially used for their
ability to handle high amounts of training data and descriptors. Although an
online version of random forests exists in the literature [9], replacing the kernel
classifiers of the OTL approach by forests is not straightforward: only few sam-
ples are available to train the target classifier, and a forest-based OTL scheme
would handle the source classifier as a whole, without exploiting the diversity
and possibly heterogeneous relevance of its local models on the target data.

In this work, we introduce a regression-based method able to leverage the
knowledge carried by a pre-trained random forest classifier to guide the user
through the data by suggesting candidate regions of interest. Our approach ex-
ploits the multiple partitionings of the feature space defined by the trained forest
to perform local updates of the model from one-click inputs provided by the user.



Thereby, characteristics of the test data can be captured and future suggestions
are adapted accordingly. These updates are performed in real time between two
iterations and do not require the original training data, which makes our method
particularly tractable for clinical use. Experimental evaluation is conducted on a
high-resolution dataset for hematopoesis identification within mouse liver slices,
as well as on synthetic deformations of it, and demonstrates the general feasibil-
ity of our approach and the benefit of the adaption scheme.

2 Methods

We first summarize the general scenario of our approach. Let us consider a given
set of images composed of pixels. Each pixel p has a true label y(p) ∈ {0, 1}
and we aim at detecting the positive instances within our images, i.e. the pixels
p such that y(p) = 1. We make the assumption that a random forest classifier
has been trained beforehand on some available labeled data and hence provides
a probability PRF(y(p) = 1) ∈ [0, 1] for each pixel p. Here, we implicitly assume
that this forest has been originally designed for a binary classification task,
but any multi-class forest could also be used by grouping as positive the labels
considered as interesting for the given application. For tractability, the original
training data is not made available during the whole process and is thus only
encoded through this forest. In our scenario, a user runs this classifier which is
based on prior data on a new set of images that are correlated but potentially
slightly different, e.g. because of different imaging conditions. From the resulting
pixelwise output, an area of interest, expected to contain positive labels, is then
displayed to the user, who provides in return an estimate of the proportion of
positive pixels actually observed. In doing so, the bias of the initial model can
be progressively assessed and compensated to ultimately increase the relevance
of the upcoming region suggestions.

Under these conditions, we can formalize our scenario mathematically. The
test images are partitioned into a set of rectangular regions R = {R1, . . . , Rn}
whose sizes are tractable for a human user. At iteration k, i.e. after the user saw
k − 1 regions, we proceed as follows:

1. The region R̂ ∈ R, maximizing a scoring function φk : R → R stating the
expected relevance of each region, is displayed to the user.

2. The user interacts to provide information about the content observed in R̂.
3. Using this feedback, φk is updated, resulting in a new scoring function φk+1.
4. R̂ is removed from the pool of candidate regions R.

The initial scoring function φ1 is based on the initial random forest classifier
only. We summarize the random forest model in Sec. 2.1. In Sec. 2.2, we expose
our choice of scoring functions φk and how they can be parametrized. Finally,
the update strategy of φk from the user inputs is described in Sec. 2.3.

2.1 Random Forest Model

Our approach uses a trained random forest classifier as starting point, which
provides for each pixel p a probability of being a positive instance. A random



forest is a collection of T decorrelated binary decision trees. Each tree (indexed
by t ∈ {1, . . . , T}) is a hierarchical collection of decision rules based on visual
features, leading to a partition of the domain into l(t) leaves Lt,1, . . . ,Lt,l(t).
Each leaf Lt,i contains a probability model πt,i ∈ [0, 1]. For each tree t, ev-
ery newly observed pixel p reaches exactly one leaf, and we will denote πt(p)
the corresponding probabilistic model. Averaging over trees, the final pixelwise
probability provided by the random forest for each pixel p is

PRF(y(p) = 1) =
1

T

T∑
t=1

πt(p) . (1)

We follow the standard procedure [7, 8] to train such a classifier, i.e. to infer
the decision rules and the leaf models. Starting from a root node, the decision
rules are recursively chosen within a set of randomly drawn splitting functions
to maximize an information gain criterion. The proportion of positive training
samples contained in a leaf defines its probabilistic model.

2.2 Region Scoring Function

In this subsection, we describe our region scoring model. Given a pixelwise esti-
mate Pk(y(p) = 1) at iteration k, we define the relevance of a region R ∈ R as
the expectation of the proportion of positive pixels in R. Modeling the pixel la-
bels as independent Bernoulli distributions of success probability Pk(y(p) = 1),
this expectation and hence the scoring function φk can be written as

φk(R) =
1

|R|
∑
p∈R

Pk(y(p) = 1) , (2)

where |R| denotes the number of pixels in the region R. In this work, we would
like to define the pixelwise probabilistic model Pk as a combination of (i) the
prior knowledge acquired on training data that is encoded by the initial random
forest classifier, and (ii) the k− 1 inputs provided by the user based on the test
data. Therefore, we propose to obtain Pk(y(p) = 1) from the forest estimate
of Eq. 1 by adding to each prior leaf model πt,i a signed offset εkt,i ∈ R whose
value will be progressively adapted from the user inputs. Let us denote εk the
vector (εkt,i)t,i and rewrite the scoring function φk(R) as φ(R|εk) so that this
parametrization clearly appears. Introducing this additive model in Eq. 2 and
after some algebraic manipulations, the scoring function can be rewritten as

φ(R|εk) = φRF(R) + φnew(R|εk) , (3)

where φRF(R) is obtained by using the forest probabilistic output (Eq. 1) as
pixelwise model in Eq. 2, and

φnew(R|εk) =
1

|R|
1

T

T∑
t=1

l(t)∑
i=1

εkt,iht,i(R) = 〈r, εk〉 . (4)



In Eq. 4, ht,i(R) denotes the number of pixels p in R which reached the leaf Lt,i,
and r = ( 1

|R|
1
T ht,i(R))t,i. Before the user starts providing inputs, the ε1t,i are set

to 0 such that φ1 = φRF. As the user gives information after each suggestion,
the acquired knowledge is encoded through the leaf-dependent εkt,i that allow the

scoring function φk to vary around the initial model φRF. The next subsection
describes how these εkt,i are inferred from the collected user feedbacks.

2.3 Online Model Update

After each suggestion of a regionRj , a feedback Puser(Rj) ∈ [0, 1] stating the true
proportion of positive pixels in Rj is requested from the user. We assume for the
sake of formalism that the exact proportion is given, but we will demonstrate in
our experiments that providing a discretized approximation of this input does not
decrease the performance (Tab. 1). This reduces drastically the necessary amount
of interaction, since giving a discrete estimate of this proportion requires only one
click from the user, whereas computing the exact value would involve a pixelwise
region labeling. Note that this feedback does not provide any information at pixel
level and hence excludes a direct update of the leaf statistics [9].

Assuming that k regions R1, . . . , Rk have been suggested and their respective
user inputs Puser(R1), . . . ,Puser(Rk) collected (k ≥ 1), we would like to find
a new scoring function φk+1, or equivalently a coefficient vector εk+1, which
matches with these k user inputs. Considering a squared loss function, we solve
the following minimization problem

εk+1 = argmin
ε

k∑
j=1

(φ(Rj |ε)− Puser(Rj))
2

+ λ ‖ε‖2 , (5)

which can be rewritten from Eq. 3 and Eq. 4 as a linear ridge regression problem

εk+1 = argmin
ε

k∑
j=1

(〈rj , ε〉 − δj)2 + λ ‖ε‖2 , (6)

where δj = Puser(Rj) − φRF(Rj). The regularization term aims at keeping the
deviation from the initial random forest classifier small and is driven by a hyper-
parameter λ. The minimization problem defined by Eq. 6 is equivalent to a linear
ridge regression problem with k training instances of feature vectors r1, . . . , rk
and labels δ1, . . . , δk, i.e. a regression problem at the region level. As a conse-
quence, Eq. 6 could be naturally extended to a kernel ridge regression problem if
one desires to remove the linearity assumption. The solution εk+1 of Eq. 6 can be
found in closed form [10]. However, computing this exact value at each iteration
involves the computationally expensive inversion of a large matrix, which could
force a user to wait between two suggestions of regions. Instead, we adopt an
online gradient descent scheme [11] leading to the following incremental update
rule:

εk+1 = εk −
1

λ
(〈rk, εk〉 − δk) rk . (7)

Thereby, the kth user input can be incorporated in real time in our model.
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Fig. 2. Results The curves display the average proportion of recovered positive pixels
as a function of the proportion of the slice shown to the user. These experiments are
driven under different synthetic conditions, examples of which are shown on the left.
From top to bottom: real image, global illumination change, local illumination change,
local blurring. The discretized version of the user input was used in these experiments.

3 Experiments

Dataset: Extramedullary hematopoesis, i.e. hematopoesis located outside of the
bone marrow, is a rare event in human adults. Yet, in some animals like mice,
its presence in the liver can be a reaction to an immense inflammation or to a
tumor stimulating extensively the immune system of the organism [12]. Localiz-
ing these relatively small lesions as well as estimating their number can be useful
to compare the influence of different therapeutic strategies. 34 high-resolution
images entirely labeled at pixel level were extracted from 8 mouse liver slices of
resolution 0.498 µm/pixel. This restriction to subimages was necessary to obtain
accurate labels from a pathologist, since a slice is typically too big (34200×21052
pixels) to be labeled entirely. Since images taken from a same slice share com-
mon visual properties, we kept them together for training or testing. Images
were downsized by a factor 3 to speed up the training and testing procedures.

Experimental Setup: We performed our experiments at two levels of supervision:
(i) a standard leave-one-out strategy (strong supervision), where the initial ran-
dom forest is trained on 7 slices (i.e. approximately 30 images) and tested on
the 8th one, and (ii) the inverse setting where one trains only on one slice and
tests on the 7 others (weak supervision). While the second scenario is plausible



Table 1. Area under the curves in our different settings.

Weak supervision
Real data Global change Local change Local blurring

Min Median Max Min Median Max Min Median Max Min Median Max
No update 82.5 90.9 95.9 63.8 77.0 95.7 56.2 76.4 81.8 78.7 83.7 93.8
Exact input 87.6 92.2 96.1 74.4 87.8 95.7 62.9 82.8 91.6 78.0 86.1 94.1

Discretized input 88.5 92.3 96.1 74.6 87.7 95.9 64.0 83.9 91.6 77.9 86.3 94.1

Strong supervision
Real data Global change Local change Local blurring

Min Median Max Min Median Max Min Median Max Min Median Max
No update 94.1 96.6 97.7 71.1 93.1 97.1 78.5 85.4 92.7 91.2 95.4 96.0
Exact input 94.7 96.7 98.1 89.1 93.6 97.2 83.2 91.9 95.0 92.4 95.8 97.1

Discretized input 94.8 96.7 98.3 88.9 93.7 97.4 82.8 91.9 95.0 92.4 95.6 97.0

in practical situations due to the difficulty of obtaining pixelwise labels, it also
suggests another application of our approach as a way to facilitate collecting
hard-to-find positive samples to enrich an existing weak training set. Training
samples were collected on a regular grid of step 30, resulting in approximately
500 k instances in the leave-one-out setup. Each pixel was described by its visual
content at offset locations. We used the CIELab color space that we enriched
with the output of a bank of filters [13]. 40 trees were grown without depth
limit but with at least 10 training samples per leaf. The images were partitioned
into regions of size 123× 123 pixels, which fits to the size of usual hematopoesis
patterns. If a hematopoesis pattern is not fully included in a displayed region,
the field of view can be extended with a simple click revealing the next adjacent
region in the indicated direction. We investigated ways to handle pools of regions
of heterogeneous sizes, but this raised issues in terms of scoring function (finding
a reliable rule that does not always favor the smallest or the largest regions is
not straightforward) and evaluation. The retained solution requires almost no
effort from the user and eventually seemed to be the most practical one.

Evaluation: Our approach aims at performing an interactive online adaptation
to new imaging conditions, and more generally to mismatches between training
and test data. The aforementioned weakly supervised scenario favors naturally
such a bias, since training on only one slice is unlikely to generalize well. To
go further into this direction, we propose, as additional experiments, to keep
the initial training sets and apply three types of synthetic modifications on the
test images to simulate classical difficulties occurring in histological imaging:
(i) global illumination change, (ii) local illumination change, and (iii) local blur-
ring. These changes were randomly generated on each image. To evaluate our
method, we studied the average proportion of positive pixels recovered over time
(Fig. 2) and measured the area under these curves (Tab. 1). The results demon-
strate that our update framework allows a faster retrieval of interesting areas. As
mentioned in Sec. 2.3, we also show that discretizing the user input into 7 prede-
fined bins (i.e. enforcing P user(Rj) ∈ {0, 0.1, 0.3, . . . , 0.9, 1}) does not reduce the
performance and thus lightens the user interaction. Finally, in the leave-one-out
setting on real data, we assessed the influence of the parameter λ (Eq. 6). From



Eq. 7, low (resp. high) values of λ are expected to lead to numerical instabili-
ties (resp. negligible updates). These asymptotic behaviors were experimentally
observed for λ ≤ 0.05 and λ ≥ 100, respectively. Between these two extremes, a
wide range of values of λ led to improvements, and we chose λ = 1 for simplicity.

4 Conclusion

We proposed an interactive method able to suggest sequentially regions of inter-
est within large data from the output of a pre-trained random forest classifier at
pixel level. After each suggestion, one-click user inputs are collected to capture
the specificities of the images at hand and update the region scoring function
accordingly and in real time via an online gradient descent scheme. We evalu-
ated our approach in the context of hematopoesis localization, with and without
synthetic deformations simulating common sources of variability in histological
imaging. As future work, we would like to extend our method to mitosis detection
tasks [2] and generalize it to 2D video sequences and 3D volumes.
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