
Robotics and Autonomous Systems 61 (2013) 1588–1600
Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Robust image-based visual servoing using invariant
visual information

Omar Tahri a,∗, Helder Araujo a, François Chaumette b, Youcef Mezouar c
a Institute for Systems and Robotics, Polo II, 3030-290 Coimbra, Portugal
b INRIA Rennes Bretagne Atlantique, campus de Beaulieu, 35042 Rennes Cedex, France
c Institut Pascal/IFMA, Institut Pascal, BP 10448, F-63000 Clermont-Ferrand, France

h i g h l i g h t s

• Image-based visual servoing from spherical projection.
• Decoupled control using invariant features.
• A near-linear behavior is obtained thanks to the proposed features.
• The sensitivity to image noise is taken into account.

a r t i c l e i n f o

Article history:
Received 19 October 2012
Received in revised form
17 June 2013
Accepted 28 June 2013
Available online 17 July 2013

Keywords:
Robust visual servoing
Spherical projection

a b s t r a c t

This paper deals with the use of invariant visual features for visual servoing. New features are proposed to
control the 6 degrees of freedom of a robotic system with better linearizing properties and robustness to
noise than the state of the art in image-based visual servoing. We show in this paper that by using these
features the behavior of image-based visual servoing in task space can be significantly improved. Several
experimental results are provided and validate our proposal.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Image-based visual servoing (IBVS) consists of using feedback
information defined directly in the images provided by a vision
sensor to control the motion of a dynamic system. Theoretically,
IBVS is suitable only for small displacements. However in practice,
it is robust and efficient for large displacements, but less than op-
timal in terms of 3-D motion [1]. A large spectrum of visual fea-
tures can be extracted and used in the control loop. Besides, the
choice of features directly influences the closed-loop dynamics in
a task-space. The points are the most simple and common features
that can be extracted from an image. However, such features suf-
fer from control coupling and non-linearities between the image
space and 3D space. In practice, this can lead to unpredictable be-
havior in the task space but also to divergence or convergence to
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local minima in some situations, especially when large displace-
ments are to be performed. Other features can be derived from the
points in image to improve the system behavior. Features includ-
ing the distance between two points in the image plane and the
orientation of the line connecting those two points were proposed
in [2]. The relative area of two projected surfaces was proposed
in [3] as a feature. A vanishing point and the horizon line were se-
lected in [4],which ensures good decoupling between translational
and rotational degrees of freedom (DOFs). In [5], the coordinates of
points are expressed in a cylindrical coordinate system instead of
the classical Cartesian one to improve the robot trajectory.

This paper belongs to a series ofworks aiming at the selection of
optimal visual features for IBVS [6–8]. These previous works were
concerned with approaches that consider performance measures
to choose visual features with good decoupling and linearizing
properties. Themain idea is to apply non-linear transformations to
classical image visual features (point coordinates, contours or im-
age region) in order to obtain new visual information with better
linearizing properties. The results obtained using such approaches
have shown a superior behavior in task space and convergence
rate with respect to point coordinates (for instance) [7]. How-
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ever, applying non-linear transformations on data obtained from
the sensor space changes the noise distribution. For instance, if the
image noise is Gaussian white, the noise on invariant features pro-
posed in [7,8] is no more Gaussian white since the applied trans-
formation is non-linear. In practice, if the noise level is low, the
use of invariants allows obtaining adequate robustness. If the noise
level increases, the use of invariants can lead to less robustness at
convergence compared to the classical visual features. In this pa-
per, further to proposing new invariants allowing better linearizing
properties and decoupling than those proposed in [7,8], we address
the problem of robustness to noise.

The features used in this paper are computed from the projec-
tion of points onto the unit sphere. This means that the method
proposed can work not only with classical perspective cameras
but can also be applied to wide-angle cameras obeying the unified
model [9,10]. Wide-angle cameras include catadioptric systems
that combine mirrors and conventional cameras to create omni-
directional cameras providing 360° panoramic views of a scene,
or dioptric fish-eye lenses [11,12]. It is highly desirable that such
imaging systems have a single viewpoint [11,13]. i.e. there exists
a single center of projection, so that every pixel in the sensed im-
age measures the irradiance of the light passing through the same
viewpoint in one particular direction.

In the next section, the unified camera model and some basic
definitions related to visual servoing are recalled as well as the
notations used in the following of the paper. In Section 3, a new
visual feature vector is proposed. More precisely, the first part of
the feature vector we propose is defined by a new rotation vector
computed from a set of projected points onto the unit sphere.
We will show that this rotation vector has a direct link with the
rotational motion (i.e. the camera rotational velocities and the
vector entries are linked with the identity matrix). Similarly to
rotational velocities, a new feature derived from an invariant to
rotation computed from projected points onto the unit sphere
is proposed in this section to approach a linear system. The
interaction matrix related to the proposed feature is derived and
shown to behave as a constant matrix with respect to point depth
under some assumptions. The invariant to rotation will be used to
control the translational motion independently of the rotational
ones. Furthermore, the sensitivity to image noise is considered
by taking into account the noise propagation from image to the
space of new features. Finally, in Section 4, numerous experimental
results are presented confirming the validity of the proposed
approach.

2. Background

2.1. Notations

The following notations will be used:

• P = (X, Y , Z): 3D point coordinates.
• Ps = (xs, ys, zs): the coordinates of projected point onto the

unit sphere.
• Pv: virtual point defined by linear combination of the projected

points onto the unit sphere.
• m = (x, y, 1): coordinates of projected point onto the image

plane in metric units.
• p: coordinates of projected point onto the image plane in pixels.
• cosαij = P⊤

si Psj : dot product between two projected points on
the unit sphere.

• dij =

2 − 2 cosαij: distance between two projected points on

the unit sphere.
• swij: the new feature we propose to control the translations.
• ∆: area of triangles defined by three projected points on the

sphere.
Fig. 1. Unified image formation.

• I: A polynomial invariant to rotations; refer to (34)
• the variables followedby∗ are computed for the camera desired

pose.
• all the scalars are in italic.
• all the matrices and vectors are in bold
• Γ v = (I − vv⊤) for any vector v.

2.2. Camera model

A unifiedmodel for central imaging systems has been proposed
in [9]. It consists in modeling the central imaging systems by
two consecutive projections: spherical and then perspective as
shown in Fig. 1. The frames attached to the sphere Fm and to the
perspective camera Fp are related by a simple translation of −ξ
along the Z-axis. LetP be a 3Dpointwith coordinatesP = (X, Y , Z)
in Fm. The world point P is projected onto:

m = (x, y, 1) =


X

Z + ξ∥P∥
,

Y
Z + ξ∥P∥

, 1


(1)

and the coordinates of the projected points in the image plane are
obtained after a plane-to-plane collineationK : p = Km, (K is a 3×

3matrix containing the camera intrinsic parameters). In the sequel,
the matrix K and parameter ξ are assumed to be computed using
a calibration method, for instance using the method proposed
in [14]. In this case, the inverse projection onto the unit sphere can
be obtained from:

Ps = γ


x, y, 1 −

ξ

γ


(2)

where

γ =
ξ +


1 + (1 − ξ 2)(x2 + y2)
1 + x2 + y2

.

The projection onto the unit sphere from the image plane is
possible for all sensors obeying the unified model. In other words,
it encompasses all sensors in this class namely [9]: perspective
(ξ = 0) and catadioptric cameras (ξ ≠ 0). A large class of fish-
eye cameras can also be represented by this model [15,12].

2.3. Visual servoing

In few words, we recall that the time variation ṡ of the visual
features s can be expressed linearly with respect to the relative
camera–object kinematics screw τ = (υ, ω):
ṡ = Lsτ, (3)
where Ls is the interaction matrix related to s [16]. In visual
servoing, the control scheme is usually designed to reach an
exponential decoupled decrease of the visual features error to their
desired value s∗. If we consider an eye-in-hand system observing a
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static object, the corresponding control law is [16]:

τc = −λLs+(s − s∗), (4)

where Ls is a model or an approximation of Ls,Ls+ the pseudo-
inverse ofLs, λ a positive gain tuning the time to convergence, and
τc the camera velocity sent to the low-level robot controller.

3. Feature selection

Our goal is to select optimal visual features to control the
translational and rotational motion. In other words, we seek to
determine features that allow as much as possible linearizing
properties between task space and image space and robustness to
data noise. Selecting visual features by taking into account these
two constraints will lead to a better behavior in the task space,
avoiding local minima, divergence, and better accuracy.

3.1. Features to control rotation

In the following, we first recall some features previously
proposed in the literature to control rotationalmotion. Then, a new
rotation vector computed from a set of N points is defined. We
show that this new feature has a linear relationship with respect
to the rotational velocities.

3.1.1. Rotation vector to control the camera orientation
To control the rotational motion, a classical way is to use the

rotation matrix c∗Rc between the current camera frame Fc and
the desired oneFc∗. Canceling the rotational motions is equivalent
to bring the value of c∗Rc to the identity matrix. As minimal
representation of the rotation, the rotation vector θu is used. Recall
that 0 < θ < 2π is the rotation angle, while u defines the axis of
rotation. In this case, canceling the rotational motion is equivalent
to bring the rotation vector θu to a null vector. The rotation matrix
can be computed from the rotation vector using the Rodrigues’
rotation formula:

R = I + sin(θ)[u]× + (1 − cos(θ))(uu⊤
− I) (5)

where [u]× is the skew-symmetric matrix of the vector u.
Conversely, the rotation vector can be recovered from the rotation
matrix by:

θ = arcos(trace(R) − 1) (6)

and if trace(R) ≠ 1, then:

[θu]× =
1
2

1
sinc(θ)

(R − R⊤) (7)

where sinc(θ) =
sin(θ)

θ
. In 3D or 21/2D visual servoing schemes,

using θu to control rotational motions ensures a linear link
between the rotational velocities and the feature errors. However,
computing θu requires a partial or a complete reconstruction of
the camera pose to compute the rotation c∗Rc . Nevertheless, as it
will be explained in the following, a rotation vector can also be
expressed directly in the image space.

3.1.2. Rotation vector feature from two points in the image
Recently, in [17,8], an angle–axis representation of a rotation

matrix R computed from two projected points on the sphere has
been considered to control rotational motions for visual servoing
application. The idea behind the rotation formula given in these
works is equivalent to attaching an orthonormal frame basis
to each camera pose using two projected points onto the unit
sphere. More precisely, let Ps1 and Ps2 be two projected points
on the sphere for the current camera pose and P∗

s1 and P∗
s2 their

corresponding projected points for the desired camera pose. From
Fig. 2. Definition of vector basis from 2 projected points on the unit sphere.

Ps1 and Ps2 , it is possible to define an orthonormal basis cRs =

[v1; v2; v3] (see Fig. 2) such that:

v1 = Ps1 , (8)

v2 =
Ps2 − (P⊤

s2Ps1)Ps1

∥Ps2 − (P⊤
s2Ps1)Ps1∥

, (9)

v3 = v1 × v2 (10)

and similarly an ortho-normal basis c∗Rs∗ using points P∗
s1 and

P∗
s2 can be defined. If only a rotational motion is considered, the

rotation matrix R between the current and the desired camera
poses is determined by the matrix that transforms the vector basis
cRs to c∗Rs∗:

R =
c∗Rs∗

cR⊤

s . (11)

This property ensures a direct link between the rotation vector
defined from c∗Rs∗

cR⊤
s and the rotational velocities as it has been

proven in [8]. In the next paragraph, we define a rotation vector
from a set of N points in the image.

3.1.3. Rotation vector feature from N points
For the sake of robustness, all projected points on the sphere

should be used and not only two. In this work, we propose a way
for defining a rotation vector using all the points. Our idea is based
on the fact that the rotation matrix given by (11) can be obtained
from two real projected points as well as from two virtual points
rigidly attached to the set of projected points. Let us consider:

Pv1 =

N
i=1

a1iPsi , Pv2 =

N
i=1

a2iPsi (12)

two virtual points obtained by a linear combination of the real
set of projected points on the sphere. Then, from Pv1 and Pv2 an
orthogonal basis can be defined as follows:

vn1 =
Pv1

∥Pv1∥
(13)

vn2 =
Pv2 − P⊤

v2
vn1vn1

∥Pv2 − P⊤
v2
vn1vn1∥

(14)

vn3 = vn1 × vn2 (15)
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Lemma 1. If only a rotational motion is considered, the rotation
matrix R between the current and the desired camera poses is
determined by the matrix that transforms the vector basis cRn into
c∗Rn∗:

R =
c∗Rn∗

cR⊤

n (16)

where:
cRn = [vn1; vn2; vn3]

and
c∗Rn∗ = [v∗

n1; v∗

n2; v∗

n3]

are computed using (12)–(15).

The proof of the previous lemma is detailed in Appendix A. Note
that the matrices cR⊤

n and c∗Rn∗ are themselves rotation matrices
since the triplet (vn1; vn2; vn3) forms a direct and ortho-normal
basis. As will be shown in Section 3.1.5, Eq. (16) allows to obtain a
direct link between the rotational velocities and the rotation vector
computed from c∗Rn∗

cR⊤
n .

3.1.4. Computation of the parameters a1i and a2i
To control the rotational motions, the rotation vector θu

(cRn
n∗Rc∗) will be used. It is then necessary to determine the

parameters a1i and a2i in (12). More precisely, we have to define
two virtual points P∗

v1
and P∗

v2
and then express them as linear

combinations of the projected points on the sphere P∗

si computed
for the camera pose to be estimated. For the sake of simplicity, P∗

v1
and P∗

v2
are chosen to be unitary and perpendicular to each-other.

In this case, the basis [P∗
v1

; P∗
v2

; P∗
v1

× P∗
v2

] is orthonormal.
In any given frame basis [P∗

v1
; P∗

v2
; P∗

v1
× P∗

v2
], each projected

point onto the sphere can be expressed as:

P∗

si = b1iP∗

v1
+ b2iP∗

v2
+ b3iP∗

v1
× P∗

v2
. (17)

Let B be the 3×N matrix that defines the coordinates of all the
projected points on the new frame basis. We have:

P∗

st = Pv∗ B, (18)

where:

P∗

st = [P∗

s1 P∗

s2 . . . P∗

sN ],

P∗

v = [P∗

v1
P∗

v2
P∗

v1
× P∗

v2
],

and

B = P⊤

v∗
P∗

st . (19)

In practice, a1i and a2i have to be chosen such that their
corresponding virtual points are robust to noise. Our choice is
based on characteristic features of 3D structure—the center of
gravity of the directions defined by the points and the principal
axis of the directions (also defined by the points). More precisely,
the first virtual point is defined by:

P∗

v1
=

1 N
i=1

P∗

si


N
i=1

P∗

si, (20)

which corresponds to a1i =
1

∥
N

i=1 P∗
si∥

. The second virtual point

P∗
v2

is chosen as the unitary vector perpendicular to P∗
v1

that lays
on the plane defined by P∗

v1
and the major principal axis of the set

of the projected points on the sphere (see Fig. 3). The choice of the
main principal axis as second axis allows having themajority of the
points in its direction. Now as P∗

v1
and P∗

v2
have been determined,

the matrix B can be computed using (19). From (17), it can be
obtained that:

P∗

si − b1iP∗

v1
= b2iP∗

v2
+ b3iP∗

v1
× P∗

v2
. (21)
Fig. 3. Definition of vector basis from N projected points on the unit sphere.

By replacing P∗
v1

by
N

i=1 P∗
si

∥
N

i=1 P∗
si∥

, we obtain for all the projected

points onto the sphere:

P∗

stC =

P∗

v2
P∗

v1
× P∗

v2


B23 (22)

where B23 is composed by the two last rows of B and C is an
N × N matrix defined by clm = 1 −

b1l
∥
N

i=1 P∗
si∥

if l = m and

clm = −
b1l

∥
N

i=1 P∗
si∥

for l ≠ m. By inverting (22), we obtain:
P∗

v2
P∗

v1
× P∗

v2


= P∗

st C B+

23. (23)

The parameters a2i are then obtained as the first column of the
matrix C B+

23. Now as the coefficients a1i and a2i are defined, the
vector basis for each camera pose can be obtained using (13)–(15).

3.1.5. Interaction matrices
In this paragraph, we compute the interactionmatrix related to

θu(cRn
n∗Rc∗). In order to do so, let us first recall the result obtained

in [8] for the case where the rotation is defined as θu(cRs
s∗Rc∗).

In [18,8], it has been shown that:

dθu
dt

= −Lω(θ,u)ζ (24)

where

ζ =
cRs[

sRc
c Ṙs]

×, (25)

Lω(θ,u) = −I +
θ

2
[u]× −


1 −

sinc(θ)

sinc2(θ/2)


[u]2

×
, (26)

with sinc(x) = sin(x)/x and [M]
× is the vector associated with the

antisymmetric matrix M. Since cRs = [v1 v2 v3], it can be shown
that the vector ζ can be obtained by [8]:

ζ = [v1 v2 v3]

−v⊤

2 v̇3
−v⊤

3 v̇1
v⊤

2 v̇1

 . (27)

By taking the derivative of v1, v2 and v3 and after tedious
computations, it has been shown in [8] that:

ζ = Lω,υv − ω, (28)
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with

Lω,υ =
1

∥P1∥
(δpv1v⊤

3 + v2v⊤

3 − v3v⊤

2 )

and δp =
(P⊤

s1Ps2) ∥P2∥−∥P1∥
∥P2∥ ∥ΓPs1 (Ps2−Ps1)∥

. Identically to the result shown in [8],
the time variation of θu(cRn

n∗Rc∗) can be obtained by:

dθu
dt

= −Lω(θ,u)ζn (29)

where ζn is defined by:

ζn = [vn1 vn2 vn3]

−v⊤

n2v̇n3
−v⊤

n3v̇n1
v⊤

n2v̇n1

 (30)

with cRn = [vn1 vn2 vn3]. Let us express ζn as:

ζn = ζnvv + ζnωω. (31)

By taking the derivative of the formulas of vn1, vn2 and vn3 and
after tedious computations, it can be obtained that (the details are
given in Appendix B):

ζnω = −I3. (32)

This result shows that the direct link between θu(cRs
s∗Rc∗) and

the rotational velocities is preserved using the new features
θu(cRn

n∗Rc∗). Furthermore, we have:

ζnv = δ13vn1v⊤

n3 + δ23[vn1]× (33)

where
δ13 =

N
i=1

(a1iP⊤
v2
vn1 − a2i∥Pv1∥)(−I3 + PsiP

⊤
si )

∥Pv2 − (P⊤
v2
v1n)v1n∥∥Pv1∥∥Pi∥

.

δ23 =

N
i=1

a1i
∥Pv1∥∥Pi∥

(−I3 + PsiP
⊤

si ).

3.2. Features to control translations

3.2.1. Invariants to rotations
Using the spherical projection model, the shape of an object

does not change under rotational motions of the sphere. After a
rotational motion of the sensor frame, it can easily be shown that
the projected shape onto the sphere undergoes the same rotational
motion as the coordinates of the 3D points of the object expressed
in the camera frame. This means that the invariants to rotation in
3D space remain invariant if the 3D points are projected onto the
unit sphere. In the following, first, we will recall some invariants
proposed in previous works to control the translational motions.
Then, a new invariant feature is proposed and its corresponding
interaction matrix is calculated.

In [7], two different invariants have been proposed to control
the translational motions:

• An invariant polynomial defined by:

I = m200m020 − m200m002 + m2
110

+m2
101 − m020m002 + m2

011 (34)

where mi,j,k is the 3D moment of order i + j + k computed
from a discrete set of points defined by the following classical
equation:

mi,j,k =

N
h=1

xih yjh zkh (35)

where (xh, yh, zh) are the coordinates of the hth point and N
is the number of points. In order to ensure the non-singularity
of the interaction matrix, the set of points is divided into four
subsets (each subset must contain at least three points). For
each subset of points the invariant given by (34) is computed,
which allows obtaining 4 invariants to rotation to control the 3
translational DOFs.

• The area of triangles built by three projected points on the
sphere:

∆ =
1
2
∥(Ps2 − Ps1) × (Ps3 − Ps1)∥ (36)

where Ps1 = (xs1 , ys1 , zs1), Ps2 = (xs2 , ys2 , zs2), Ps3 = (xs3 , ys3 ,
zs3) are the coordinates of the vertices of the triangle projected
onto the unit sphere. To control the 3 translational DOFs, the
areas of all possible triangles or 4 selected ones such that the
interaction matrix is not singular are used.

In order to obtain a systembehavior close to that of a linear system,
two invariants Il =

1
√
I
and ∆l =

1
√

∆
have been derived from I and

∆ in [7]. Such features allowed obtaining an interactionmatrix that
is less sensitive to depth variations.

Recently, in [8], three invariants to camera rotations have
been defined using the Cartesian distances between the spherical
projections of three points d12, d13 and d23 defined by:

dij =

2 − 2 cosαij (37)

where cosαij = P⊤
si Psj . As for I and∆, a new feature sij is derived in

thiswork from dij to obtainmore linearizing properties. In practice,
the distance between two projected points behaves as a function
inversely proportional to the distances of the corresponding 3D
points to the center of projection. Therefore, sij =

1
dij

will be close
to a function proportional to the distances from the corresponding
3D points to the center of projection.

3.2.2. Interaction matrix and linearizing properties
As mentioned in the beginning of this section, our goal is to

select features minimizing the non-linearities between the task
space and feature space. This is equivalent to selecting features
such that their corresponding interaction matrix is not too much
influenced by the camera position with respect to the object.

The interactionmatrix that links the variation of dij with respect
to translational displacement is given by:

Ldij =

Ldijv 0 0 0


(38)

the three last entries of Ldij are null thanks to the invariance
to rotations, while the three first ones corresponding to the
translational motion are given by:

Ldijv = −

P⊤
si LPsj v + P⊤

sj LPsi v

dij
(39)

where LPsi v and LPsj v are the interaction matrices that relate the
variations of the point coordinates on the unit sphere to the
camera translational displacements. This interaction matrix has
the following form [19]:

LPsi v =
−I + PsiP

⊤
si

∥Pi∥
(40)

where ∥Pi∥ is the distance of the 3D point to the center of the
sphere. After inserting (40) in (39), we obtain:

Ldijv = −
1
dij


−

1
∥Pj∥

+
P⊤
si Psj

∥Pi∥


P⊤

si

+


−

1
∥Pi∥

+
P⊤
si Psj

∥Pj∥


P⊤

sj


. (41)
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Fig. 4. Relation between 3D distance and distance between projected point on the
sphere.

Further to the invariance to rotation, it is also possible to de-
crease the non-linearities between the image space and 3D space.
Indeed, the distance dij on the sphere behaves as function which
is approximately inversely proportional to the point depths ∥Pi∥.
This means that its corresponding interaction matrix depends on
the square of the inverse of the point depths. On the other hand, the
inverse of the distance behaves approximately as a linear function
of the points depths. This should allow obtaining more linearizing
properties between the image space and 3D space. Consequently,
we propose to use sij = 1/dij for all possible combinations of two
projected points. Let us consider the case when the ‘‘mean’’ dis-
tance R of the points to the sphere center is such that R ≈ ∥Pi∥ ≈

∥Pj∥ as shown in Fig. 4. In this case, we have:

Lsijv ≈
(−1 + P⊤

si Psj)

R

(Psi + Psj)
⊤

d3ij
. (42)

Note that −1 + P⊤
si Psj = −

d2ij
2 , then (42) can be written as:

Lsijv ≈
∥Psi + Psj∥

2R dij

(Psi + Psj)
⊤

∥Psi + Psj∥
. (43)

From Fig. 4, we have:

dij
Dij

=
1
R
. (44)

By combining (44) with (43), we obtain:

Lsijv ≈
∥Psi + Psj∥

2Dij

(Psi + Psj)
⊤

∥Psi + Psj∥
. (45)

Note that
(Psi+Psj )

⊤

∥Psi+Psj∥
is the unitary vector that passes through the

middle of the two points Psi and Psj and also ∥Psi +Psj∥ ≈ 2 if R ≫

Dij. This means that the matrix Lsijv behaves as a constant matrix
when point depth increases. This allows the system to behave as a
linear one.

3.2.3. Sensitivity to noise
In Section 3.1.3, a rotation vector robust to image noise was

defined by using all the projected points in order to control
the rotational velocities. For the translational velocities, as was
previously described, feature 1

dij
depends almost linearly on the

point depths. However, this feature is a non-linear function of the
point coordinates in the image plane. Therefore the propagation of
noise from the image to the feature sij should be taken into account.
Let us start with the sensitivity of a projected point onto the sphere
with respect to noise in the image plane. Taking the derivative of
(2), the variation in the coordinates of the point projected onto
the sphere as a function of the variation in the coordinates in
the image points (noise-meters) is obtained by (using first order
approximation):

∆Ps = JPs/m∆m (46)
where:

JPs/m =


γ + x

∂γ

∂x
x
∂γ

∂y
0

y
∂γ

∂x
γ + y

∂γ

∂y
0

∂γ

∂x
∂γ

∂y
0

 (47)

with:

∂γ

∂x
=

x
1 + x2 + y2


(1 − ξ 2)

1 + (1 − ξ 2)(x2 + y2)
− 2γ


∂γ

∂y
=

y
1 + x2 + y2


(1 − ξ 2)

1 + (1 − ξ 2)(x2 + y2)
− 2γ

 (48)

where γ and ξ have been defined in Section 2.2. Therefore, the
variation ofPs with respect to image points in pixels is obtained by:

∆Ps = JPs/mK−1∆p. (49)

Furthermore, from dij =


2 − 2P⊤

si Psj, we have:

∆dij = −
1
dij

(P⊤

sj ∆Psi + P⊤

si ∆Psj). (50)

As a result of (47) and (50), the variation of sij =
1
dij

with respect to
noise in the coordinates of the image points (in pixels) is obtained
by:

∆sij = Jsij/p

∆pi
∆pj


(51)

where Jsij/p =


P⊤
sj JPsi/mi K

−1 P⊤
si JPsj/mj K

−1

/d3ij. In order to take

into account the noise propagation effect of the non-linear map-
ping from the image point coordinates to the features sij, each vi-
sual feature should be weighted by 1

∥Js∗ij/p
∗∥

computed using the

image points coordinates corresponding to the desired pose. More
precisely, we use all possible combinations of swij =

1
dij

1
∥Js∗ij/p

∗∥
.

The interaction matrix that links the variations of the new feature
swij =

1
∥Js∗ij/p

∗∥

1
dij

to the translational velocities is then obtained by:

Lswijv =
1

∥Js∗ij/p∗∥ d3ij


−

1
∥Pj∥

+
P⊤
si Psj

∥Pi∥


P⊤

si

+


−

1
∥Pi∥

+
P⊤
si Psj

∥Pj∥


P⊤

sj


(52)

3.3. Conclusion

To summarize, the new feature vector sn we propose is
composed of two parts. The first part st is devoted to control the
translational motions. It is composed of the set of swij computed
from all combinations of two projected points on the sphere. The
second part is devoted to controlling the rotational motions. It is
defined by the rotation vector θu described in Section 3.1.3. The
interaction matrix related to sn can be expressed as follows:

Lsn =


Lnv 0

−Lω(θ,u)ζnv Lω(θ,u)


(53)

where Lnv is the interactionmatrix that links the variation of st and
the translational motions (see (52)) and where Lω(θ,u) and ζnv
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Fig. 5. Points image for simulation 1: (a) points image for the pose 1, (b) points image for the pose 2.
are given respectively by (26) and (33). This leads to the following
visual servoing control law:
v = −λL+

nv

st − s∗t


ω = −ζnvv + λθu (54)

since L−1
ω (θu) θu = −θu.

4. Experimental results

In the following, simulation results using a conventional camera
projection model are firstly presented. Then experimental results
with real images using a fish-eye camera are described.

4.0.1. Simulation results using conventional camera model

In the following simulations, a conventional cameramodelwith
focal scaling factors Fx = Fy = 800 pixels and coordinates of
the principal point ux = uy = 400 pixels is used to generate
the image point coordinates. Five different invariants to rotations
cosαij, dij, s∆, 1/dij and swij are tested to check which ones allow a
control law behavior close to a linear system and more robustness
to noise. The invariant computed from the polynomial I is excluded
from the test since it has already been shown in [7] that using s∆ a
better behavior can be obtained.

For all the following simulations, the scalar control gain is set
up at 0.1. In order to test the robustness to noise, a Gaussian
white noise with standard deviation equal to 1 pixel is added to
the coordinates of each point in the image, during servoing. Two
camera poses are considered: pose 1 is defined by the 3D point
coordinates (55) and pose 2 is defined by the 3D point coordinates
(56). Only translational motions are considered in this part.

X4 =

−0.2 −0.2 0.2 0 0.4
−0.2 0.2 −0.2 0.4 0.4
1.01 0.95 1.03 1.2 1.3
1 1 1 1 1

 (55)

X5 =

 0.2 0.2 0.6 0.4 0.8
0.15 0.55 0.15 0.75 0.75
2.21 2.15 2.23 2.4 2.5
1 1 1 1 1

 . (56)

The translational motion between the pose 1 and the pose 2 is
given by t = [0.4 0.35 1.2] meter. The images of the points for the
pose 1 and 2 are shown respectively in Fig. 5(a) and (b).

In order to test the linearizing behavior of each invariant to
rotation, visual servoing is performed from pose 1 to pose 2 and
then from pose 2 to pose 1. If a visual feature allows a linear
mapping between the image and task space, the behavior of the
velocities when the camera moves from pose 1 to pose 2 or moves
from pose 2 to pose 1 has to be symmetrical.

The behavior of the error on the features when the camera
moves from pose 1 to pose 2 and from pose 2 to pose 1 are shown
respectively in column 1 and in column 2 in Fig. 6. From this
figure, it can be seen that all errors on features decrease in similar
and satisfactory way independently of the way the camera moves.
However, from the same figure, it can be seen that the effect of
the noise on the entries of the features error vector is not uniform
when s∆ and 1/dij are used (refer to Fig. 6(i), (j), (m) and (n)).

The behavior of the translational velocities using each feature
is shown in column 3 and column 4 of the same figure. From
these plots, the decrease of the velocities using cosαij and dij is
non-symmetrical and leads to different speeds of convergence: the
convergence ismuch faster if the camera has tomove from thepose
2 to the pose 1 than from 1 to 2 (compare Fig. 6(c), (d) and 6(g) and
(h)). Note also that the velocities at the first iteration are almost
10 times bigger in Fig. 6(d) than in Fig. 6(c) for instance, which is
far from a symmetrical behavior. This shows that the interaction
matrices of cosαij and dij are very different for the camera positions
1 and 2. On the contrary, it can be seen that the features s∆, 1/dij
and swij allow obtaining an almost symmetrical decrease of the
velocities and then the same speed of convergence if the camera
moves from the pose 1 to the pose 2 or from pose 2 to pose 1
(compare Fig. 6(k) and (l), 6(o) and (p), 6(s) and (t)).

Concerning sensitivity to noise, it can be noticed that the
velocities are more noisy when the camera has to move from the
poses 2 to 1 than from the pose 1 to the pose 2. This can be
explained by the fact that the size of the ‘object’ in the image
corresponding to the pose 1 is much bigger than the image of the
object corresponding to the pose 2. Finally, from the velocity plots,
it can be seen that the velocities obtained using the feature swij are
by far the less sensitive to noise (refer to Fig. 6(s) and (t)).

In the second simulation, a pure rotationdefinedby vector θu =

[−23.75 −19.7900 −79.1750] degrees is considered. The desired
pose is defined by (56). The initial image of the points is shown in
Fig. 7(e) (dots in blue). The results obtained are shown in Fig. 7.
From this figure, it can be seen that the camera performs exactly
the required rotationalmotionwithout anyundesired translational
motion (refer to Fig. 7(c) and (d)). Indeed, since the considered
translational motion is null, the translational velocities computed
using the invariants to rotations are null (the small variations of
the translational velocities are due to noise). The trajectory of the
points in the image corresponding to the performed motion in
3D is shown on Fig. 7(e). On the other hand, Fig. 8 shows the
results obtained using the point coordinates as features. Since the
control is made using the point coordinates, the trajectories of the
points in the image are close to straight lines (refer to Fig. 8(d))
and the decrease of the error of the features is also satisfactory
(refer to Fig. 8(a)). On the contrary, due to coupling between the
translational and rotational velocities, the corresponding velocities
applied to the camera are far fromsatisfactory (refer to Fig. 8(b) and
(c)). Indeed, a strong undesired translational motion is generated
while the motion to perform is a pure rotation.
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Fig. 6. Simulation results when only translational motions are controlled.
4.0.2. Experimental results with real images obtained using fish-eye
camera

The experiments were performed using an Afma Cartesian
robotics platform and Visp software [20]. Furthermore, a cam-
era with a fish-eye lens has been used. The unified projection
with a distortion parameter ξ = 1.50, central point coordinates
(ux, vx) = (316.90, 244.50) pixels, and focal scaling factors given
by (Fx, Fy) = (655.69, 658.38) pixels was used as projection
model of the camera. For all the following experiments, the scalar
control gain is set up at 0.1 and the interaction matrix computed
for the current pose of the camera is used at each iteration.

In the first experiment, two camera poses 1 and 2 separated
by the translation t = [−0.4, 0, 0.5] meter are considered. The
images corresponding to the poses 1 and 2 of the camera are shown
in Fig. 9(a) and (b). Four different invariants to rotations cosαij,
dij, 1/dij and swij were tested. The results obtained are shown in
Fig. 11. They confirm those obtained previously using conventional
perspective camera model. Indeed, from this same figure, it can
be seen that the effect of the noise on the entries of the features
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Fig. 7. Simulation results for pure rotational motion: (a) errors on features used to control translations, (b) translational velocities in m/s, (c) errors on features used to
control rotations, (d) rotational velocities in degrees/s (e) trajectory of the points in the image.
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Fig. 8. Simulation results for pure rotational motion using point coordinates as features: (a) error on features, (b) translational velocities in m/s, (c) rotational velocities in
degrees/s, (d) trajectory of the points in the image.
error vector is not uniform when 1/dij is used (refer to Fig. 11(i)
and (j)). The behavior of the translational velocities using each
feature is shown in column 3 and column 4 of the same figure.
From these plots, it can be seen that the features 1/dij and swij
allow obtaining an almost symmetrical decrease of the velocities
and then the same speed of convergence if the camera moves
from the pose 1 to the pose 2 or from pose 2 to pose 1 (compare
Fig. 11(k) to (l) and 11(o) to (p)). On the contrary, the decrease of
the velocities using cosαij and dij is non-symmetrical and leads to
different speeds of convergence: the convergence is much faster if
the cameramoves from pose 2 to pose 1 than from pose 1 to pose 2
(compare Fig. 11(c), (d) and 11(g), (h)). Note also that the velocities
at the first iteration are almost 10 times bigger in Fig. 11(d) than in
Fig. 11(c) for instance, which is far from a symmetrical behavior.
Finally, from the velocity plots, it can be seen that the velocities
obtained using the feature swij are by far the less sensitive to noise
(refer to Fig. 11(o) and (p)).

The second experiment corresponded to a ‘pure’ rotation given
by vector θu = [−15.47, −7.47, −61.83] degrees. The image
points corresponding to the initial and to the desired poses are
shown respectively in Fig. 10(a) and Fig. 9(a). The results obtained
using features vector sn are shown in Fig. 12. As for the results
obtained using conventional camera model, it can be seen that the
camera performs a pure rotation since the translational velocities
are null.

In the final experiment, a camera displacement involving
rotational and translational motions was considered. The initial
and desired images are given respectively in Fig. 10(b) and Fig. 9(a).
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Fig. 9. Experimental results when only translational motions are controlled: (a) image points for the pose 1, (b) image points for the pose 2.
Fig. 10. Initial image: (a) case where only a pure rotation is considered, (b) case of displacement involving translational and rotational motions.
The results obtained are shown in Fig. 13. From the plots of the
velocities and the feature errors, it can be seen once again that an
adequate decrease of the feature errors in the image space as well
as in the task space is obtained.

5. Conclusions

In this paper, we have proposed new visual features for image-
based visual servoing from a set of matched points. We have firstly
proposed a rotation vector computed from all the projected points
and providing direct link with the rotational velocities. Then, a set
of invariants to rotation has been proposed and used to control
the translational velocities. The propagation of noise from the
image points coordinates to the features space has been taken into
account to improve the robustness of the control law with respect
to measurement noise. The theoretical results have been validated
with several simulation and experimental results.
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Appendix A. Proof of the Lemma 1

If only a rotational motion is considered between the current
frame and the desired frame, we have:

P∗

v1
=

N
i=1

a1iP∗

si =

N
i=1

a1ic∗RcPsi =
c∗Rc Pv1 (57)

P∗

v2
=

N
i=1

a2iP∗

si =

N
i=1

a2ic∗RcPsi =
c∗Rc Pv2 . (58)
By combining these equations with (13), we obtain:

v∗

n1 =

c∗Rc Pv1
P⊤

v1
c∗R⊤

c
c∗Rc Pv1

(59)

from which, we obtain:

v∗

n1 =
c∗Rc vn1. (60)

Identically, it is possible to prove that:

v∗

n2 =
c∗Rc vn2. (61)

Combining (60), (61) and (15) it yields:

v∗

n3 =
c∗Rc vn3. (62)

Therefore, by combining (60)–(62), one obtains:
c∗Rn∗ =

c∗Rc
cRn. (63)

Finally, by multiplying both sides of the last equation by cR⊤
n , we

obtain
c∗Rn∗

cR⊤

n =
c∗Rc

cRn
cR⊤

n (64)

since cRn
cR⊤

n = I3, therefore:
c∗Rn∗

cR⊤

n =
c∗Rc . (65)

Appendix B. Computation of the tangent vector ζn

Let us first determine v̇n1, v̇n2 and v̇n3. From (13), it can be
obtained:

v̇n1 =
Γvn1

∥Pv1∥
Ṗv1 (66)

where Γvni = I3 − vniv⊤

ni. Since v⊤

n2Γvn1 = v⊤

n2 and v⊤

n3Γvn1 = v⊤

n3,
we have

v⊤

n2v̇n1 = v⊤

n2
Ṗv1

∥Pv1∥
(67)
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Fig. 11. Experimental results when only translational motions are controlled.
a b c d

Fig. 12. Result for pure rotational motion θu = [−15.47, −7.47, −61.83] degrees: (a) errors on features to control translations, (b) translational velocities in m/s, (c)
errors on features to control rotations, (d) rotational velocities in degrees/s.
and

−v⊤

n3v̇n1 = −v⊤

n3
Ṗv1

∥Pv1∥
. (68)

By taking the derivative of (14), we obtain:

v̇n2 =
Γvn2Γvn1

∥Pv2 − (P⊤
v2
v1n)v1n∥

Ṗv2
−
Γvn2(P

⊤
v2
vn1I3 + vn1P⊤

v2
)Γvn1

∥Pv2 − (P⊤
v2
v1n)v1n∥∥Pv1∥

Ṗv1 . (69)

Furthermore, the time variation of vn3 can be computed using:

v̇n3 = [vn1]×v̇n2 − [vn2]×v̇n1. (70)

Since v⊤

n2[vn2]× is null, we have:

−v⊤

n2v̇n3 = −v⊤

n2[vn1]×v̇n2 = v⊤

n3v̇n2. (71)
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Fig. 13. Result for generic motion: (a) errors on features used to control translations, (b) translational velocities in m/s, (c) errors on features used to control rotations, (d)
rotational velocities in degrees/s.
By plugging (69) into (71) and taking into account that v⊤

n3Γvn1 =

v⊤

n3Γvn2 = v⊤

n3 and v⊤

n3vn1 = 0, we obtain:

−v⊤

n2v̇n3 =
v⊤

n3Ṗv2

∥Pv2 − (P⊤
v2
v1n)v1n∥

−
v⊤

n3(P
⊤
v2
vn1)Ṗv1

∥Pv2 − (P⊤
v2
v1n)v1n∥∥Pv1∥

. (72)

Furthermore, after plugging (67), (68) and (72) into (30),we obtain:

ζ =


−vn2v⊤

n3 + vn3v⊤

n2 −
vn1v⊤

n3(P
⊤
v2
vn1)

∥Pv2 − (P⊤
v2
v1n)v1n∥


Ṗv1

∥Pv1∥

+
vn1v⊤

n3

∥Pv2 − (P⊤
v2
v1n)v1n∥

Ṗv2 . (73)

Remind that the interaction matrix related to points on the unit
sphere [19] is given by:

LPs =


−I3 + PsP⊤

s

∥P∥
[Ps]×


. (74)

The interaction matrices related to Pv1 and Pv2 can be obtained by
taking the derivative of (12) and combining the result with (74):

LPv1
=


N
i=1

a1i
∥Pi∥

(−I3 + PsiP
⊤

si ) [Pv1 ]×


(75)

LPv2
=


N
i=1

a2i
∥Pi∥

(−I3 + PsiP
⊤

si ) [Pv2 ]×


. (76)

Let us consider that ζn = ζnvv + ζnωω and show that the direct
link between ζ and the rotational velocities obtained in [8] is still
valid for the new features (i.e. ζnω = −I3). Combining (75), (76)
and (73), it can be obtained:

ζnω =


−vn2v⊤

n3 + vn3v⊤

n2 −
vn1v⊤

n3(P
⊤
v2
vn1)

∥Pv2 − (P⊤
v2
vn1)vn1∥


[Pv1 ]×

∥Pv1∥

+
vn1v⊤

n3

∥Pv2 − (P⊤
v2
vn1)vn1∥

[Pv2 ]×. (77)

We have
[Pv1 ]×

∥Pv1∥
= [vn1]×, which leads to:

ζnω = −vn2v⊤

n3[vn1]× + vn3v⊤

n2[vn1]×

+ vn1v⊤

n3


[Pv2 ]× − (P⊤

v2
vn1)[vn1]×

∥Pv2 − (P⊤
v2
vn1)vn1∥


. (78)

Identically, it can be noticed that
[Pv2 ]×−(P⊤

v2
vn1)[vn1]×

∥Pv2−(P⊤
v2 vn1)vn1∥

= [vn2]×.

Then (78) can be written as:
ζnω = −vn2v⊤

n3[vn1]× + vn3v⊤

n2[vn1]× + vn1v⊤

n3[vn2]×. (79)

Since the triplet (vn1, vn2, vn3) is a direct and ortho-normal basis,
we have:

−v⊤

n3[vn1]× = (vn1 × vn3)⊤ = −v⊤

n2, (80)

v⊤

n2[vn1]× = −(vn1 × vn2)⊤ = −v⊤

n3, (81)

v⊤

n3[vn2]× = −(vn2 × vn3)⊤ = −v⊤

n1. (82)

By plugging the last three equations in (79), we obtain:

ζnω = −vn2v⊤

n2 − vn3v⊤

n3 − vn1v⊤

n1 = −
cRn

cR⊤

n = −I3. (83)

Furthermore, we have:

ζnv = δ13vn1v⊤

n3 + δ23(vn3v⊤

n2 − vn2v⊤

n3) (84)

where
δ13 =

N
i=1

(a1iP⊤
v2
vn1 − a2i∥Pv1∥)(−I3 + PsiP

⊤
si )

∥Pv2 − (P⊤
v2
v1n)v1n∥ ∥Pv1∥ ∥Pi∥

δ23 =

N
i=1

a1i
∥Pv1∥∥Pi∥

(−I3 + PsiP
⊤

si ).

Eq. (84) can be simplified by noticing that vn3v⊤

n2 − vn2v⊤

n3 =

[vn2 × vn3]× = [vn1]×. Therefore, we have:

ζnv = δ13vn1v⊤

n3 + δ23[vn1]×. (85)
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