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Abstract— This paper focuses on the issue of estimating the
complete 3D pose of the camera with respect to a complex
object, in a potentially highly dynamic scene, through model-
based tracking. We propose to robustly combine complementary
geometrical edge and point features with color based features
in the minimization process. A Kalman filtering and pose pre-
diction process is also suggested to handle potential large inter-
frame motions. In order to deal with complex 3D models, our
method takes advantage of hardware acceleration. Promising
results, outperforming classical state-of-art approaches, have
been obtained on various real and synthetic image sequences,
with a focus on space robotics applications.

I. INTRODUCTION

Determining the complete 3D pose of the camera with
respect to the object is a key requirement in many robotic ap-
plications involving 3D objects, for instance in the case of au-
tonomous, vision-based and uncooperative space rendezvous
with space targets or debris [13]. Based on the knowledge of
the 3D model of the target, common approaches address this
problem by using either texture [1], edge features [6, 5, 13]
or color or intensity features [11, 17]. In order to cope with
advantages and drawbacks of these different types of cues,
some researches have focused on combining them. Different
ways of handling the integration have been considered.

Some studies propose a sequential integration of edge
and texture cues [10, 3], where the computed dominant
motion [10] provides a prediction of the projected edges
in the image, improving the initialization of an edge-based
minimization process. [3] uses optical flow of pixels lying
on the projected object to initialize a maximization process
of the separation between object and background along the
object contours using color or luminance probabilities.

Other methods simultaneously merge features of different
types within probabilistic or filtering techniques such as
Kalman filters w.r.t. the pose parameters [8, 7], by integrating
interest points matching in an Extended Kalman Filter for
[8], and integrating optical flow estimation for [7]. [18]
elaborated a similar hybrid solution within a probabilistic
Expectation Maximization (EM) framework which aims at
optimizing the posterior probabilities of both edge and FAST
point features.

Works of [21, 15, 16, 12] rely on a deterministic itera-
tive minimization of a global error function combining the
different features. [21] proposes for instance to integrate
in a classical edge-based error function [6, 5] geometrical
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distances between keypoint features detected and matched
in two consecutive frames and the projection of their 3D
positions. [16] instead relies on optical flow estimation of
some regularly spread pixels lying on planar patches on the
object, providing point correspondences between successive
images and thus point to point distances to be minimized
w.r.t. the camera displacement through a homography. In
contrast to [21, 16], [15] proposes a texture-based error
function which is directly based on the difference between
intensities of some pixels selected on reference planar
patches of the object. [12, 14] combine in the objective
function to be optimized, w.r.t. the camera pose, a classical
geometrical information provided by the distances between
model and image edges with color information through
object/background color separation along the model edges.

Following ideas suggested by [12, 14], and by [21, 20],
which propose hybrid methods incorporating edge and key-
point features, we propose to integrate within a deterministic
pose estimation process the different considered visual fea-
tures, in order to take advantage of their complementarity
and to overcome the limitations of classical edge-based
approaches.

A low-level multiple hypotheses edge matching process
is also embedded in our framework. Like in our previous
works [14], the model projection and edge generation phase
relies on the graphics process units (GPU) in order to handle
complex 3D models, and to be reasonably time-consuming.

Since the application context of this work mainly deals
with space robotics applications (space rendezvous and
proximity operations) for which the targeted object gener-
ally involves constant velocity motions, a Kalman filtering
framework on the pose parameters is designed, enabling a
prediction step for the pose, providing a finer initialization,
intended to cope with potential large inter-frame motions and
to avoid local minima.

II. COMBINING KEYPOINT, EDGE AND COLOR FEATURES
IN A MODEL-BASED TRACKING FRAMEWORK

Our problem is restricted to model-based tracking, using
a 3D model of the target. The goal is to estimate the camera
pose r by minimizing, with respect to r, the function ∆
accounting for errors ei(r) between a set of visual features
extracted from the image and the forward projection of their
3D homologues in the image plane:

∆(r) =
∑
i

ρ(ei(r)) (1)

where ρ is a robust estimator, which reduces the sensitivity
to outliers. This is a non-linear minimization problem with



respect to the pose parameters r, and we follow a Gauss-
Newton minimization framework to handle it, by iteratively
updating the pose r:

rk+1 = rk ⊕ δr (2)
δr = −λ(DJ)+De (3)

where (DJ)+ is the pseudo inverse of DJ, with J the
Jacobian matrix of the error vector e(r). λ is a proportional
gain and D is a weighting matrix associated to the Tukey
robust estimator. With the homogeneous matrix Mk+1, the
new pose rk+1 can be updated using the exponential map [9]:

Mk+1 = exp([δr]) Mk (4)

Our challenge is to integrate, within this framework,
geometrical edge-based features with color features along
silhouette edges and geometrical features based on Harris
corner points extracted in the image, tracked through the
KLT algorithm [19]. The objective is to fuse in the criterion
∆ to be optimized a geometrical information provided by dis-
tances between edges, with distances between keypoints and
with a denser color information through object/background
color separation along the silhouette model edges. The goal is
to benefit from the complementarity of these features and to
overcome the limitations of classical single cue approaches.

Geometrical features based on edges or keypoints such
as Harris corners rely on line-to-point or point-to-point
correspondences and on geometrical distances accounting
for these correspondences. On one hand, edges have the
advantage of being robust to illumination conditions but
suffer from having similar appearances, resulting in ambi-
guities between different edges and potential local minima.
On the other hand, point features can be described more
specifically, imposing a better spatio-temporal constraint.
Though begin locally performed, the KLT algorithm allows
a larger convergence radius. However, these keypoints are
more sensitive to illumination conditions, for both extraction
and tracking steps. Besides, pose errors resulting from the
tracking phase at the previous frame are integrated in the
back-projection process of the keypoints, leading to potential
drift problems across the sequence. Whereas for edges, the
edge matching process in the image instead rely on the
absolute reference of the projection of the 3D model.

With color or intensity edge-based feature, the idea is
to avoid any image extraction or segmentation that could
lead to outliers and mismatches. By processing a dense
information along the silhouette of the projected 3D model
by modeling the color (or luminance) appearance on both
sides of the edges, using simple statistics, and optimizing
their separation, a better accuracy can be achieved. A main
advantage is a better robustness to image or motion blur,
background clutter or noise. However, among drawbacks
these features need color contrast to perform efficiently and
are limited by their computational costs.

By combining these features, ∆ can be rewritten as:

∆ = wg∆g + wc∆c + wp∆p (5)

∆g refers to the geometrical edge-based error function,
∆c stands for the color-based one and ∆p corresponds to
the keypoint features. wg , wc and wp are the respective
weighting parameters. Let us note that the involved visual
features rely on the projection of the 3D model.

III. VISUAL FEATURES

A. Geometrical edge features

1) Model projection and generation of model edge points:
As in our previous works [13, 14], we propose to automat-
ically manage the projection of the model and to determine
the visible and prominent edges from the rendered scene,
by considering the direct use of a complete model, which
can be textured or not. By using the graphics process units
(GPU) and a 3D rendering engine (OpenSceneGraph here),
we avoid any manual pre-processing.

For each acquired image Ik+1, the model is rendered with
respect to the previous pose rk. Processing the depth map,
we can obtain a set of Ng 2D control points {xi}

Ng

i=1 which
belong to target rims, edges and visible textures from the
rendered scene. The corresponding 3D points Xi can then
easily be reconstructed.

2) Error computation and Jacobian matrix: the edge-
based function ∆g is computed in a similar way to [14].
From the model edge points we perform a 1D search along
the normal of the underlying edge of each xi(rk). A common
approach is to choose on the scan line the pixel with the
maximum gradient as the matching edge point x′i in the
new image. The considered approach is based on the ECM
algorithm [2].

Once correspondences between the set of control points
{xi}

Ng

i=1 and the set of image edge points {x′i}
Ng

i=1 are
established, our approach considers the distance between the
projected 3D line li(r) underlying the projected control point
xi(r) (projected from the 3D point Xi) and the selected
matching point x′i in the image. The error function ∆g(r) to
be minimized with respect to the pose r can be written as:

∆g(r) =
1
Ng

∑
i

ρg(egi (r)) (6)

where egi (r) = σ−1
g d⊥(li(r),x′i)) and d⊥(li(r),x′i)) is the

distance between the point x′i and the corresponding line
li(r). ρg is a Tukey robust estimator and σg is a normal-
ization factor, the estimator of the standard deviation of the
error egi . σ̂g

2 = 1
Ng

∑
i ρ
g(d⊥(li(rf ),x′i)) with rf the pose

computed at the end of the previous minimization process.
The criterion ∆g improves other approaches [22, 12, 4]

which consider the distance between xi(r) and x′i along
the 2D normal vector ni to the edge underlying xi(r), but
neglecting the dependence of ni w.r.t. to the pose r, what is
taking into in our computation of the Jacobian matrix of egi .

A key requirement is to compute the 3D equation in the
scene or object frame of the line Li such that li(r) =
pr(Li, r). This is necessary in order to compute the error egi
and the corresponding Jacobian matrix Jeg

i
. For more details

and the complete computation of Jeg
i
, see [14, 5].



As in [13], multiple hypotheses can be considered in the
process. These hypotheses correspond to potential edges,
which are different local extrema x′i,j of the gradient along
the scan line. And ∆g becomes:

∆g =
∑
i

1
Ng

ρg(σ−1
g min

j
d⊥(li(r),x′i,j)) (7)

where points x′i,j are the selected candidates for each
control point xi. For σg , we use the estimate: σ̂g

2 =
1
Ng

∑
i ρ
g(minj d⊥(li(r),x′i,j)).

B. Color features

The color-based function ∆c is elaborated to characterize
the separation between both sides of projected model edges
belonging to the silhouette, by relying on color information.
∆c is computed the same way as in [14], and the principle
steps are briefly recalled hereafter.

The goal is to compute local color statistics (means and
covariances) along the normal to the projected silhouette
model edges, on both sides. Then for each pixel along the
normal, we determine a residual representing the consistency
of the pixel with these statistics, according to a fuzzy
membership rule to each side.

More formally, given the set of Ns projected silhouette
model edge points {xi(r)}Ns

i=1, we compute color statistics,
so to say RGB means I

O

i and I
B

i and covariances R
O

i and
R
B

i , on both side of the edge (object O and background
B) using 2D + 1 pixels along the edge normal ni, up to a
distance L.

These statistics are then mixed according to a fuzzy mem-
bership rule, giving means Îi,j(r) and covariances R̂i,j(r)
for the pixels yi,j on the normal ni, wether they are on the
object or background side. Îi,j(r) can be seen as a desired
color value for yi,j . An error eci,j(r) can then be defined as:

eci,j(r) =
√

(Îi,j(r)− I(yi,j))T R̂−1
i,j (Îi,j(r)− I(yi,j))) (8)

Using a M-estimator (Tukey) to cope with outliers, ∆c can
be written as:

∆c =
1
Nc

∑
i

ρc(
∑
j

eci,j(r)) (9)

with Nc = 2DNs accounting for the number of color
features. For more accuracy and temporal smoothness, we
propose to introduce temporal consistency, by integrating
the color statistics computed on the previous frame P I for
the silhouette edge points xi(rk) at the first iteration of the
minimization process. With α a weighting factor (0 < α <
1), it gives eci,j(r) = αÎi,j(r) + (1− α)(P Îi,j(r))− I(yi,j).
For the computation of the corresponding Jacobian matrix
Jec

i,j
, see [14].

C. Geometrical keypoint based features

Another class of visual features which can be used are
keypoints tracked across the image sequence. As previously
suggested by [3] or by [21, 16] within there hybrid ap-
proaches, the idea is to design a texture-based objective

function ∆p accounting for geometrical distances between
keypoints extracted and tracked over successive images. But
in contrast to [16], which process 2D-2D point correspon-
dences to estimate the 2D transformation from Ik to Ik+1

of planar local regions underlying the points, we use 2D-3D
correspondences to directly minimize ∆p w.r.t. the pose r.

More specifically, let us denote {xi}
Np

i=1 a set of detected
interests points in frame Ik. Assuming the pose rk has been
properly estimated, we can restrict these points to be lying
on the projected 3D model with respect to rk. Since we
rely on a complete 3D model, the depth of the points in the
scene can be accurately retrieved, and using rk, we can back-
project these points on the 3D model, giving a set {Xi}

Np

i=1

of 3D points of the 3D model. This is a major difference
with respect to [21] which aims at simultaneously optimizing
the camera poses and projections of the matched points in
two successive frames, relaxing the assumption of having
accurate previous pose estimate and 3D model, but increasing
computations. Our knowledge of a complete 3D model, along
with the use of convenient rendering techniques allows us the
keep this assumption valid.

As keypoints, we employ the Harris corners detector inside
the silhouette of the projected model in the image to extract
the set {xi}

Np

i=1 in Ik. Then, the KLT tracking algorithm
enables to track this set of points in frame Ik+1, resulting in
a corresponding set {x′i}

Np

i=1.
From the correspondences between {Xi}

Np

i=1 and {x′i}
Np

i=1,
∆p can be computed as follows:

∆p(r) =
1
Np

Np∑
i

ρp(epi ) (10)

with epi = σp
−1(xi(r)− x′i) and xi(r) = pr(Xi, r)). ρp

is the Tukey robust estimator associated to these errors. σp
accounts for the standard deviation of errors epi . Similarly to
σg , we use the estimate σ̂p

2 = 1
Np

∑
i ρ
p(xi(rf )− x′i). The

Jacobian matrix Jep
i

is computed as follows:

Jep
i

= σp
−1 ∂xi

∂r
(11)

=
K
σp

[
−1/Z 0 x/Z xy −(1 + x2) y

0 −1/Z y/Z (1 + y2) xy −x

]
with (x, y) the meter coordinates of the image point xi(r) =
pr(Xi, r)), and Z the depth of the corresponding 3D point.
K is the calibration matrix of the camera.

D. Combination of the visual features

The combination of the three types of features and their
respective errors egi (r), eci,j(r) and epi (r) in the minimization
framework is achieved by stacking the error vectors egi , eci,j
and epi into a global error vector e and their corresponding
Jacobian matrices Jeg , Jec and Jep into a global Jacobian
matrix J:

e =
[√
λgegT

√
λcecT

√
λpepT

]T
(12)

J =
[√
λgJeg

T
√
λcJec

T
√
λpJep

T
]T

(13)

where λg = wg/Ng , λc = wc/Nc and λp = wp/Np, e is
a Ng + Nc + Np vector and J is a (Ng + Nc + Np) × 6



matrix. Regarding the weighting matrix D, it is written as
D = blockdiag(Dg,Dc,Dp), where Dg , Dc and Dp are
the respective weighting matrices associated to the robust
estimators ρg , ρc and ρp.

IV. FILTERING AND POSE PREDICTION

A. Pose uncertainty

An important tool to set up is the measurement of the
quality and reliability of the tracking process, based on
the errors provided by the different cues integrated in the
objective function. For this purpose, we can compute the
covariance matrix Σδr on the parameters of the pose error
δr, which results from the errors e, based on equation (4).
We can indeed assume that the pose error δr follows a
Gaussian distribution δr ∼ N (0,Σδr). We also assume that
error e follows a Gaussian distribution e ∼ N (0,Σe), with
Σe = blockdiag(λgINg×Ng , λ

cINc×Nc , λ
pINp×Np), since

the errors are normalized. From equation (3) giving the value
of δr, Σδr can be written as:

Σδr = E
[
δrδrT

]
= E

[
(DJ)+De eTDT ((DJ)+)T

]
Since the uncertainty lies on e we have:

Σδr = (DJ)+DΣeDT ((DJ)+)T (14)

We can actually determine a covariance matrix for the
whole set of the visual features or one for each type, giving
three covariance matrices, Σg

δr, Σc
δr, and Σp

δr.

B. Kalman filtering and pose prediction

Kalman filtering: in order to smooth pose estimates, we
propose to incorporate a filtering process, relying on the
Kalman filtering theory. To achieve this, we employ an linear
Kalman filter on the parameters of the camera velocity v,
which is integrated to determine the pose so that: Mk+1 =
exp([vk+1δt]) Mk, at each time step k. We assume a
constant velocity dynamic model. This model is particularly
suitable in our context of space rendezvous since constant
velocity motions are generally involved. As the state of the
system (x̂k,Σk) we simply choose the velocity parameters,
so that xk = vk is the actual system state at time step k,
with x̂k = v̂k the a posteriori estimate of xk, and Σk the
corresponding covariance matrix:

x̂k = xk + ηk and M̂k = exp([ηkδt])Mk (15)

with ηk ∼ N (0,Σk), and M̂k the posterior estimate of the
actual pose Mk. With a constant velocity model, the true
state at time step k+1 is evolved from the state at k according
to:

xk+1 = xk + nk+1 (16)

with nk ∼ N (0,Qk) the state noise, and Qk =
diagblock(Σv ,Σω) the state noise covariance matrix, with
Σv = σ2

vI3×3 and Σω = σ2
ωI3×3, σv and σω being

state noise standard deviations respectively on the translation
and rotation parameters of v. As an observation zk+1, the
minimization process described in section II provides us with

a pose measure Mm
k+1, and with a measure of the velocity

vmk+1:

vmk+1 = exp−1(M̂k Mm −1
k+1 ) (17)

zk+1 = vmk+1 = xk+1 + wk+1 (18)

with wk ∼ N (0,Rk), with Rk the observation noise
covariance matrix. The noise wk can actually be interpreted
as equal to δrk, which is the pose error at the end of the pose
estimation process, so that Rk = Σδr (equation 14). The
prediction step can then be achieved, giving prior estimate
of the future state and the pose:

x̂k+1|k = x̂k,Σk+1|k = Σk + Qk+1 (19)

and M̂k+1|k = exp(
[
x̂k+1|k

]
)M̂k (20)

The update step is classically performed, resulting in the
Kalman gain Kk+1 and in posterior state and pose estimates
x̂k+1, Σk+1 and M̂k+1:

Kk+1 = Σk+1|k(Σk+1|k + Rk)−1 (21)
x̂k+1 = x̂k+1|k + Kk+1(zk+1 − x̂k+1|k) (22)

Σk+1 = (I−Kk+1)Σk+1|k (23)

M̂k+1 = exp(
[
Kk+1(zk+1 − x̂k+1|k)

]
)M̂k+1|k (24)

Pose prediction: from the estimate pose M̂k+1, we sug-
gest to use it to provide a predicted pose M̂p

k+1 which is
intended to initialize the pose estimation phase for the next
time step. A natural idea is to choose the prior estimate at
k + 1 so that M̂pred

k+1 = exp([x̂k+1])M̂k+1.
This prediction step is particularly useful when large inter-

frame motions are observed in the image, since the model
projection with respect to M̂pred

k+1 can bring the error function
∆ closer to its actual minimum, avoiding local ones.

V. EXPERIMENTAL RESULTS

We validate the proposed tracking method, both qualita-
tively on real images and quantitatively on synthetic images,
and its benefits are verified. Let us first classify the different
contributions proposed in this paper:
• Efficient model projection and model edge control point

generation, and pose estimation based on geometrical
edge features: C0.

• Integration of a multiple-hypothesis framework in the
edge registration process: C1.

• Integration of the color-based visual features: C2.
• Temporal consistency for the color-based objective

function: C3.
• Integration of the geometrical keypoint features: C4.
• Kalman filtering and pose prediction step: C5.
The solution combining (C0, C1, C2, C3) is actually very

close to the one proposed in [14] except the incorporation
of a multiple-hypotheses scheme taking advantage of line
clustering. We refer it as NM (for Nominal Mode). We
propose to evaluate the main contributions of this paper (
C4 and C5) and to compare them with (NM ) which has
proven in [14] to have superior performances with respect to
[5, 12, 13].



In terms of implementation, a standard laptop (2.8GHz
Intel Core i7 CPU) has used and for all the following tests.

A. Results on synthetic images

We consider the synthetic sequence, proposed in [14],
featuring a Spot satellite and which is provided with ground-
truth on the pose. The results of the tracking of the target
can be seen on Figures 1 and 2 where the errors on the pose
parameters are plotted (translation and rotation, represented
by Euler angles). For our new solutions (NM,C4) and
(NM,C5), and for our previous one (NM ), the tracking
is properly performed, as depicted on the image sequence
on Figure 1 for (NM,C4, C5). In terms of pose errors,
though the improvement is quite slight on this sequence, the
incorporation of keypoints enables to avoid some peaks on
the pose parameters errors which are encountered by (NM ),
especially when the panels of satellite tends to flip in the
image (around frames 750, see second image in Figure 1) or
when the target tends to get far, with low luminosity (frames
900-1350). Due to the temporal constraint imposed by the
tracking of the keypoints, these points can prevent from some
jitter effect on the pose.

By employing the Kalman filter and the pose prediction
step, the pose get smoothed. The advantage of the prediction
step can be enhanced by temporally down-sampling this
sequence, since tracking can be correctly handled with a
down-sampling factor f up to f = 7 (see provided video),
and enables to deal with very large inter-frame motions (up
to 20 pixels).

Fig. 1: Tracking for the Spot sequence with the proposed method
(NM, C4, C5) for frames 20, 750 and 1440. Tracked Harris corners
with the KLT algorithm are represented in with blue dots. Red dots
are their reprojection at the end of the pose estimation process.

B. Results on real images

A first sequence shows the Soyuz TMA-03M undocking
from the International Space Station (ISS) We have also
run the Nominal Mode NM , and the proposed solution
(NM,C4). Different temporal down-sampling factors have
been tried out. With f = 1, we observe that (NM,C4) is
able to track the target on a longer sequence than (NM ) (Fig-
ure 3(e)). With f = 5, the advantage of introducing keypoints
is obvious since tracking for (NM,C4) is not affected by
the down-sampling (Figures 3(a)- 3(d)), in contrast to (NM )
which rapidly fails (Figures 3(f)). The ability of keypoints
of being properly tracked with large inter-frame motions (up
to 25 pixels) is here stressed out. The uncertainty of the
pose for both methods is represented on Figure 4 by the
global covariance matrix Σδr, showing, for f = 5, larger
uncertainty when both solutions tends to fail (around frame
20 for NM and around frame 420 for (NM,C4)).
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Fig. 2: Errors on the estimated camera pose over the whole
sequence, (NM ), (NM, C4) and (NM, C4, C5) with f = 1.

(a) frame 40 (b) frame 100 (c) frame 380

(d) frame 420 (e) frame 1670 (f) frame 40

Fig. 3: Tracking for the Soyuz sequence using (NM, C4) with
f = 5 (a-d), using NM with f = 1 (e) and f = 5 (f).

The second sequence features a figurine of Mario, which
is 35cm high, and made of curved and complex shapes.
The 3D model was obtained using a Kinect sensor and
the ReconstructMe software. Despite rough modelization of
some parts, this model, which is made of 15000 vertices,
for a 5.5MB size, has been directly used in our tracking
algorithm, showing the convenience of the proposed method
and the efficiency of the model projection system. With
(NM ), tracking gets quickly lost (Figure 5(f)) due to the
large inter-frame motion, where (NM,C4) achieves it suc-
cessfully throughout the sequence, even in the case of very
large motions in the image (up to 40 pixels) and important
motion blur (see Figure 5(a) and provided video).
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Fig. 4: Covariances on the pose displacement for (NM ) and
(NM, C4). Square root of traces on translation and rotation pa-
rameters of Σδr are represented.

The uncertainty of the pose for both methods is also
represented (Figure 6), for the different visual features, with
Σg
δr, Σc

δr, and Σp
δr, and for the whole set with Σδr. We can

observe that the effective fail of the tracking for NM around
frame 5 does not have much effect on the global covariance,
however, the covariances generated by the keypoints and the
geometrical edge features take much larger values.

Let us finally note that the proposed algorithm
(NM,C4, C5) runs at around 8 fps in the presented cases.

(a) frame 14 (b) frame 25 (c) frame 205

(d) frame 260 (e) frame 495 (f) frame 15 (NM)

Fig. 5: Tracking for the Mario sequence with (NM, C4) (a-e) and
NM (f).

VI. CONCLUSION

In this paper we have presented a robust and hybrid
approach of 3D visual model-based object tracking.Our
approach has been tested via various experiments, on both
synthetic and real images, in which the integration of key-
points has proven to be particularly efficient in the case
of highly dynamic scenes with large inter-frame motions.
Our method has also shown to be promising in terms of
robustness with respect to illumination conditions, motion
blur and noise, outperforming state-of-the-art approaches, for
instance in the case of space rendezvous.

REFERENCES

[1] G. Bleser, Y. Pastarmov, and D. Stricker. Real-time 3d camera tracking
for industrial augmented reality applications. Journal of WSCG, pp.
47–54, 2005.

[2] P. Bouthemy. A maximum likelihood framework for determining
moving edges. IEEE T. on PAMI, 11(5):499–511, May 1989.

[3] T. Brox et al. High accuracy optical flow serves 3-D pose tracking:
exploiting contour and flow based constraints. In ECCV’06, pp. 98–
111, Graz, May 2006.

[4] C. Choi and H. I. Christensen. Robust 3d visual tracking using particle
filtering on the special euclidean group: A combined approach of
keypoint and edge features. IJRR, 31(4):498–519, April 2012.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  10  20  30  40  50  60  70  80  90

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n
 (

m
)

Image

Translation v

Edge covariance
Color covariance
Point covariance

Global covariance

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0  10  20  30  40  50  60  70  80  90

S
ta

n
d
ar

d
 d

ev
ia

ti
o
n
 (

ra
d
.)

Image

Rotation ω

Edge covariance
Color covariance
Point covariance

Global covariance

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  100  200  300  400  500  600

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n
 (

m
)

Image

Translation v

Edge covariance
Color covariance
Point covariance

Global covariance

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0  100  200  300  400  500  600

S
ta

n
d
ar

d
 d

ev
ia

ti
o
n

 (
ra

d
.)

Image

Rotation ω

Edge covariance
Color covariance
Point covariance

Global covariance

Fig. 6: Covariances on the pose displacement for (NM )(top) and
(NM, C4)(bottom). Sqare root of traces on translation and rotation
parameters of Σg

δr (Edge), Σc
δr (Color), Σp

δr (Point) and Σδr

(Global) are represented.

[5] A.I. Comport, E. Marchand, M. Pressigout, and F. Chaumette. Real-
time markerless tracking for augmented reality: the virtual visual
servoing framework. IEEE T-VCG, 12(4):615–628, July 2006.

[6] T. Drummond and R. Cipolla. Real-time visual tracking of complex
structures. IEEE PAMI, 24(7):932–946, July 2002.

[7] M. Haag and H.H. Nagel. Combination of edge element and optical
flow estimates for 3D-model-based vehicle tracking in traffic image
sequences. IJCV, 35(3):295–319, December 1999.

[8] V. Kyrki and D. Kragic. Integration of model-based and model-free
cues for visual object tracking in 3D. In IEEE ICRA’05, pp. 1566–
1572, Barcelona, 2005.
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