
VISION-BASED DETECTION AND TRACKING FOR SPACE NAVIGATION

Antoine Petit1, Eric Marchand2, and Keyvan Kanani3

1INRIA, Rennes, France
2IRISA, Rennes, France

3Astrium, Toulouse, France

ABSTRACT

This paper focuses on navigation issues for space au-
tonomous, uncooperative rendezvous with targets such as
satellites, space vehicles or debris. In order to fully local-
ize, using a vision sensor, a chaser spacecraft with respect
to a target spacecraft or debris, a visual model-based de-
tection and tracking technique is proposed. Our track-
ing approach processes complete 3D models of complex
objects, of any shape by taking advantage of GPU ac-
celeration. From the rendered model, correspondences
are found with image edges and the pose estimation task
is then addressed as a nonlinear minimization. For de-
tection, which initializes the tracking, pose estimation
is based on foreground/background segmentation and on
an efficient contour matching procedure with synthetic
views, over a few initial images. Our methods have been
evaluated on both synthetic images and real images.

1. INTRODUCTION

The active removal of heavy space debris (typically larger
than 1000kg) has been identified as a key development to
control the growth in the debris population and to limit
the risk for active satellites. In that context, ESA has re-
cently launched projects such as the Geostationary Ser-
vicing Vehicle (GSV) or the RObotic GEostationary or-
bit Restorer (ROGER), both tasked to capture, inspect,
assist or re-orbit satellites in trouble. Astrium has been
working on optimization and implementation of sensors
and navigation solutions onboard a Debris Removal Ve-
hicle with the main objective to ensure high safety prox-
imity maneuvers. Here we focus on algorithms which
achieves 3D visual detection and tracking of a complex
target, based on its 3D model and using a monocular cam-
era, and which allows estimation of the chaser state with
respect to a target spacecraft or debris.

Our approach has been tested on real images, such as
Soyuz-TMA rendezvous with ISS and Atlantis space
shuttle pitch maneuver, to demonstrate its robustness to
real data. A test campaign on simulated images (Spot
family satellites) has also been carried out to quanti-
tatively show the performances and robustness of both

tracking and associated navigation.

1.1. 3D model-based tracking

Common model-based approaches use either point [2],
edge features [5, 3] or a combination of both [13]. Edge
features offer a good invariance to illumination changes
or image noise and are particularly suitable with poorly
textured scenes. For such class of approaches, the pose
computation is achieved by minimizing the distance be-
tween the projected edges of the 3D model and the corre-
sponding edge features in the image, extracted thanks to a
1D search for gradient maxima along the model edge nor-
mals. Weighted numerical nonlinear optimization tech-
niques are used for the minimization. To reject outliers,
methods like RANSAC [2] or M-Estimators [13, 3] are
common trends to make the algorithm robust to occlu-
sions and illumination variations.

Most of these approaches process 3D models which are
made-up of lines. But achieving the model projection
in the image has limitations and some problems appear
when dealing with objects made of cylindrical, spherical,
curved or complex shapes. Furthermore, complete polyg-
onal models for complex objects can be too heavy and
need to be manually redesigned to keep the most relevant
edges of the scene and to make the algorithm computa-
tionally efficient.

A first challenge of our solution is to process a complete
polygonal 3D model. In this sense, the whole information
from the geometrical shape of any kind of scene can be
used and a heavy phase of a manual redesign of the model
is completely avoided. Our method relies on the use of
the graphics process units (GPU) and of a 3D rendering
engine. This allows to automatically manage the projec-
tion of the model and to determine the visible and promi-
nent edge from the rendered scene. Such method has also
been considered in [14]. An advantage of these technique
is to automatically handled the hidden face removal pro-
cess and to implicitly handle auto occlusions. A second
challenge is to improve the robustness by combining both
depth and texture edges and by including multiple hy-
pothesis in the edge matching process.

1.2. 3D model-based detection

As the tracking procedure works frame by frame, an ini-
tial estimate of the pose has to be provided. In the litera-
ture, many object recognition methods consist in learning
and classifying 2D bag of features extracted from various
views of the query object ([7, 1]). As they have proven
their efficiency for 2D textured objects for many recog-
nition tasks, it is quite unadapted to our case, as we con-
sider poorly textured or untextured 3D objects. Besides,
real training images are hardly to be obtained for our ap-
plications. For these reasons we propose to rely on the
shape and saliency of our object through a set of syn-
thetic views obtained from the 3D model. Our detection
method, while being generic and quite unsupervised, can
be computationally heavy and too coarse when consid-
ering a single query image ([4, 12, 9]), and the track-
ing could then be lost. Therefore we propose to spread
our detection strategy over a sequence of several images.
This would enable to keep tracking the object and refine
its pose within this sequence. In this way, our approach is
similar to [11]. The overall purpose is to robustly match
each image with a prototype view of the model, with re-
spect to a position, an orientation in the image and a scale,
which are estimated through a particle filtering frame-
work. An initial coarse estimate of these parameters is
necessary and is found thanks to a segmentation of the
foreground object from the background.

The remainder of the paper is organized as follows. Sec-
tion 2 gives an overview of the proposed method for
tracking and Section 3 for detection. Some experimen-
tal results are given in Section 4.

2. 3D MODEL BASED TRACKING

2.1. Classical approaches

Our problem is restricted to model-based tracking, using
a 3D model of the target. The purpose is to compute the
camera pose which provides the best alignment between
edges of the projected model and edges extracted in the
image.

Such approaches have proved to be very efficient and var-
ious authors have proposed different formulation of the
problem (eg, [5, 3]). Although one can find some differ-
ence in these various solution, the main idea is the fol-
lowing. Given a new image, the 3D model of the scene
or the target is projected in the image according to the
estimated previous camera pose r. Each projected line
li(r) = pr(Li, r) of the model is then sampled leading
to a set of 2D points {xi}. Then from each sample point
xi a 1D search along the normal of the projected edge is
performed to find a corresponding point x′i in the image.

In order to compute the new pose, the distances between
points x′i and the projected lines li are minimized with

respect to the following criteria [3] :

∆ =
∑

i

ρ(d⊥(li(r),x′i)) (1)

where d⊥(li(r),x′i) is the distance between a point x′i
and the corresponding line li(r) projected in the image
from a pose r. ρ is a robust estimator, which reduces the
sensitivity to outliers. his is a non-linear minimization
process with respect to the pose parameters r. In [3], the
minimization process follows the Virtual Visual Servoing
framework similar to Gauss-Newton approach.

Our purpose to consider complex shape targets, textured
or untextured, leads to forget the notion of 3D sharp edges
as in [3] or in our previous work [8] and to consider only
3D points that belongs indifferently to sharp edges or to
the “occlusion boundaries” or rims, or to texture edges.
Two issues have then to be considered: complex model
projection and 3D points selection.

The tracking algorithm in our method is structured as fol-
lows:

• Projection of the detailed model with respect to the
pose rk computed for the previous image Ik. To
achieve this process we rely on the graphics libraries
(openGL) that allows to perform quickly this projec-
tion regardless the complexity of the model thanks
to the use of the GPU.

• From this projection we generate 3D measurement
points Xi by extracting edges from the depth and
texture discontinuities of the rendered model.

• We then search for corresponding edge points x′i in
image Ik+1. To allow a better robustness, we pro-
pose a multiple hypothesis version of the algorithm.

• Last step is to estimation of the pose rk+1 which
minimizes the errors d(xi,x′i) between the point ex-
tracted from the image x′i and the projection of the
selected 3D points xi(r) = pr(Xi, r), with the fol-
lowing criteria:

∆ =
∑

i

ρ(d(xi(r),x′i)) (2)

2.2. Generation of 3D measurement points

As in [14], at each acquired image Ik+1, the model is ren-
dered and projected using an openGL rendering engine,
with respect to the previous pose rk.

Our goal is to obtain a set of 3D points Xi that belong to
target rims, edges and visible texture from the rendered
textured scene and the depth buffer. Our approach fol-
lows [14] and is related to the techniques of silhouette
generation of polygonal models described in [6].

Edge extraction using depth and texture discontinu-
ities. From the depth or Z-buffer, which corresponds to
the depth values of the scene according to the camera lo-
cation at each pixel point (Figure 1(a)), we can determine
the discontinuities which suit the geometrical appearance
of the scene. Therefore, we apply a second order differen-
tial operator, such as a Laplacian filter, to these computed
Z values, resulting in a binary edge map of the visible
scene ((Figure 1(b)). In our approach, we have imple-
mented the filtering computations on the GPU through
shader programming, resulting in a much lower compu-
tational time.

In case of highly textured scenes, geometrical edges are
not sufficient and ambiguities with texture edges arise,
which results in false matching and thus local minima
during the pose estimation process. An improvement of
our method is then to combine the depth discontinuities
with texture discontinuities. The rendered textures of the
3D model are thus processed by a classical Canny edge
algorithm and the obtained edges are added to the ones
generated from the depth buffer.

(a) (b)

(c) (d)

Figure 1: On (a) is represented the z-buffer of the rendered
3D model using Ogre3D, from which the edge map is com-
puted (b).This edge map is then sampled to extract measure-
ment points, reprojected on the current image and from them a
1D search along the edge normal is performed to find a match-
ing edge point in the acquired image (c). (d) shows the normal
map of the scene.

Generation of 3D measurement points. Given the
edge map of the complete scene, the 3D coordinates of
the edge points in the scene can be computed thanks to
the Z-buffer and the pose used to project the model. As
dealing with the whole edge map can be computationally
intensive, we can sample it along x and y coordinates of
the image in order to keep a reasonable number of these
edge measurement points.

Besides, the tracking phase (see Section 2.B) requires the
orientation of the edge underlying a measurement point
xi. For the texture edges, it is done within the Canny al-

gorithm on the rendered textures. For the depth edges,
we compute the Sobel gradients along x and y on a grey
level of the normal map of the scene. The normal map
of the scene associates the [R,G,B] value of each pixel
location to the coordinates in the world frame of the nor-
mal to the corresponding surface in the scene (see Fig-
ure 1(d)). These basic image processing steps, as well as
the retrieval of the normal map, are also processed on the
GPU.

2.3. Pose Estimation and low level tracking

Tracking from edge measurement points. The mea-
surement points are then processed to track correspond-
ing edges in the image. In a similar manner to [13, 3, 14],
we perform a 1D search along the normal of the underly-
ing edge (Figure 2 and Figure 1(c)) of each xi. A com-
mon approach is to choose the pixel with the maximum
gradient as the matching edge point x′i in the image.

Minimization of a distance to a line. Once correspon-
dences are established, the goal is then to estimate the
new pose rk+1 that realigns the measurement points with
their matching observed image points x′i. This task is
addressed by minimizing the errors d(xi(r),x′i). As
in [5, 3, 14], our approach considers the distance be-
tween the projected 3D line li(r) underlying the projected
3D measurement point Xi(r) and the selected matching
point x′i in the image (see Figure 2). Criteria (2) becomes:

∆ =
∑

i

ρ(d⊥(li(r),x′i))) (3)

where ρ is a robust estimator used to reject outliers
(Tuckey estimator), and d⊥(li(r),x′i) is the distance be-
tween a point x′i and the corresponding line li(r). It has
to be noted that for sharp edges the 3D point Xi(r) is not
modified when we modify r. This is no longueur the case
for points Xi(r) that belong to an occlusion rim. Never-
theless, since the camera motion between two successive
images is very small, this approximation has no impact
on the efficiency of the approach.

The optimization technique is similar to the virtual visual
servoing framework described in [3], which relates this
optimization problem to a visual servoing issue.

Multiple hypothesis solution. In order to improve the
robustness of the pose estimation and to avoid problems
due to ambiguities between edges, it is possible to con-
sider and register different hypothesis corresponding to
potential edges. They correspond to different local ex-
trema of the gradient along the scan line. As in [13, 10],
we choose the hypothesis which has the closest distance
to the projected 3D line li during the minimization pro-
cess. The cost function becomes :

∆ =
∑

i

ρ(min
j
d⊥(li(r),x′i,j)) (4)

x

y

ρ
x'i

ρ
xi

o

xi(r)

x'i
d⊥

l
i
(r)

θ

xi(r0)

Model projected
contour

Image edge

Figure 2: Moving edge principle: from the initial pose r0, 1D
search along the projected contour underlying the measurement
point. Distance of a point x′

i to a corresponding line li(r)
within the minimization process.

where points x′i,j are the selected candidates for each
measurement point xi.

3. 3D-MODEL BASED DETECTION AND POSE
ESTIMATION

Here is addressed the issue of initializing our tracking al-
gorithm, for a poorly textured object, with a potentially
cluttered background or not. The proposed solution only
relies on the 3D model of the object. The pose estimation
by detection is achieved over a few initial successive im-
ages. The overview of the method is described as follows
(and see Figure 3) :

• Offline learning stage : it aims at building a hierar-
chical model view graph leading to prototype views
V of the model.

• Online detection stage :

– Segmentation of the object using a real-time
bilayer segmentation technique. By computing
binary moments of the extracted silhouette, an
initial estimate of its center of gravity (xc, yc),
its orientation θ and its area A.

– For each prototype view, a particle filter with
respect to the state x = [xc yc θ A]T is
set.

– Through a Bayesian framework, at each frame
the most likely prototypical view V and its cor-
responding estimate x̂v are determined, pro-
viding the complete pose.

– When a view reaches a sufficient fitting proba-
bility with respect to the others, the process is
stopped. The pose is thenrefined by traversing
through the hierarchical view graph.

Figure 3: Framework of the detection process. Synthetic views
of the model are generated on a view sphere. Transitions be-
tween model views follow a Markov jump model.

3.1. Hierarchical model view graph

Generation of synthetic views. The purpose of the
method is to match an input image with a synthetic view
generated from the 3D model with respect to a similar-
ity metric. These synthetic views thus have to cover the
whole 6D search space. We propose, as in [4, 12, 9, 11],
to generate these views on a view sphere centered on the
3D model, parametrized by two DoF (latitude and longi-
tude). These is performed by setting virtual cameras at
uniformly spaced viewpoints (Figure 3 left). From this
rendered views, we extract their contours by processing
the corresponding depth buffer of the scene through a
Laplacian filter. Thus, in a different manner to [11], we
do not only consider the silhouette contours but also the
crease contours of the object.

Building a hierarchical view graph. Since this pro-
cess can be computationally challenging when consider-
ing the whole database, we iteratively cluster the views
into a hierarchical view graph. At the first level of hi-
erarchy, we build clusters within disjoint neighborhoods
in the spherical space, in order to cope with memory re-
quirements. This is done by comparing the views with
each other in each neighborhood with respect to an edge-
based similarity metric. The result is a set of clusters,
each represented by a prototype model view. It defines
the first level of our hierarchy. We proceed in the same
way with these views. Thus we can iteratively build suc-
cessive hierarchical levels with this method until a rea-
sonable number (around 30) of prototype model views is
reached.

3.2. Segmentation and silhouette extraction

As matching the model views with the images gives two
DoF (lattitude and longitude around the object), a solu-
tion is proposed to estimate the four other parameters,
which are the position and orientation of the object in the
image, and its scale or area in the image. It relies on

the segmentation of the silhouette of the object, which is
supposed to be moving in the image. However these pa-
rameters are often coarsely computed due for example to
some cluttered background, occlusions so it is necessary
to adapt and refine them in order to find a consistent best
match among the few prototype model views.

3.3. A Bayesian Framework for matching input im-
ages to prototype model views

Our problem consists in aligning the prototype views to
the input images and finding the most likely one. It has
appeared relevant to reason on several input images con-
sidering that the results provided by segmentation can be
too coarse. Besides, as this detection method can be com-
putationally challenging, the process is spread over a few
frames instead of focusing only on the first frame with
more exhaustive and costlier process and risking to loose
track of the moving object in the next frames. In order to
assure a smooth transitions between the prototype model
views throughout the image sequence, a bayesian frame-
work is proposed to determine the most likely view V j

k ,

along with the parameters x̂ =
[
x̂c ŷc θ̂ Â

]T
, es-

timated through particle filtering, at each frame Ik (see
Figure 3).

4. EXPERIMENTAL RESULTS

4.1. Implementation

The rendering process of the 3D polygonal and textured
model relies on OGRE (Object-oriented Graphics Ren-
dering Engine). The library avoids to use explicitly the
underlying system libraries (Direct3D or OpenGL). We
have considered shader programming for some image
processing steps during the rendering and edge genera-
tion phases. This is done using OpenGL Shading Lan-
guage (GLSL), supported by OGRE. Regarding hard-
ware, an NVIDIA NVS 3100M graphic card has been
used, along with a 2.8GHz Intel Core i7 CPU.

For tests procedures, we have performed experiments on
both real and synthetic image sequences. They consist
in evaluations of the algorithm described in the previous
sections, for the texture and untextured cases and for the
single and multiple hypothesis solutions.

4.2. Tests on real images

The first example deals with the tracking of the Soyuz
TMA-12 spacecraft during its rendezvous phase with the
International Space Station (ISS). With its three different
modules, the main body of the spacecraft is of complex
shape, with curved and fuzzy edges, but the solar arrays

tend to facilitate the tracking. Here the tracking proce-
dure consists in only using the depth discontinuities in
the rendered scene to generate the visible and prominent
edges (see Figure 1(d)), and the single hypothesis solu-
tion has shown to be sufficient for this sequence. De-
spite uncertainties over the camera internal parameters,
the 3D model consistency, the cluttered background and
the low quality of the video, the tracking phase is suc-
cessfully achieved (see Figures 5(a)- 5(d)). For detection,
we observe that as the segmentation is not very precise
(Figure 4(a)), it takes five input images (three are shown
here, Figures 4(b)-4(d)) to match with a sufficiently likely
model view along with acceptable state parameters to ini-
tialize the tracking.

(a) (b)

(c) (d)

Figure 4: Detection for the Soyuz sequence. From the coarse
segmentation phase (a) and an unfitted model view (b) the pro-
cess converges to a consistent one (d).

(a) (b)

(c) (d)

Figure 5: Tracking relying on depth edges for the Soyuz se-
quence.

The second example concerns the Atlantis Space shut-
tle performing a pitch maneuver for its rendezvous with
the ISS. An untextured 3D model of the spacecraft has
been processed for the tracking, together with the mul-
tiple hypothesis registration process and a Kalman filter

with a constant velocity model on the pose parameters.
Figure 6 shows the results of the detection procedure.
The segmentation phase (Figure 6(a)) quite finely ex-
tracts the shape of the shuttle and then the matching pro-
totype and the corresponding state parameters can then
be quite immediatly determined (after 3 input images,
(Figures 6(b), 6(c), 6(d))) to initialize the tracking phase.
Figures 7(a)- 7(f) shows the tracking then properly per-
formed over the sequence, with a robustness to some illu-
mination changes. The multiple hypothesis solution and
the Kalman filter are necessary to handle the shuttle flip
in the image (Figure 7(d)).

(a) (b)

(c) (d)

Figure 6: Detection for the Atlantis sequence

(a) (b)

(c) (d)

(e) (f)

Figure 7: Tracking relying on depth edges for the Atlantis se-
quence, along with a multiple hypothesis registration process
and a Kalman filter.

4.3. Tests on synthetic images

The evaluation has been performed using a ray-tracing
simulator developed by Astrium for space environments.
We focus here on the case of the Spot satellite family.

For space debris removal concerns, we consider an arbi-
trary rotation for the target attitude and a chaser space-
craft is supposed to be located on a similar orbit, with a
slightly different eccentricity in order to make the chaser
fly around the target (Figure 8(a)), in the xOrb − zOrb

plane of the orbital frame (see Figure 8(b)). The chaser is
also equipped with a camera filming the target and a spot
light to lighten the target.

(a)

-30

-20

-10

 0

 10

 20

 30

-40 -20 0 20 40 60 80

z O
rb

(m
)

xOrb(m)

Trajectory of the chaser in the target orbital frame

Chaser positions

(b)

Figure 8: Chaser and target (Spot) orbits in the Earth reference
frame

As it can be observed on Figures 9(f)- 9(m), the track-
ing presents good performances throughout the whole se-
quence. In order to quantify the different results, we sep-
arately evaluate the accuracy of rotation and translation
components of an estimated camera pose r̂ with respects
to the true pose r∗, as we can be provided with Ground
Truth. The results for the single (SH) and multiple hy-
pothesis (MH) approaches, relying on both depth and tex-
ture edges, and with or without Kalman filtering are rep-
resented on Figure 10. They show that when using mul-
tiple hypothesis along with the Kalman filter, translation
and rotation errors can be kept small, especially when the
target is far from the chaser with low luminosity (see Fig-
ure 9(l)), and when the solar panels flip in the image (see
Figure 9(j)), leading to some local minima for the single
hypothesis solution. Figures 9(b)-9(e) show the detection
process that correctly initializes the tracking, despite the
coarse segmentation phase (Figure 9(a)).

4.4. Computational costs

Thanks to the implementation of several image process-
ing phases on the GPU, the execution time could be con-
siderably reduced. The whole algorithm can be processed
at around 15 fps when relying on depth edges. The mul-
tiple hypothesis solution does not affect much computa-
tions. Including texture information makes the process
costlier, since more points are considered, with a 7 fps
framerate for the Spot sequence. The detection technique
runs at 0.5 fps.

5. CONCLUSION

This paper presents detection and tracking methods
suited for complex, textured or untextured objects in deep
space environments, for space rendezvous and space de-
bris removal purposes. The tracking relies on the gener-
ation of visible and salient edges from the 3D complete
polygonal model, projected using a rendering engine. In-
formation from both geometrical and texture discontinu-
ities are used. This technique avoids the heavy and re-
strictive processing of a 3D line model. The method is
similar to the classical approaches as it consists in the
realignment of the generated model edges with edges de-
tected in the image. A model-based detection framework
has also been designed to initialize the tracking, through
a Bayesian edge matching procedure over a few initial
images. From the tests carried out on real images, our ap-
proach qualitatively presents satisfactory results, for both
tracking and detection phases. Thanks to the realistic
image simulator, performances can be measured, show-
ing the relevance of the approach. The implementation
proves to be computationally efficient.

REFERENCES

[1] Serge Belongie, Jitendra Malik, and Jan Puzicha.
Shape matching and object recognition using shape
contexts. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 24(4):509–522, April
2002.

[2] G. Bleser, Y. Pastarmov, and D. Stricker. Real-time
3d camera tracking for industrial augmented reality
applications. Journal of WSCG, pages 47–54, 2005.

[3] A.I. Comport, E. Marchand, M. Pressigout, and
F. Chaumette. Real-time markerless tracking for
augmented reality: the virtual visual servoing
framework. IEEE Trans. on Visualization and Com-
puter Graphics, 12(4):615–628, July 2006.

[4] Christopher M. Cyr and Benjamin B. Kimia. A
similarity-based aspect-graph approach to 3d object
recognition. International Journal of Computer Vi-
sion, 57:5–22, 2004.

[5] T. Drummond and R. Cipolla. Real-time visual
tracking of complex structures. IEEE Trans. on Pat-

tern Analysis and Machine Intelligence, 24(7):932–
946, July 2002.

[6] T. Isenberg, B Freudenberg, S. Schlechtweg, and
T. Strothotte. A developer guide to silhouette algo-
rithms for polygonal models. IEEE Comput. Graph.
Appl., 23(4):28–37, 2003.

[7] V. Lepetit and P. Fua. Keypoint recognition us-
ing randomized trees. IEEE Trans. on PAMI,
28(9):1465–1479, September 2006.

[8] A. Petit, E. Marchand, and K. Kanani. Vision-
based space autonomous rendezvous : A case study.
In IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, IROS’11, pages 619–624, San Francisco,
USA, September 2011.

[9] Christian Reinbacher, Matthias Ruether, and Horst
Bischof. Pose estimation of known objects by ef-
ficient silhouette matching. In 20th International
Conference on Pattern Recognition (ICPR), 2010.

[10] C. Teulière, E. Marchand, and L. Eck. Using mul-
tiple hypothesis in model-based tracking. In IEEE
Int. Conf. on Robotics and Automation, ICRA’10,
pages 4559–4565, Anchorage, Alaska, May 2010.

[11] A. Toshev, A. Makadia, and K. Daniilidis. Shape-
based object recognition in videos using 3d syn-
thetic object models. Computer Vision and Pat-
tern Recognition, IEEE Computer Society Confer-
ence on, 0:288–295, 2009.

[12] Markus Ulrich, Christian Wiedemann, and Carsten
Steger. Cad-based recognition of 3d objects in
monocular images. In Proceedings of the 2009
IEEE international conference on Robotics and Au-
tomation, ICRA’09, pages 2090–2097, Piscataway,
NJ, USA, 2009. IEEE Press.

[13] L. Vacchetti, V. Lepetit, and P. Fua. Combining
edge and texture information for real-time accurate
3d camera tracking. In ACM/IEEE Int. Symp. on
Mixed and Augmented Reality, ISMAR’04, pages
48–57, Arlington, VA, November 2004.

[14] H. Wuest and D. Stricker. Tracking of industrial ob-
jects by using cad models. Journal of Virtual Reality
and Broadcasting, 4(1), April 2007.

(a) Segmentation (b) (c) (d) (e)

(f) Image 1 (g) Image 124 (h) Image 264 (i) Image 599

(j) Image 754 (k) Image 864 (l) Image 1099 (m) Image 1439

Figure 9: The segmentation of the target (a) is quite coarse due to the cluttered background. We observe the detection, which takes 8
images to converge (4 are shown here, (b)-(e)) and the tracking ((f)-(m)), relying on depth and texture edges, with multiple hypothesis
and Kalman filtering.

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0 200 400 600 800 1000 1200 1400 1600

P
o

si
ti

o
n
 (

m
)

Image

Position / x

SH
MH

MH - Kalman
Ground truth

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 200 400 600 800 1000 1200 1400 1600

R
o
ta

ti
o
n
 (

ra
d
.)

Image

Rotation / x (Pitch γ)

SH
MH

MH - Kalman
Ground truth

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 200 400 600 800 1000 1200 1400 1600

P
o

si
ti

o
n
 (

m
)

Image

Position / y

SH
MH

MH - Kalman
Ground truth

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0 200 400 600 800 1000 1200 1400 1600

R
o
ta

ti
o
n
 (

ra
d
.)

Image

Rotation / y (Yaw β)

SH
MH

MH - Kalman
Ground truth

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000 1200 1400 1600

P
o

si
ti

o
n
 (

m
)

Image

Position / z

SH
MH

MH - Kalman
Ground truth

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0 200 400 600 800 1000 1200 1400 1600

R
o
ta

ti
o
n
 (

ra
d
.)

Image

Rotation / z (Roll α)

SH
MH

MH - Kalman
Ground truth

Figure 10: Estimated camera pose parameters of the target over all the sequence, along with the ground truth, for the single and multiple
hypothesis solutions, together with a Kalman filter or not.

