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Abstract— In this paper we propose a solution for coupling
the execution of a visual servoing task with a recently developed
active Structure from Motion strategy able to optimize online
the convergence rate in estimating the (unknown) 3D structure
of the scene. This is achieved by suitably modifying the robot
trajectory in the null-space of the servoing task so as to render
the camera motion ‘more informative’ w.r.t. the states to be
estimated. As a byproduct, the better 3D structure estimation
also improves the evaluation of the servoing interaction matrix
which, in turn, results in a better closed-loop convergence of
the task itself. The reported experimental results support the
theoretical analysis and show the benefits of the method.

I. INTRODUCTION

In many applications the state of a robot w.r.t. the environ-
ment can only be partially retrieved from its onboard sensors,
and online state estimation schemes can be exploited in order
to recover the ‘missing information’ by incrementally pro-
cessing the sensed data. When considering non-trivial cases,
however, one often faces nonlinear estimation problems for
which the actual robot trajectory plays an important role for
a successful estimation convergence. This is, for instance, the
case of all Structure from Motion (SfM) problems in which a
poor choice of the system inputs (the camera linear velocity)
can even make the 3D scene structure non-observable (and
regardless of the employed estimation strategy). It is then
interesting to study how to optimize the trajectory of a robot
executing a given task with the aim of facilitating the state
estimation process.

The goal of this paper is to propose an online solution
to this problem in the context of visual control of robot
manipulators. We consider, as case study, a classical Image-
Based Visual Servoing [1] (IBVS) of a set of point features
whose depths represent the unknown states to be estimated
during motion. We then show how to couple the IBVS
execution with the optimization of the depth estimation
convergence. A coupling between visual servoing and SfM
estimation was also proposed in [2] but without any active
optimization of the camera velocity for the sake of enhancing
the estimation convergence rate. The optimization action
in our proposed solution is based on a recently proposed
framework for active SfM [3] and is here projected onto
the null-space of the IBVS task considered as the primary
objective. Additionally, in order to obtain the largest possible
degree of redundancy w.r.t. the IBVS task, we also suitably
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exploit and extend the redundancy framework introduced
in [4] meant to provide a large projection operator by
considering the norm of the visual error as main task. In
particular, the controller originally proposed in [4] is here
extended to the second-order since the active strategy of [3]
acts on the camera linear velocity and, thus, requires an
action at the acceleration level.

We then experimentally validate the proposed active esti-
mation and control strategy. The experiments clearly show
the achievement of two goals: (i) the optimization of the
camera trajectory during the servoing transient which allows
obtaining the fastest possible convergence of the SfM al-
gorithm, and (ii) the concurrent improvement of the IBVS
convergence thanks to the better approximation of the inter-
action matrix from the recovered 3D parameters. We finally
stress that the proposed coupling between task execution and
trajectory optimization for improved state estimation is not
restricted to the sole class of IBVS problems considered
in this work: indeed, one can easily generalize these ideas
to other servoing tasks (e.g., considering different visual
features or even geometric ones as in PBVS schemes), or
apply them to other contexts not necessarily related to visual
control (as long as the chosen robot trajectory has an effect
on the state estimation task).

The rest of the paper is organized as follows: we start by
summarizing in Sec. II the active SfM framework presented
in [3]. Then, we present in Sec. III a second-order extension
of the strategy described in [4] that allows to increase the
degree of redundacy w.r.t. the considered IBVS task to
its maximum extent. Finally we report in Sec. IV some
experimental results validating our analysis, and we draw
some conclusions in Sec. V by also proposing some possible
future directions.

II. A FRAMEWORK FOR ACTIVE STRUCTURE
FROM MOTION

We start by briefly summarizing the active SfM framework
proposed in [3]. Let s ∈ Rm be the set of visual features
measured on the image plane of a (assumed calibrated)
camera, χ ∈ Rp a suitable (and locally invertible) function
of the unknown structure of the scene to be estimated by
the SfM algorithm, and u = (v, ω) ∈ R6 the camera
linear/angular velocity expressed in the camera frame. With
these choices, one can show that the SfM dynamics takes
the general form{

ṡ = fm(s, u) + ΩT (s, v)χ
χ̇ = fu(s, χ, u)

(1)

where matrix Ω(s, v) ∈ Rp×m is a known quantity such
that Ω(s, 0) ≡ 0. Let now (ŝ , χ̂) ∈ Rm+p be the estimated



state, and define ξ = s − ŝ as the ‘visual feedback’ error
(measured s vs. estimated ŝ) and z = χ − χ̂ as the
3D structure estimation error. An estimation scheme for
system (1) meant to recover the unmeasurable χ(t) from
the measured s(t) can be devised as{

˙̂s = fm(s, u) + ΩT (s, v)χ̂+Hξ
˙̂χ = fu(s, χ̂, u) + αΩ(s, v)ξ

(2)

where H > 0 and α > 0 are suitable gains. We note
that the scheme (2) does not require knowledge of ṡ (i.e.,
measurement of velocities on the image plane), but it only
needs measurement of s (the ‘visual features’) and of (v, ω)
(the camera linear/angular velocity in the camera frame).

Following [3], it is possible to characterize the transient
response of the SfM estimation error z(t) = χ(t)− χ̂(t), as
well as to affect it by acting online on the camera motion.
One can indeed show that the convergence rate of z(t)
results dictated by the norm of the square matrix ΩΩT , in
particular by its smallest eigenvalue σ2

1 . For a given choice
of gain α (a free parameter), the larger σ2

1 the faster the
error convergence, with in particular σ2

1 = 0 if v = 0 (as
well-known, only a translating camera can estimate the scene
structure). Being Ω = Ω(s, v), one has

˙(σ2
1) = Jvv̇ + Jsṡ, (3)

where the Jacobian matrices Jv ∈ R1×3 and Js ∈ R1×m

have a closed form expression function of (s, v) (known
quantities), see [3]. This relationship can then be inverted
w.r.t. vector v̇ for affecting online σ2

1(t) during motion, e.g.,
in order to maximize its value for increasing the convergence
rate of z(t). We note that this step represents the active
component of the estimation strategy since, in the general
case, inversion of (3) will yield a camera velocity v(t)
function of the system measured state s(t).

Formulation (1) can be applied to the point feature case
(considered in this work) by taking s = p = (x, y) =
(X/Z, Y/Z) as the perspective projection of a 3D point
(X, Y, Z), and χ = 1/Z with, thus, m = 2 and p = 1.
Explicit expressions of the above machinery can be found
in [3] with, in particular,

σ2
1 = ΩΩT = (xvz − vx)2 + (yvz − vy)2

Jv = 2
[
vx − xvz vy − yvz (xvz − vx)x+ (yvz − vy) y

]
Js = 2

[
(xvz − vx)vz (yvz − vy)vz

] .

(4)

III. VISUAL SERVOING COUPLED WITH ACTIVE
3D ESTIMATION

A. Problem Description

We consider the classical situation of a robot manipulator
with joint configuration vector q ∈ Rn carrying a eye-in-
hand camera that measures a set of visual features s ∈ Rm
to be regulated to a desired constant value s∗. As well-
known, one has ṡ = Ls(s, χ)u and u = JC(q)q̇, where
Ls ∈ Rm×6 is the interaction matrix of the considered visual
features, χ ∈ Rp is a vector of unmeasurable 3D quantities
associated to s (e.g., the depth Z for a feature point), and

JC(q) ∈ R6×n the Jacobian of the eye-in-hand camera
w.r.t. the robot joint velocities.

Let J(s, q, χ) = Ls(s, χ)JC(q) ∈ Rm×n be the visual
task Jacobian and define e = s−s∗ as the visual error vector
with, thus, ė = Jq̇. In case the robot is redundant w.r.t. the
visual task (n > m), a typical choice for regulating e(t)→ 0
is to apply the control law [1]

q̇ = −λĴ
†
e+ (In − Ĵ

†
Ĵ)r, λ > 0. (5)

Here, A† denotes the pseudoinverse of matrix A, the task
Jacobian Ĵ(s, χ̂, q) is evaluated on some approximation χ̂
of the unknown true vector χ, e.g., the value at the desired
pose χ̂ = χ∗, and r ∈ Rn is an arbitrary vector projected
on the null-space of the main visual task. When applying (5)
with rank(J) = m and χ̂ = χ, one obtains a perfectly
decoupled and exponential behavior for the visual error e(t),
i.e.,

e(t) = exp(−λ(t− t0))e(t0). (6)

When, instead, χ is replaced by any approximation χ̂, the
ideal closed-loop behavior (6) is no longer obtained.

Since χ is not directly measurable from visual input, and
special approximations such as χ∗ require anyway some
‘pre-knowledge’ of the scene, another interesting possibility
is to exploit the estimation scheme (2) for recovering online a
(converging) estimation χ̂(t) from the measured s(t) (visual
features) and known u(t) (camera motion). Observer (2)
can indeed run in parallel to the servoing controller (5), by
treating the camera linear/angular velocities generated by (5)
as the inputs u in (2), and by plugging the estimated state
χ̂ recovered by (2) in the evaluation of Ĵ(s, χ̂, q) needed
by (5). This way, one can in fact: (i) improve the servoing
execution by yielding a closed-loop behavior matching the
ideal (6) also when far from the desired pose and without
needing special assumptions/approximations of χ, since, as
χ̂(t) → χ(t), one has Ĵ → J , and (ii) obtain, as a
byproduct, the concurrent 3D structure estimation of the
observed scene by exploiting the motion performed by the
camera for realizing the servoing task.

In this conceptual scheme, the estimation of the 3D
structure χ takes then place only during the transient of the
servoing task (i.e., as long as the camera is in motion towards
its goal location). Being this phase of limited duration, with
the camera reaching a full stop at the end of the servoing,
one is clearly interested in obtaining the fastest possible
convergence for the estimation error. As explained in the
previous section, it is possible to ‘optimize’ the convergence
rate of the estimation error by (actively) maximizing the
eigenvalue σ2

1 over time. A natural possibility is to then
project such optimization action within the null-space of
the main visual servoing task. The next section explains a
possible strategy to achieve this goal.

B. Second-order Visual Servoing using a Large Projection
Operator

In order to fully take advantage of the optimization of the
3D structure estimation, it is clearly important to exploit the
largest possible redundancy w.r.t. the considered visual task.



Indeed, if the visual task constrains most or all the camera
dofs, no optimization of the camera motion can be per-
formed. In this sense, the redundancy framework proposed
in [4] represents a very convenient possibility: regulation of
the visual error vector e can be replaced by the regulation of
its norm ‖e‖ (a 1-dimensional task), thus resulting in a null-
space of (maximal) dimension n− 1 available for additional
optimizations. As discussed in [4], this technique becomes
singular for ‖e‖ → 0 or e ∈ Ker(JT ) and, thus, requires a
proper switching to the classical law (regulation of the whole
vector e) when close to convergence.

Coming to our case, the expression in (3) shows that opti-
mization of σ2

1(t) requires an action at the joint acceleration
level. Indeed, from (3) and v = JC(q)q̇, one has

˙(σ2
1) = Jvv̇ + Jsṡ = JvJC q̈ + JvJ̇C q̇ + Jsṡ. (7)

Maximization of σ2
1 can be obtained by applying, for in-

stance, the following joint acceleration vector

q̈ = q̈σ = kσJ
T
CJ

T
v − (JvJC)†(JvJ̇C q̇ + Jsṡ) (8)

with kσ > 0. However, the control strategy proposed
in [4] only addresses motion control at the first-order/velocity
level. We then now proceed to its extension at the second-
order/acceleration level.

Assume that m ≥ n and rank(J) = n (overconstrained
visual task with no redundancy left, as in the experiments
reported in the next section). We first note that, being ė = Jq̇
and, thus, ë = Jq̈+ J̇ q̇, the second-order counterpart of the
classical law (5) for regulating the whole error vector e(t)
to 0 is simply

q̈ = q̈e = J†(−kvė− kpe− J̇ q̇) (9)

with kp > 0 and kv > 0. Note that, as in the first-
order case (5), when implementing (9) one should replace
J(s, χ, q) with its approximation Ĵ(s, χ̂, q), and likewise
for the evaluation of ė and J̇ . However, for the sake of
exposition, we assume for now availability of all the needed
quantities.

The controller (9) would solve the visual servoing task but,
clearly, without any possible additional optimization action.
By now letting ν = ‖e‖, it is

ν̇ =
eTJ

‖e‖
q̇ = J‖e‖q̇, J‖e‖ ∈ R1×n,

and ν̈ = J‖e‖q̈ + J̇‖e‖q̇. Regulation of ν(t) → 0 can then
be achieved by applying the joint acceleration vector

q̈ = q̈‖e‖ = J†‖e‖(−kv ν̇ − kpν − J̇‖e‖q̇) + (In − J†‖e‖J‖e‖)r

= J†‖e‖(−kv ν̇ − kpν − J̇‖e‖q̇) + P ‖e‖r,
(10)

with kp > 0, kv > 0, J†‖e‖ = ‖e‖
eTJJT e

JTe and P ‖e‖ =

In− JT eeTJ
eTJJT e

being the null-space projection operator of the
error norm with (at least) rank n− 1. One can then choose
vector r in (10) as

r = q̈σ − kd1 q̇, kd1 > 0, (11)

so as to project the optimization action (8) onto the null-
space of the main task ν = ‖e‖, together with an additional
‘damping’ on the joint velocities needed to stabilize motions
in the null-space, see [5]. Controller (8)–(10–11) can then
realize the visual task by regulating its norm to zero (‖e‖ →
0) with the largest possible redundancy (of degree n− 1)1.

We note that the Jacobian J‖e‖ is singular for ‖e‖ = 0
and, as explained in [4], the projection matrix P ‖e‖ is not
well-defined for e → 0. Presence of this (unavoidable)
singularity motivates the introduction of a switching from
the controller (10) to the classical law (9) when close to
convergence. However, the ‘first-order’ switching strategy
proposed in [4] cannot be directly transposed to the second-
order case, but some suitable modifications must be taken
into account as discussed in the next section.

C. A Second-order Switching Strategy

We start noting that, in closed-loop, controller q̈‖e‖ in (10)
imposes the following second-order dynamics to the error
norm

ν̈ + kv ν̇ + kpν = 0. (12)

Define ν‖e‖(t) as the solution of (12) for a given initial
condition (ν(t0), ν̇(t0)): ν‖e‖(t) thus represents the ‘ideal’
evolution of the error norm, that is, the behavior one would
obtain if controller (10) could be implemented ∀t ≥ t0.

Let now t1 > t0 be the time at which the switch from
controller (10) to the classical law q̈e in (9) occurs (e.g.,
triggered by some threshold on ‖e‖ as proposed in [4]). For
t ≥ t1 and under the action of q̈e one has in closed-loop

ë+ kvė+ kpe = 0. (13)

Let e∗(t) be the solution of (13) with initial conditions
(e(t1), ė(t1)), and let ν∗(t) = ‖e∗(t)‖ be the corresponding
behavior of the error norm. Ideally, one would like to have

ν∗(t) ≡ ν‖e‖(t), ∀t ≥ t1. (14)

In other words, the behavior of the error norm should not be
affected by the control switch at time t1, but ν∗(t) (obtained
from (13)) should exactly match the ‘ideal’ evolution ν‖e‖(t)
generated by (12) as if no switch had taken place.

While condition (14) is easily satisfied at first-order [4],
this is not necessarily the case at the second-order level. In-
deed, when moving to the second-order, condition (14) holds
if and only if, at time t1, vectors e(t1) and ė(t1) are parallel
(proof in the Appendix). It is then necessary to introduce
an intermediate phase before the switch during which any
component of ė orthogonal to e is made negligible.

To this end, let

P e =

(
Im −

eeT

eTe

)
∈ Rm×m

be the null-space projector spanning the (m−1)-dimensional
space orthogonal to vector e. Let also

δ = P eė = P eJq̇.

1Note that also in the case m < n the use of (10) would have increased
the redundancy degree from n−m to n− 1.
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Fig. 1: Switching function λ(ν) with swithching values νT and
ν̄T (dashed lines) such that λ(νT ) ≈ 0 and λ(ν̄T ) ≈ 1.

The scalar quantity δT δ ≥ 0 provides a measure of the
misalignment among the directions of vectors e and ė
(δT δ = 0 iff e and ė are parallel). One can then minimize
δT δ compatibly with the main task (regulation of the error
norm) by choosing vector r in (10) as

r = −kd2
2

(
∂δT δ

∂q̇

)T
= −kd2J

TP eJq̇, kd2 > 0,

(15)
where the properties P e = P T

e = P eP e were used.
A possible switching strategy for ensuring condition (14)

is then:
1) apply the norm controller q̈‖e‖ given in (10) with the

null-space vector r defined in (11) as long as ν(t) ≥
νT , with νT > 0 being a suitable threshold on the
error norm. During this phase, the error norm will be
governed by the closed-loop dynamics (12) and the
convergence rate in estimating χ̂ will be maximized;

2) when ν(t) = νT , keep applying controller q̈‖e‖ but
replace (11) with (15) for vector r. Stay in this phase
as long as δT δ ≥ δT , with δT > 0 a suitable threshold
on the alignment among vectors e and ė. Note that,
during this second phase, ν(t) keeps being governed
by the closed-loop dynamics (12) since r acts in the
null-space of the error norm (i.e., no distorting effect is
produced on the behavior of ν(t) by the change in r);

3) when δT δ = δT , switch to the classical controller q̈e
given in (9) until completion of the task. Property (14)
will clearly hold since, at the switch time, parallelity
among e and ė has been enforced by the previous phase.

We finally note that this strategy could cause a discon-
tinuity in the commanded q̈ when passing from phase 1)
to phase 2) because of the instantaneous change of vector
r from (11) to (15). This discontinuity can be easily dealt
with by resorting to a suitable smoothing function λ(ν) as
proposed in [4]. Indeed by implementing in both phase 1)
and phase 2)

r = λ(ν) (q̈σ − kd1 q̇)− (1− λ(ν)) kd2J
TP eJq̇, (16)

vector r in (11) is gradually replaced by vector r in (15)
while ν̄T ≥ ν(t) ≥ νT . Figure 1 shows an illustrative
example of λ(ν). As for the switch from phase 2) to phase
3), discontinuities in q̈ are avoided thanks to the alignment
among vector e and ė.

Before concluding this section we remark that the pro-
posed scheme (active SfM coupled to the second-order visual
servoing and associated switching strategy) only requires, as
measured quantities, the visual features s, the robot joint
configuration vector q and the joint velocities q̇ (in addition
to the usual assumption of intrinsic and camera-to-robot

parameters). Indeed knowing χ̂, a (possibly approximated)
evaluation of all the other quantities entering the various
steps of the second-oder control strategy can be obtained
from (s, χ̂, q) and q̇ (the only ‘velocity’ information actu-
ally needed). We also note that the level of approximation
is clearly a monotonic function of ‖χ− χ̂‖ (i.e., the uncer-
tainty in knowing χ): thus, all the previous quantities will
asymptotically match their real values as the estimation error
z(t) = χ(t)− χ̂(t) converges to zero.

We finally remark that, due to the nonlinear nature of the
estimation and servoing schemes, stability of each individual
block does not imply stability of their composition (one can-
not invoke the separation principle only valid for linear time-
invariant systems), and thus some additional analysis should
be performed to assess the overall closed-loop stability of
our solution2. The reported experiments nevertheless showed
a promising level of robustness in this sense.

IV. EXPERIMENTAL RESULTS

In this section we report the results of several experiments
meant to illustrate the approach described in the previous
sections. All experiments were run by making use of a
greyscale camera attached to the end-effector of a 6-dofs
Gantry robot. The camera has a resolution of 640 × 480 px
and a framerate of 30 fps. Since the robot only accepts
velocity commands, the acceleration signal generated by the
proposed controller was numerically integrated before being
sent to the robot. The controller (and its internal states) was
updated at 1 kHz, while the commands were sent to the robot
at 100 Hz. All the image processing and feature tracking were
implemented via the open-source ViSP library [6].

As visual task, we considered the regulation of N = 4
point features pi. We then have s = (p1, . . . , pN ) ∈ Rm,
and Ls = (Ls1

, . . . , LsN
) ∈ Rm×6, m = 8, with Lsi

being
the 2× 6 interaction matrix associated to the i-th point [1].
As for vector χ, it is χ = (χ1, . . . , χN ) ∈ Rp, p = 4,
where χi = 1/Zi as explained at the end of Sec. II. The
points were positioned at the vertices of a square of 0.25 m
size.

Each feature point is characterized by its eigenvalue σ2
1,i

and the associated matrices Jv,i, Js,i, see (4). In order to
optimize the estimation of the whole vector χ (the depth of
all points), we simply aimed at maximizing the sum σ2 =∑N
i=1 σ

2
1,i and thus modified (7–8) as

˙(σ2) =

N∑
i=1

Jv,iJC q̈ +

N∑
i=1

(
Jv,iJ̇C q̇ + Js,iṡi

)
and

q̈σ = kσJ
T
C

∑N
i=1 J

T
v,i −

(∑N
i=1 Jv,iJC

)†∑N
i=1

(
Jv,iJ̇C q̇ + Js,iṡi

)
.

(17)
The first set of experiments shows the results of having

coupled a servoing controller with an active SfM strategy.

2However, we also note that similar theoretical difficulties affect most of
the robotics applications in which an estimation step is plugged into the
loop (e.g., whenever exploiting an Extended Kalman Filter for feeding a
motion controller with the reconstructed state).
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Fig. 3: Behavior of the estimation error z(t) = χ(t)− χ̂(t) when
actively optimizing the camera motion for improving the estimation
convergence rate (case 1 – blue line) and when not optimizing the
camera motion (case 2 – red line).

To this end, we report in Fig. 2 the evolution of the error
norm ν(t) for the following four cases:

1) the full strategy (three phases) illustrated in the pre-
vious section is implemented. The estimator (2) is
concurrently run to provide an estimation χ̂(t) to all
the control terms. This case then involves the active
optimization of the camera motion for improving, as
much as possible, the convergence rate of the estimation
error z(t) = χ(t)−χ̂(t) (case 1 – blue line in the plot);

2) controller (9) is implemented for all the task duration
while observer (2) is still run in parallel for generating
χ̂(t). Thus, in this case no optimization of the estima-
tion error convergence is performed, but χ̂(t) is still
estimated during the resulting camera motion (case 2 –
red line in the plot);

3) controller (9) is again implemented for all the task
duration, but by now employing χ̂(t) = χ∗ = const,
that is, the value of χ at the desired pose (case 3 –
green line in the plot).

4) as a reference ‘ground truth’, the behavior of con-
troller (9) when using the real value of χ(t) is also
reported (case 0 - black line in the plot).

The following gains and thresholds were used in the
experiments: α = 1500, kp = 0.16, kv = 0.8 in (9) and (10),
kd1 = 27, kd2 = 10, ν̄T = 0.14, νT = 0.12, kσ = 0.85, and
δT = 0.02 (only for case 1). Vector χ̂ was initialized with
Ẑ = 0.2 for all point (for cases 1 and 2),

Finally, Fig. 3 shows the behavior of ‖z(t)‖ in cases 1
and 2 using the same color code of Fig. 2, while Fig. 4
depicts the camera and feature trajectory for the first ex-
periment (case 1). We also invite the reader to watch the
accompanying video for a better visualization of the robot
motion.

Let us first consider Fig. 3: we can clearly note how
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Fig. 4: Fig. (a): camera 3D trajectory during case 1 with arrows
representing the camera optical axis. The three phases of Sec. III-C
are indicated by different colors: blue – phase 1), red – phase 2),
green – phase 3). Fig. (b): trajectory of the four point features in
the image plane during case 1 with the same color code.

the optimization action present in case 1 (blue line) allows
to obtain a significantly quicker convergence of ‖z(t)‖
w.r.t. case 2 (red line). Indeed, in case 1 ‖z(t)‖ converges
towards zero in about 4 sec and, additionally, it keeps a
lower steady-state value w.r.t. case 2 (thus the depths Zi are
estimated faster and more accurately in case 1). A related
pattern can be found in Fig. 2: note, in fact, how in case 1
the behavior of ν(t) (blue line) quickly matches the ideal
one of case 0 (black line) because of the fast convergence
of ‖z(t)‖. In case 2 (red line), the matching with case 0
is still obtained, but much later in the plot (at about 10 sec
w.r.t. 6 sec). Note also the higher initial overshoot of case 2
compared to case 1. Finally, case 3 (green line) almost never
reaches the ideal behavior of case 0 if not at the end of the
motion as expected (since only in this case it is χ(t) ≈ χ∗).

The trajectory depicted in Fig. 4 is also helpful in un-
derstanding the effects of the optimization action on the
estimation error convergence during case 1: note, indeed,
how the camera initially moves along an almost planar spiral
(blue line) because of the null-space term (17) which imposes
a motion maximizing the estimation of the point depths. This
also allows to appreciate the benefits of having employed the
norm controller (10) during the first phase: thanks to the large
redundancy granted by this controller, the camera is free
to perform very ‘unusual’ motions while still guaranteeing
correct convergence of the error norm. For completeness,
the red line in the plot depicts phase 2) of the switching
strategy (the alignment of vectors e and ė), while the green
line represents phase 3) (use of the classical controller (9)).
Finally in Fig. 4b the trajectory of the point features on the
image plane are reported with the same color code: clearly
only in phase 3), when the full error controller (9) is used,
the points correctly move in (approximately) straight lines
toward their desired positions.

In the second set of experiments we instead show the
importance of having introduced phase 2) in the switching
strategy of Sec. III-C (i.e., of having enforced alignment of
e and ė). To this end, Fig. 5a shows the behavior of the error
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Fig. 5: Behavior of the error norm ν(t) (Fig. (a)) and of ‖δ‖,
the measure of misalignment between vectors e and ė (Fig. (b)).
In both plots, the blue lines represent the behavior of case 1
(full implementation of the switching strategy of Sec. III-C), while
magenta lines represent the direct switch from phase 1) to phase 3)
without the action of vector r in (15).

norm ν(t) of the previous case 1 (blue line) together with
the behavior of ν(t) when not implementing phase 2) but
just switching from phase 1) to phase 3) (magenta line). The
two blue vertical lines represent the switch from phase 1) to
phase 2) and from phase 2) to phase 3). Note how, in this
second situation, the error norm ν(t) has a large overshoot
when switching to phase 3) due to the misalignment of
vectors e and ė, an overshoot clearly not present in case 1.
Finally, Fig. 5b shows the behavior of ‖δ‖, the measure of
misalignment among e and ė. Note how, in case 1, ‖δ‖ is
correctly made negligible at the end of phase 2) thanks to the
action of vector r in (15). These results then fully confirm
the theoretical analysis of the closed-loop behavior under the
control strategy of Sec. III.

V. CONCLUSIONS

In this paper a strategy for optimally coupling a visual ser-
voing task with an active SfM algorithm has been presented.
In particular, we showed how to implement an active opti-
mization of the SfM error within the null-space of a IBVS
task. To this end, we employed a second-order version of the
norm controller originally introduced in [4] for maximizing
task redundancy, and provided a thorough analysis of the
closed-loop convergence behavior when employing a suitable
switching strategy for avoiding the typical singularities of
the method. The experiments clearly showed the benefits of
the proposed strategy in (i) obtaining a faster convergence
of the structure estimation error and (ii) imposing a better
closed-loop behavior to the servoing controller w.r.t. an ideal
response obtained in perfect conditions.

In the future we plan to apply the proposed general tech-
nique to more complex visual servoing tasks and structure es-
timation problems, possibly involving additional constraints
such as presence of obstacles, joint limit avoidance, as well
as applications to mobile (ground/flying) robotics.

APPENDIX

Lemma 1.1: Condition (14) holds if and only if, at the
switching time t1, vectors e(t1) and ė(t1) are parallel.

Proof: Let Φ(t) = [Φij(t)] ∈ R2×2 be the state-
transition matrix associated to the linear time-invariant sys-
tem (12). From classical system theory [7], it is ν‖e‖(t) =
Φ11(t − t1)ν(t1) + Φ12(t − t1)ν̇(t1), ∀t ≥ t1. We note
that (13) is governed, component-wise, by the same dynam-
ics of (12). Therefore, the solution of (13) is

e∗(t) = Φ11(t− t1)e(t1) + Φ12(t− t1)ė(t1), ∀t ≥ t1. (18)

Assuming e(t1) and ė(t1) are parallel, vector ė(t1) can
be expressed as

ė(t1) = ‖ė(t1)‖ e(t1)

‖e(t1)‖
= ‖ė(t1)‖e(t1)

ν(t1)
. (19)

Therefore, (18) becomes

e∗(t) =

(
Φ11(t− t1) + Φ12(t− t1)

‖ė(t1)‖
ν(t1)

)
e(t1), ∀t ≥ t1,

resulting in

‖e∗(t)‖ = ν∗(t) =

(
Φ11(t− t1) + Φ12(t− t1)

‖ė(t1)‖
ν(t1)

)
‖e(t1)‖

=

(
Φ11(t− t1) + Φ12(t− t1)

‖ė(t1)‖
ν(t1)

)
ν(t1)

= Φ11(t− t1)ν(t1) + Φ12(t− t1)‖ė(t1)‖, ∀t ≥ t1.
(20)

Now, being ν = ‖e‖ and using (19), it is

ν̇(t1) =
eT (t1)ė(t1)

ν(t1)
= ‖ė(t1)‖e

T (t1)e(t1)

ν2(t1)
= ‖ė(t1)‖.

Plugging ‖ė(t1)‖ = η̇(t1) in (20) finally yields ν∗(t) =
Φ11(t−t1)ν(t1)+Φ12(t−t1)‖ν̇(t1), ∀t ≥ t1, thus showing
that ν∗(t) ≡ ν‖e‖(t), i.e. fulfilment of condition (14).
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