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Abstract— In this paper, we introduce the concept of
tunable visual features for moments based visual servoing
schemes. The main contribution of this work is the introduction
of tunable shift points along with some effective methods to
tune them. We propose two different metrics: the first metric
ensures optimal response of the control to errors in the image
space and the second metric ensures orthogonality between
the interaction matrix components (vectors) related to the
control of x and y rotational motions. With the proposed
method, it is possible to design moment invariants-based visual
features whose interaction matrix is always non-singular for
any desired pose (parallel or non-parallel). Thus, this work
makes a significant contribution to the difficult problem of
controlling the rotational motions around the x and y axes,
when all the 6dof are involved. Two case studies are presented
to demonstrate the validity of the proposed ideas. Results from
each case are then used to design a moment invariants-based
visual feature. This visual feature is used for visual servoing
with a symmetrical object using binary moments and a free-
form planar target using photometric moments.

I. INTRODUCTION

Visual servoing (VS) is the technique of controlling the
motions of a robotic system using information from a visual
sensor such as a camera. In visual servoing, there are two
closely linked problem themes that are subjects of active
research. The first is the design of visual features most
pertinent to the robotic task to be realized. The second is
to devise a control scheme with the chosen visual features
such that the desired characteristics are obtained during the
visual servo. The relationship between the variation in the
selected visual features to the movement of the visual sensor
is modeled by the well-known equation [1].

ṡ(t) = Ls vc (1)

where vc is the cartesian velocity expressed in the camera
frame and Ls is the interaction matrix of the chosen visual
features. Initially, the feature set s(t) was related to pla-
nar geometric (points, straight lines, circles) or volumetric
primitives (spheres, cylinders). These methods require that
the scene observed by the visual sensor can be modelled by
such simple primitives, thus naturally limiting their domain
of applicability. Further, feature tracking and/or matching
algorithms need to be integrated into the control loop which
consumes bandwidth that can be otherwise used by the
control. This was identified long back as a stumbling block
for the expansion of VS [2]. The recent vision paper [3]
highlighted challenges that have to be overcome in order to
make visual servoing methods practically useful in real-world
applications.

Position-based visual servoing (PBVS) [1] acted upon
the cartesian errors which produced satisfactory servoing
characteristics. However, a robust pose estimation and knowl-
edge of the 3D target model are essential. A blend of IBVS
and PBVS known as the 2.5D method [4], then entered the
arena but a partial pose estimation was still required.

As a means to overcome the aforementioned issues,
visual servoing techniques based on the luminance [5] and
information-theoretic approaches like [6] were developed.
While these methods do not require tracking or matching,
they are non-linear in nature and so their convergence domain
is limited.

Image moments represent the essential properties of the
image signal and were adopted for visual servoing in several
works [7]–[10]. More recently, photometric image moments
[11] were introduced as visual features for visual servoing.
In this work, free-form planar targets were used without any
visual tracking or feature matching. Also, it clearly pointed
out that a non-optimal choice of visual features resulted
in unsatisfactory behaviour during 6dof servo. As is shown
in this paper, the method we propose is also applicable to
photometric moments.

In visual servoing, it is well-known that the simul-
taneous control of the translations together with rotational
motions perpendicular to the optic axis is a non-trivial task.
In [12], the authors proposed using directional Gaussian
kernels to control the planar translations and the discrete
fourier transform (DFT) to control the translation along and
rotation around the optic axis. The control of the other critical
degrees of freedom was completely ignored. The work [10]
showed that image moments are well suited for a SCARA
type task, restricted to only 4-dof. The problem was back
in focus, thanks to [13] which proposed using lower order
moments computed with shift points along the major and
minor orientation axes. But this choice is not optimal in all
cases. We will present new tunable shift points that can be
selected optimally.

II. CUSTOMIZABLE VISUAL FEATURES

A. Preliminaries and related work

The main idea of this paper is the design of cus-
tomizable visual features that finds immediate applications
in image moments-based visual servoing. Let us begin this
paper by introducing some basic concepts and closely related
works which will help in understanding this paper. In general,



the moments of an image are defined as

mpq =
∫∫
π

xpyq I(x, y) dxdy (2)

where I(x, y) is the image intensity function, p + q de-
notes the order of the moment and π denotes the image
plane. Clearly, if I(x, y) ∈ {0, 1} ∀(x, y), then the image
is binary and (2) represents binary moments. More recently,
photometric image moments [11] were introduced in visual
servoing, where intensities in all the image plane was taken
into account.

Many image moments based visual servoing methods
[8], [13], [11] often employ a set of visual features s as
follows:

s = (xn, yn, an, φ1, φ2, α) (3)

where
{
xn = xg · an yn = yg · an an = z∗ ·

√
a∗

a

xn and yn are the coordinates of the normalized
centre of gravity and an is the normalized area.

α = 1
2 arctan

(
2µ11

µ02 + µ20

)
represents the orientation

of the target. These 4 features have been used in several
works including [8], [13] and [11] and result in a decoupled
interaction matrix when the desired camera and target planes
are parallel. φ1 and φ2 are visual features that are typically
used to control the rotational motions around the x and y
camera axes. These features are based on moment invariants
built from the centered moments of the image. The centered
moments are invariant to planar translations and are defined
as

µpq =
∫∫

(x− xg)p(y − yg)q dx dy (4)

The idea of shifted moments was first proposed in [13],
whereby the image moments were computed along specially
chosen shift points. These moments were termed shifted
moments and are given by

µ̃pq =
∫∫

(x− xg + x̃)p(y − yg + ỹ)q I(x, y)dx dy (5)

where µ̃pq are the shifted centered moments of order p+ q.
In [13], the following shift points were proposed: Shift
point p1

x̃ = (µ20 + µ02)
1
4 cos(α) (6a)

ỹ = (µ20 + µ02)
1
4 sin(α) (6b)

Shift point p2

x̃ = (µ20 + µ02)
1
4 cos(α+

π

2
) (7a)

ỹ = (µ20 + µ02)
1
4 sin(α+

π

2
) (7b)

where α is the orientation as in (3). We can see that
the shift points were computed with the orientation axes
shifted by 0 and π/2. However, this is not always the best
choice. In fact, a bad choice might affect the stability of the
system, cause singularities and might lead to failure of the
control. In this paper, we posit that the shift points need not

Fig. 1: Illustration for shifted moments. α is along the major
axis of the orientation ellipse. ∆1 and ∆2 are shifts in
orientation that define the actual shift points

always be chosen in this manner. We present a generalized
version of the shift points called tunable shift points that
can be applied in moments-based visual servoing. Visual
features customized to satisfy specific criteria can be built
from these shift points. Later, we will show that the shifted
moments proposed in [13] are a specific manifestation of our
generalized case.

The tunable shift points that we propose can be defined
as:

Tunable shift point p1

xs1 =
√
m00 cos(α+ ∆1) (8a)

ys1 =
√
m00 sin(α+ ∆1) (8b)

Tunable shift point p2

xs2 =
√
m00 cos(α+ ∆2) (9a)

ys2 =
√
m00 sin(α+ ∆2) (9b)

First, we note that, unlike in [13], instead of the second
order moments, m00 has been used. Such choices, coupled
with appropriate visual features, has positive implications
for the stability of the system. A formal proof of stability
is beyond the scope of this paper. Indeed, it is advisable
in general to stick to the lowest order moments possible
since higher order moments are sensitive to noise [14]. Next,
we present our methods to select optimal shift points based
on specific measures obtained from the interaction matrix.
Image moments based on these shift points can then be
computed and used for optimal visual servoing.

B. Selection of ∆1

As already said, a challenging aspect in visual servoing
is the simultaneous control of the rotational motions around
the x and y camera axes, when all 6dof of the robot have
to be controlled. The interaction matrix for a pair of visual



features built from shifted moments has the general form1:

Li =
[
Lvx
p1

L
vy
p1 Lvz

p1
Lωx
p1

L
ωy
p1 Lωz

p1

Lvx
p2

L
vy
p2 Lvz

p2
Lωx
p2

L
ωy
p2 Lωz

p2

]
(10)

Each entry in the interaction matrix of a visual feature
represents the responsiveness of that visual feature i to the
task errors (in image space in IBVS). Delving slightly deeper
and observing the invariant visual feature that we propose,
its interaction matrix is a function of the moments computed
with respect to tunable shift points (such as p1 and p2). By
selecting an optimal ∆1 connected to the first shift point, we
can obtain an interaction matrix with optimal responsiveness
with respect to ωx and ωy . This can be formally stated as
the following optimization problem:

∆∗1 = max
∆1

F1(∆1) (11)

where
F1(∆1) =

∥∥Lωp1∥∥ =
∥∥[Lωx

p1
L
ωy
p1

]∥∥ (12)

where the operator ‖.‖ stands for l2 norm. The solution of
this optimization will ensure that the control law (using as
visual feature i3 in (20) or others) acts optimally on the
corresponding errors in the image space. Once the optimal
value of ∆1 is obtained, first shift point can be held constant
at this value ∆∗1 and the second shift point should be selected.

C. Selection of ∆2

The 2×2 partial interaction matrix Lωx,y
related to the

x and y rotational motions can be observed from Eq.(10).

Lωx,y
=
[
Lωx
p1

L
ωy
p1

Lωx
p2

L
ωy
p2

]
=
[
Lp1

Lp2

]
(13)

The selection of ∆2 should be such that the simultaneous
control of both the rotations is optimal. We propose to choose
∆2 such that the factors responsible for the x and y rotational
velocities are perpendicular to each other. That is, ∆∗2 should
belong to the solution set that satisfies this orthogonality of
the vectors Lp2 and Lp1 .

∆∗2 | F2(∆2) = 0 (14)

where

F2(∆2) = κdn(Lωx,y
) =

L>p1 .Lp2

‖Lp2‖
(15)

where κdn is a function of the partial interaction matrix and
is the angle between the two vectors Lp1 and Lp2 . Clearly,
these two vectors are a function of the respective visual
feature chosen to control the x and y rotations. With this
optimization, these vectors are optimized in such a way that
their directions are perpendicular to each other. While ∆1 is
usually uniquely found, there could be several choices for
∆2 all of which satisfy the orthogonality criterion proposed
in (15). (In practice, when using i3 in (20) as a visual
feature, multiple solutions were usually found). In this case,

1In each entry of L, the subscript signifies the shift point pi at which the
invariant is evaluated. The superscript v refers to the translational velocity
and ω to the rotational velocity component of the camera, in either of x, y
or z axes

one among them, which is greater and farther from the
optimal value of ∆1 can be selected. However, this is not
the only possible choice. Depending upon the problem at
hand, one can also employ other suitable objective functions.
For example, ∆2 can be easily tied to the stability of the
system. The condition number of the interaction matrix has
been used in [15] and measures such as resolvability [16]
and motion perceptibility [17] are based on the interaction
matrix (referred to as image jacobian in the above works).
For instance, we can seek the best conditioning of the partial
interaction matrix Lωx,y

. That is,

∆∗2 = max
∆2

Fstab(∆2) (16)

where
Fstab(∆2) = κ(Ls) =

1
cond(Lωx,y

)
(17)

where κ is defined as the inverse of the condition number
of Lωx,y . In theory, κ can be any metric that is a reliable
indicator of the stability of the system. Further, if moment
invariants are selected and the desired configuration is such
that the image and the object planes are parallel, then
the interaction matrix will exhibit a decoupled structure as
follows:

L∗i =
[
0 0 0 Lωx

p1
L
ωy
p1 0

0 0 0 Lωx
p2

L
ωy
p2 0

]
(18)

But the method is not limited to parallel configurations. For
the general case like in (10), we can choose an appropriate
objective to be minimized.

F3(∆2) = κ(Ls) =
1

cond(Ls)
(19)

In fact, we performed a visual servoing using both the
objective functions, (15) and (19) for the non-parallel config-
uration (in which the camera and target planes are not parallel
to each other). The servo converged with no issues. It has to
be noted that (19) takes the conditioning of the entire system
into account which is useful from the stability point-of-view.
Also, in [8], a method based on virtual rotations has been
proposed for use in non-parallel configurations. This can also
be equally used. We have thus proposed some metrics for
visual feature selection that are tied to responsiveness with
respect to ωx and ωy , orthogonality in components of partial
interaction matrix and to the conditioning of the system.

III. CASE STUDIES

Two case studies are presented: the first one with
a simple symmetrical target using binary moments and
the second with a full grayscale texture using photometric
moments. A calibrated camera2 was assumed and images
of size 640 × 480 were used. The camera simulator was
developed by interfacing to the ViSP software library [18].
The first configuration was chosen such that the image and
the target planes are parallel at a depth of 1.0m above the
target. That is c∗Mp

o = [0.0, 0.0, 1m, 0.0◦, 0.0◦, 0.0◦]. As for
the non-parallel configuration the following pose c∗Mo =

2(px = 1200, py = 900, u0 = 320, v0 = 240)



[20.0cm,−20.0cm, 280cm,−20.0◦, 20.0◦, 20.0◦] was used.
Typically, there is an extremely large displacement in depth.
In this work, we used the visual feature i3:

i3 =
Is3
Is2

(20)

where

Is2 = −µ̃30 µ̃12 + µ̃2
21 − µ̃03 µ̃21 + µ̃2

12 (21)

Is3 = 3µ̃30 µ̃12 + µ̃2
30 + 3µ̃03µ̃21 + µ̃2

12 (22)

The ratio i3 is made up of moment polynomials that scale
equally with depth and was proposed in [13]. Clearly, they
are built from shifted moments of up to third order(see (20)
and (5)). But the method can also be applied to any other
moment invariants-based visual feature. We recall to the
reader that the visual features are now calculated using the
tunable shift points (8),(9) introduced in this paper. Further,
in the case studies that follow, the metrics (11) and (15) was
used for ∆1 for ∆2 selection respectively.

A. Case I

For the symmetric case a simple white rectangle was
used as the target. This is a symmetric object and binary
moments were used in this case. This serves as a validation
step before moving on to the photometric moments.

(a) (b)

Fig. 2: Camera views of symmetrical object at parallel and
non-parallel camera poses

In the case of the parallel configuration, using our
method, we found that ∆∗1 = 180◦ and ∆∗2 = 149◦. Indeed
from Fig.3a, we can infer that the variation of F1 presents
a symmetry and the optimal value has been predicted at the
centre of this symmetry. As for ∆2, there are several pos-
sible candidate directions that might ensure the orthognality
condition. We chose the direction that was farthest from the
optimal ∆1. For the non-parallel configuration, we arrived at
∆∗1 = 180◦ and ∆∗2 = 311◦ respectively.

B. Case II

For this case, we used the graffiti image (see Fig.4).
The grayscale image can be considered to have a random
intensity distribution. One objective of this case study was
to show that the method can be applied to photometric image
moments introduced recently in [11].

At the parallel desired configuration, using the metrics
we propose, the optimal values of ∆∗1 = 3◦ and ∆∗2 = 102◦
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Fig. 3: Variations in interaction matrix for symmetric target
(a) Lp1 variations with respect to ∆1 and (b) Orthogonality
with respect to ∆2 for parallel camera configuration, (c) Lp1

variations with respect to ∆1 and (d) Orthogonality with
respect to ∆2 for non-parallel camera configuration

(a) (b)

Fig. 4: Camera views of graffiti texture at parallel and non-
parallel desired configurations

are chosen. As evidenced by Fig.5a, the changes in the
interaction matrix with respect to ∆1 is not periodic or
symmetrical. With this method, we obtained ∆∗1 = 176◦ and
∆∗2 = 300◦ for the non parallel configuration.

IV. VISUAL SERVOING SIMULATION RESULTS

We performed a set of visual servoing simulations
with shift points selected as shown in Sec.III. As mentioned
earlier, the below set of visual features were used:

s =
(
xn, yn, an, i3p1, i3p2, α

)
(23)

where feature i3 is used in controlling the x and y rotations
and use the values of the shift point with ∆1 and ∆2

obtained with metrics (11) and (15).The other four features
are frequently used in several works including [8], [11] and
[13].

We assume that the camera is mounted on the end-
effector in a typical eye-in-hand configuration. The camera
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Fig. 5: Features design through shift points for photometric
target (a) Lp1 variations with respect to ∆1 and (b) Orthog-
onality with respect to ∆2 for parallel camera configuration,
(c) Lp1 variations with respect to ∆1 and (d) Orthogonality
with respect to ∆2 for non-parallel camera configuration

velocities are then given by the classic control law:

vc = −λ L̂−1
s (s− s∗) (24)

A true value of Ls is difficult to achieve in practice and
an estimation of this matrix denoted L̂s is normally used.
Different choices are possible for its evaluation as explained
in [1]. In this work, we use the interaction matrix computed
at the desired pose, that is Ls = Ls∗. A constant gain of λ =
0.6 was used in all the experiments. The desired pose was
chosen such that it was parallel to the target plane. Typically,
c∗Mp

o = [0.0, 0.0, 1m, 0.0◦, 0.0◦, 0.0◦]. The initial pose was
selected such that a huge displacement is required for the
realisation of the task. In this paper, the following initial pose
cMi

o = [20.0cm,−20.0cm, 280cm,−20.0◦, 20.0◦, 20.0◦](=
c∗Mo) was used. Then, for testing the visual servoing with
a non-parallel desired configuration, the above poses are just
interchanged. Results from both these scenarios are presented
in Fig.6 for the symmetrical object and in Fig.7 for the
grayscale texture.

We found that the visual servo converged in both the
parallel and the non parallel configurations (Figs. 6c, 6d).
An exponential decrease of the errors and velocities were
obtained, even though only Ls∗ was used in the control
scheme. With the symmetrical object with parallel desired
pose (See Fig.6a), let us note that the target leaves the camera
field of view for a brief time period but the visual servoing
converges eventually to the right values (this can be seen
clearly in the videos).

The second set of experiments were performed with
photometric image moments. The behaviour was very sat-
isfactory in terms of convergence and exponential decrease
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Fig. 6: Servoing results for Case III-A -Symmetrical Object
(a) Errors in visual features, (b) Camera velocities for the par-
allel desired configuration, (c) Errors in visual features, (d)
Camera velocities for the non-parallel desired configuration,
and (e) and (f) Robot pose for the parallel and non-parallel
configurations respectively.

of the feature errors. The method clearly works irrespective
of parallel or non-parallel configurations. The servo results
are shown in Fig.7. An important point to be stressed here is
that all these results were obtained using only the interaction
matrix at the desired position Ls∗. Thus, with the optimal
values of tunable shift points and visual features selected as
selected above, we can design control schemes that results
in adequate servo characteristics.

V. CONCLUSIONS AND FUTURE WORK

We introduced the concept of tunable shift points and
proposed various metrics that can be used to tune them for
optimal behavior. Visual features based on moment invariants
are then computed from these optimally tuned shift points.
The visual features built from these moment invariants are
used to control the x and y rotations in a 6-DOF VS
control scheme. In short, the ’tunable’ property of shift points
was exploited to solve the important problem of controlling
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Fig. 7: Servoing results for Case III-B - Photometric target
(a) Errors in visual features, (b) Camera velocities for the par-
allel desired configuration, (c) Errors in visual features, (d)
Camera velocities for the non-parallel desired configuration,
and (e) and (f) Robot pose for the parallel and non-parallel
configurations respectively.

rotational motions around the the x and y camera axes. The
proposed methods and ideas were first validated in simulation
with a simple symmetrical object and then with a photometric
target. A real experiment conducted on a 6-DOF gantry
robot using photometric moments has been presented in the
accompanying video.
The proposed method of customizing the shift points is not
tied to any specific visual feature. Any moment invariant
based visual feature can benefit from this method. This work
has opened a new perspective with regards to stability of
moments-based visual servoing schemes, that is yet to be
demonstrated. As future work, we would also like to develop
analytical methods to characterize the behaviour of ∆1 and
∆2. We would also like to explore if this methodology could
be adapted to have specific desired characteristics during the
visual servoing like more decoupling in the control or a large
convergence domain (which is directly related to stability).
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