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Abstract— Predicting the behavior of visual features on the
image plane over a future time horizon is an important
possibility in many different control problems. For example
when dealing with occlusions (or other constraints such as joint
limits) in a classical visual servoing loop, or also in the more
advanced model predictive control schemes recently proposed
in the literature. Several possibilities have been proposed
to perform the initial correction step for then propagating
the visual features by exploiting the measurements currently
available by the camera. But the predictions proposed so far
are inaccurate in situations where the depths of the tracked
points are not correctly estimated. We then propose in this
paper a new correction strategy which tries to directly correct
the relative pose between the camera and the target instead of
only adjusting the error on the image plane. This correction is
then analysed and compared by evaluating the corresponding
improvements in the feature prediction phase.

I. INTRODUCTION

A key element in visual servoing is the prediction of the
visual signal that is going to be observed in the future.
This prediction over a long horizon can be very useful in
various cases. For instance it can be exploited for computing
a standard visual servoing control when one or more features
leave the camera field of view during the camera motion [1].
Visual features prediction can also be used in the context
of model predictive control with vision feedback, which
has been recently proposed for robotic systems, mostly six
degrees of freedom manipulators with eye-in-hand configu-
ration [2]–[5] (the camera is mounted on the manipulator), or
with eye-to-hand configuration [2] (the camera is looking at
the manipulator from a remote pose). Applications to mobile
robotics have also been considered [6], [7], [8].

Nonlinear predictive models have been proposed to take
into account the whole dynamics of the system, the 6D pose
of the camera and the projection model [3]. But to overcome
the numerical complexity of such nonlinear models, linear
approximations have usually been adopted, e.g., exploiting
the relation between the velocity of the camera and the veloc-
ity of the visual features in the image [4], [7]. Comparisons
of these different options and of their performance concluded
that nonlinear models significantly improve the convergence
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Fig. 1: Robot arm carrying an eye-in-hand camera looking
at a target object made of 4 3D points

of the control laws if 3D information is available, at the
cost of increased numerical complexity [8]. However, we will
show in this paper that this conclusion is somehow debatable
since the nonlinear and linear models actually yield the same
results when the model of the camera/target relative pose is
correct enough.

It is then clear that a crucial step for a successful prediction
is the initial model correction using the measured visual
features. A correction based on a first-order linearization
of the visual servoing problem is usually considered. Yet,
visual servoing is a nonlinear problem, mainly due to the
projection on the image plane and the six dimensional
motion of the camera. It is then of great importance to
develop more sophisticated correction methods able to cope
with these nonlinearities. The goal of this paper is then to
propose, analyze and critically compare different linear and
nonlinear strategies for implementing the model correction
step. Section II starts reviewing the theoretical framework
of the paper and then proposes three different correction
methods. Section III then reviews (and discusses) the two
strategies for the prediction phase typically considered in
the literature, and Sect. IV presents a number of simulation
results meant to critically compare the pros/cons of the
various methods. Finally, Sect. V concludes the paper and
discusses some future directions.

II. VISUAL FEATURES MODEL ERROR CORRECTION

We consider in this paper a monocular perspective camera
mounted on a robot arm, and a target consisting of N
3D points P i (see Fig 1). Let FC and FO be Cartesian
frames attached respectively to the camera and target. Let
x = [x y z θuT ]T ∈ R6 be the pose of FO w.r.t. FC ,



with (u, θ) ∈ S2 ×R the axis/angle parameterization of the
orientation1.

Let OP i =
[
OXi

OYi
OZi 1

]T
and CP i =[

CXi
CYi

CZi 1
]T

be the homogeneous coordinates
of the 3D points P i in the object and camera frames.
Assuming a calibrated camera, the normalized perspective
2-D projection of each point P i on the image plane is

si =

[
ui
vi

]
=

[
CXi/

CZi
CYi/

CZi

]
= fsi(x). (1)

The set of all visual features is therefore

s =

 s1

...
sN

 = fs(x) ∈ R2N . (2)

Let xm(t) be a model/approximation of the target pose
and sm(t) = fs(xm(t)) be the corresponding model of s(t)
derived from the internal model xm(t) via (2). Since we are
assuming a calibrated camera, any error in xm(t) can arise
from a wrong pose estimation process due to image noise,
or to a coarse/incomplete knowledge of the 3D model of the
target. The idea pursued in this work is to then exploit the
error between the measured s(t0) and modeled sm(t0) so as
to correct the internal model at t0 and, as a consequence,
mimimize the future discrepancies between the predicted
sm(t) and real s(t) for t ≥ t0.

We now present and discuss several strategies for imple-
menting this correction.

A. Correction in the image

The method proposed in [8] does not change the model
of the pose xm(t0), but it directly affects the model of the
visual features. It allows correcting 3D coordinates X and
Y , but no correction is applied on Z. More precisely, we
have 

xc1(t0) = xm(t0)

sc1(t0) = s(t0)

CXc1(t0) = uc1(t0)CZc1(t0)

CYc1(t0) = vc1(t0)CZc1(t0)

CZc1(t0) = CZm(t0)

(3)

This correction clearly ensures sc1(t) ≈ s(t) for t ≈ t0,
but fails in general in reducing any divergence among sc1(t)
and s(t) for t > t0 in case of a non-pure rotational motion
(since sc1(t) does not depend on the possibly wrong depths
Z). This is obviously because (3) only accounts for the error
in the image but does not attempt to also correct for the
underlying discrepancy between the real pose x(t0) and the
modeled one xm(t0). Sect. IV will report some examples in
this sense.

1Among all the possible minimal representations for the orientation
between FO in FC , we chose vector θu ∈ R3 because its singularities
lie at θ = 2kπ, k ∈ Z∗, i.e., out of the possible workspace in any normal
application (see [9]).

B. Correction in the pose

We propose in this paper to exploit the mismatch between
the model sm(t0) and the measure s(t0) to correct the pose
xm(t0).With v = (v, ω) ∈ R6 being the linear and angular
velocity of the camera expressed in FC , standard kinematics
gives

ẋ = Lx(x)v, Lx ∈ R6×6, (4)

and standard visual feature models give [10]

ṡ = Ls(s, x)v, Ls ∈ R2N×6 (5)

directly leading to

ṡ = LsL
−1
x ẋ. (6)

Explicit expressions for both Lx and Ls are given in
the Appendix. We can obtain similarly a first-order Taylor
expansion

sc2(t0)− sm(t0) ≈ Ls(sm(t0), xm(t0))L−1
x (xm(t0))∆x.

(7)
The following least-squares problem

min
∆x
‖sc2(t0)− s(t0)‖2 (8)

can then be reformulated, exploiting (7), as

min
∆x
‖LsL

−1
x ∆x + sm(t0)− s(t0)‖2 (9)

resulting in

∆x = (LsL
−1
x )†(s(t0)− sm(t0)) = LxL

†
s(s(t0)− sm(t0))

(10)
with L†s being the Moore-Penrose pseudoinverse of Ls.

The increment ∆x can then be used to implement the pose
correction, which allows to compute visual features and 3D
coordinates X , Y and Z subsequently used for prediction.

xc2(t0) = xm(t0) + ∆x

sc2(t0) = fs(xc2(t0))

CXc2(t0) = fs(xc2(t0))

CYc2(t0) = fs(xc2(t0))

CZc2(t0) = fs(xc2(t0))

(11)

Contrary to (3), the correction (11) adjusts the target pose
by exploiting the measured s(t0) but does not guarantee that
sc2(t0) = s(t0) as (10) only yields a least squares solution
to (8). However, as shown in Sect. IV, by applying (11) one
can nevertheless obtain better results in future predictions
compared to the simpler (3) thanks to the more accurate cor-
rective action of (10) when xm(t0) is particularly incorrect.
In fact, the pose correction scheme proposed above corre-
sponds to applying only one iteration of a pose estimation
by virtual visual servoing [11]. Iterating could be possible
but would be more time consuming. Note finally that in (10),
matrices Lx and Ls are evaluated on the modeled sm(t0) and
xm(t0) and thus represent approximated quantities. However,
since a measurement s(t0) is available, another possibility
(considered in the rest of the paper) is to replace sm(t0) with



s(t0) in evaluating Ls(s(t0), xm(t0)) in order to reduce the
approximation level.

Finally, it is interesting to note the following fact: by left-
multiplying (7)–(10) with L†s, and exploiting the property of
the Moore-Penrose pseudoinverse

L†sLsL
†
s = L†s, (12)

one has
L†ssc2(t0) ≈ L†ss(t0). (13)

Therefore, a typical visual servoing control law

v = −λL†s(s(t0)− s∗) = −λL†s(sc2(t0)− s∗)

would yield the same camera velocity when either using
s(t0) or sc2(t0) as visual measurement. Classical image-
based visual servoing will thus not be perturbed by this pose
correction method.

C. Correction in the image and in the pose

As a final refinement, a third option is to combine (11)
with (3) in order to additionally enforce a perfect matching
with the measured s(t0), which allows to correct 3D co-
ordinates X , Y using the correction of Z. This is simply
obtained by implementing the correction

xc3(t0) = xm(t0) + ∆x

sc3(t0) = s(t0)

CXc3(t0) = uc3(t0)CZc3(t0)

CYc3(t0) = vc3(t0)CZc3(t0)

CZc3(t0) = f(xc3(t0))

(14)

III. PREDICTIVE MODEL FOR THE VISUAL FEATURES

The goal of a predictive model is to generate the evolution
of the feature location on the image plane in the time period
t ∈ [t0, t0 + T ] (with 0 < T < ∞ being the prediction
horizon) for a given choice of the camera linear/angular
velocity v(t) (seen as the system input). We assume the
time interval [t0, t0 + T ] is discretized in H uniform steps
of duration τ = T/H , and take v(t) = v(tk) = const for
t ∈ [tk, tk+1], with k = 0 . . . H − 1. We now discuss two
possibilities for implementing the predictive model.

A. Linear local model

The Linear Local Model, already proposed in [8], is simply
a forward integration of sm(t) via the interaction matrix Ls:
from an initial sm(t0) one can propagate over time

sm(tk+1) = sm(tk) + Ls(sm(tk), Z(tk))v(tk)τ (15)

with τ = T/H being the sampling time and Z =
[Z1, . . . , ZN ] the N depths associated to the N feature
points. In (15) one can either set Z(tk) = Z(t0) =
const (keep the initial approximation Z(t0) from the model
xm(t0)), or update Z(tk) from the known v(tk) (see (16)
in the next Sect. III-B).

B. Nonlinear global model

The Nonlinear Global Model is based on the target pose
x(t) in FC . Indeed, as explained, from a model xm(t0) one
can compute the location of the 3D points in FC , that is,
CP i(t0) =

[
CXi(t0) CYi(t0) CZi(t0) 1

]T
, and then

propagate it using standard kinematics as

CP i(tk+1) = ev̂(tk) CP i(tk) (16)

where

v̂(tk) =

[
[ω(tk)]× v(tk)

0 0

]
∈ se(3)

and ev̂(tk) represents the canonical exponential map from
se(3) to SE(3) [12]. By plugging (16) in (2) one can finally
obtain the behavior of the feature position sm(t) during the
interval [t0, t0 + T ].

C. Discussion

Obviously the accuracy of both predictive models depends
on the accuracy of the initial states: sm(t0) and Z(t0)
for (15) and CP i(t0) for (16), with Z(t0) and CP i(t0)
function of the pose xm(t0). In turn, the accuracy of the
initial states is affected by the adopted correction: when
using (3) no correction of xm(t0) is performed, but an
exact match of sm(t0) with the measured s(t0) is ensured.
On the other hand, with (11) xm(t0) is corrected but the
corresponding sm(t0) can be wrong. Finally, the use of
correction (14) guarantees a better match of both sm(t0)
and xm(t0), and is thus preferable in order to minimize
the error in the future visual predictions. We finally note
that the prediction (15) obviously yields the same result
of (16)–(2) when Z(tk) is updated with (16) (while a worse
result is obtained for a translation motion by just setting
Z(tk) = Z(t0) = const in (15)).

IV. SIMULATION RESULTS

We consider an eye-in-hand monocular camera moving
with a constant velocity over a prediction horizon of T = 4 s
discretized in H = 100 steps (with thus a sampling time of
τ = 40 ms). The target is made of four coplanar points
forming a square of 20 cm in length with coordinates

OP 0 =
[
−0.1 −0.1 0 1

]T
OP 1 =

[
0.1 −0.1 0 1

]T
OP 2 =

[
0.1 0.1 0 1

]T
OP 3 =

[
−0.1 0.1 0 1

]T
.

The pose of FO in FC is initialized as

x(t0) =
[
0 0 0.8 0 0 0

]T
, (17)

i.e., with only a displacement of 0.8 m along the Z axis.
In the following simulations, the camera velocity is set to

v(t) =
[
−0.02 0 −0.03 0.04 0.04 −0.4

]T
= const

for all t ∈ [t0, t0 + T ]. Finally, only the prediction (15)
is used (with/without the update of Z(tk), see the end of
Sect. III-C).



A. 2D Translation error

As shown in Fig. 6, we first consider a case where the
error in the target pose consists of just a translation along
the X and Y axes. The model of the pose is then taken as
xm(t0) =

[
−0.1 −0.1 0.8 0 0 0

]T
against the real

x(t0) from (17).
Figure 2a shows the results of the prediction (15) in

the image plane without performing any correction and
by keeping Z(tk) = Z(t0). Red lines represent the real
measurements of visual features s(t), while the blue lines
represent the approximated visual features sm(t) from the
prediction model. Obviously, the two sets of trajectories are
completely off because of the absence of any correction
of the (wrong) model of the target pose in the camera
frame. For completeness, Fig. 4a also illustrates the error
between real and predicted feature point defined as ei(t) =
‖s(t)− sm(t)‖.

Figure 2b shows the prediction of the visual features after
the correction (3) has been applied (but still by keeping
Z(tk) = Z(t0)). The prediction obviously performs better
when compared to Fig. 2a, but a divergence between sm(t)
and s(t) still occurs over time: this is due to the remaining
approximation Z(tk) = Z(t0) when evaluating (15). Simi-
larly to Fig. 4a, Fig. 4b reports the prediction errors ei(t)
which are clearly smaller than in the previous case.

The prediction error can be finally perfectly compensated
for by correctly updating Z(tk) via (16). Fig. 2c shows
the results of the visual features prediction: one can verify
the perfect match between s(t) and sm(t) in this case,
and similarly in Fig. 4c which depicts the feature error
behavior. The same results would have also been obtained by
implementing either (11) or (14) as correction steps. Indeed,
in the absence of any initial error in the depths Z (as in this
simulation) the three corrections yield equivalent results.

B. Full pose error

As shown in Fig. 6, we now consider a more com-
plex case involving a full translation and rotational er-
ror in the modeled target pose by taking xm(t0) =[
0 0 1.5 0.05 0 −0.35

]T
(vs. the real x(t0) in (17)).

In all the following cases the depth vector Z(tk) was always
correctly updated during the model propagation.

As a baseline condition, Fig. 3a reports the results of
the prediction (15) in the camera image plane without per-
forming any correction and Fig. 5a shows the corresponding
feature errors.

Figures 3b–5b show the results of using the correction in
the image plane (3): we can note how sm(t0) = s(t0) (as
expected), but also how sm(t) substantially diverges over
time from s(t) because of the non-corrected xm(t0), in par-
ticular because of the initial error induced by a wrong Z(t0).
On the other hand, the behavior of the predicted features
substantially improves when adopting the more complex
correction (11) which attempts to directly adjust the pose
xm(t0). Figures 3c–5c report the results: note how, overall,
the predicted features sm(t) match better s(t) as compared

to the previous case, although sm(t0) 6= s(t0). Finally,
Figs. 3d–5d show the results of using the correction (14):
this allows to obtain the best performance (as expected),
since now sm(t0) = s(t0) in addition to having corrected
the pose xm(t0).

Summarizing: for no depth errors in the camera model
xm(t0) (as in Sect. IV-A), the three corrections (3)–(11)–(14)
are equivalently able to cope with the initial error, and thus
to yield a ‘perfect’ feature prediction sm(t) over time (when
also propagating Z(tk) via (16)). However, in presence of
‘full’ errors in the target model (Sect. IV-B), the simple
correction (3) has a very poor performance, while the novel
corrections (11)–(14) yield much better results (thanks to
their ability to directly correct the underlying target pose
from the visual error sm(t0)−s(t0). This then confirms the
analysis proposed in the previous sections and the importance
of developing better correction methods for improving the
prediction ability in the context of model predictive control.

V. CONCLUSION

We introduced in this paper, a new correction scheme for
improving the performance of the visual feature prediction
step over a future time horizon. This new correction is able
to capture much more precisely the nonlinearities of the
target model as compared to other existing possibilities in the
literature (e.g., the ‘linear’ correction introduced in [8]). The
correction scheme only needs an approximation of the object
pose in the camera frame, the current interaction matrix and
the current measured features. With the reported results, we
showed how the new correction allows to match better the
future behavior of the measured features during the predic-
tion phase: therefore, any model predictive control scheme
can benefit from this improvement as one can, e.g., safely
extend the prediction horizon while retaining an adequate
level of accuracy in the predicted sm(t). As a bonus, this
new correction scheme also returns an approximation of
the relative pose between the camera and the target which
matches the measured visual features in the least squares
sense.

We are currently working towards an experimental eval-
uation of these findings by using an eye-in-hand camera
mounted on a robot manipulator, as well as exploiting this
improved prediction ability for dealing with feature loss and
model predictive control.
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APPENDIX

Let ORC(u, θ) = I3 +[u]× sin(θ)+ [u]2×(1− cos(θ)) be
the rotation matrix from FC to FO. One has

ẋ = Lxv =

[
ORC(u, θ) 0

0 Lω(u, θ)

]
v

with

Lω(u, θ) = I3 −
θ

2
[u]× +

(
1− sinc(θ)

sinc2 (θ/2)

)
[u]2×,
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Fig. 2: First simulation: Visual features in the camera image plane. In red the real features trajectories s(t) and in blue the
predicted ones sm(t). (a): without any initial correction. (b): when using the correction (3) and without updating feature
depths , i.e., Z(t) = Z(t0) = const. (c): when using the corrections (11)–(14) and correctly updating Z(t) via (16). Note
how the prediction in all the three cases coincides perfectly with the real behavior s(t) (because of the ‘simple’ 2D initial
error in the target pose).
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Fig. 3: Second simulation: Visual features in the camera image plane. In red the real features trajectories s(t) and in
blue the predicted ones sm(t). (a): without any initial correction. (b): when using the correction (3). (c): when using the
correction (11). (d): when using the correction (14) which allows to obtain the best performance when the depths Z include
initial error.
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Fig. 4: First simulation: Behavior of the prediction error ei(t) = ‖s(t) − sm(t)‖, i = 1 . . . 4. (a): without any initial
correction. (b): when using the correction (3) and Z(t) = Z(t0) = const. (c): when using the corrections (11)–(14) and
correctly updating Z(t) via (16).
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Fig. 5: Second simulation: Behavior of the prediction error ei(t) = ‖s(t) − sm(t)‖, i = 1 . . . 4. (a): without any initial
correction. (b): when using the correction (3). (c): when using the correction (11). (d): when using the correction (14).

and sinc(θ) = sin(θ)/θ, see [9]. Since det(Lω(u, θ)) =
1/sinc2 (θ/2), matrix Lx is invertible for θ 6= 2kπ, k ∈ Z∗,
i.e., within the workspace of any normal application.

Furthermore, the relation between camera linear/angular
velocity v and features velocity ṡ is

ṡ = Ls(s, x)v (18)

with [13]

Ls =

− 1
Z 0 u

Z uv −(1 + u2) v

0 − 1
Z

v
Z 1 + v2 −uv −u

 . (19)

Fig. 6: Robot frame, real target pose and camera trajectory
are represented in red. Target 2D translation pose error is
represented in orange (Sect. IV-A). Target full pose error is
represented in purple (Sect. IV-B).
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