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Photometric Visual Servoing

Christophe Collewet and Eric Marchand

Abstract—This paper proposes a new way to achieve robotic tasks by
two-dimensional (2-D) visual servoing. Indeed, instead of using classical
geometric features such as points, straight lines, pose, or a homography, as
is usually done, the luminance of all pixels in the image is considered here.
The main advantage of this new approach is that it requires no tracking
or matching process. The key point of our approach relies on the analytic
computation of the interaction matrix. This computation is based either
on a temporal luminance-constancy hypothesis or on a reflection model so
that complex illumination changes can be considered. Experimental results
on positioning and tracking tasks validate the proposed approach and
show its robustness to approximated depths, low-textured objects, partial
occlusions, and specular scenes. They also showed that luminance leads
to lower positioning errors than a classical visual servoing based on 2-D
geometric visual features.

Index Terms—Cost function, optimization, photometry, visual features,
visual servoing.
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I. INTRODUCTION

Visual servoing aims to control the motions of a robot by using data
provided by a vision sensor [1]. More precisely, to achieve a visual-
servoing task, a set of visual features has to be selected from the image
to allow to control of the desired degrees of freedom (DOFs). A control
law is then designed so that these visual features s reach desired values
s∗. The control principle is thus to regulate the error vector e=s−s∗ to
zero. To build the control law, the knowledge of the interaction matrix
Ls is usually required [1].

Visual features are always designed from visual measurements
m(pk ) (where pk is the camera pose at time k) that require a ro-
bust extraction, matching (between m(p0 ) and m(p∗), where p∗ is the
desired camera pose), and real-time spatiotemporal tracking [between
m(pk−1 ) and m(pk )]. However, this process is a complex task, as
evinced by the abundant literature on the subject (see [2] for a recent
survey), and is considered as one of the bottlenecks in the expansion
of visual servoing. Thus, several works focus on alleviation of this
problem. An interesting way to avoid any tracking process is to use
nongeometric visual measurements as in [3] and [4] instead of geo-
metric measurements, as is usually done. Of course, the direct use of
nongeometric visual features also avoids any tracking process. In that
case, parameters of a 2-D motion model have been used in [5]–[8].
Nevertheless, such approaches require a complex image processing
task.

In this paper, we show that this tracking process can be totally
removed and that no other information than the image intensity (the
pure luminance signal) needs to be considered to control the robot
motion. Indeed, to achieve this goal, we use as visual measurement
and as visual feature the simplest that can be considered: the image
intensity itself. We, therefore, call this new approach photometric visual
servoing. In that case, the visual feature vector s is nothing but the
image, while s∗ is the desired image.

The image intensity as a feature has been considered previously [9],
[10]. However, those works differ from our approach in two important
points. First, they do not directly use the image intensity since an
eigenspace decomposition is performed to reduce the dimensionality
of image data. The control is then performed in the eigenspace and not
directly based on the image intensity. Second, the interaction matrix
related to the eigenspace is not computed analytically but learned during
an off-line step. This learning process has two drawbacks: It has to be
done for each new object and requires the acquisition of many images
of the scene at various camera positions. We consider an analytical
interaction matrix that avoids these issues. An interesting approach,
which also directly considers the pixels intensity, has been recently
proposed in [11]. However, only the translations and the rotation around
the optical axis have been considered (that is the four most simple
DOFs), whereas in our work, the six DOFs are controlled. However, an
image processing step is still required. Our approach does not require
this step.

In this paper, we summarize several previous works. In [12], the
analytic computation of the interaction matrix related to the luminance
for a Lambertian scene is provided, and only positioning tasks have
been considered. In [13], this matrix has been computed considering a
lighting source mounted on the camera and the use of the Blinn–Phong
illumination model (a simplified version of the Phong model detailed
in the next section), and only tracking tasks have been considered.
In [14], the Phong model has been used, and only positioning tasks
have been considered. In addition, these works refer to [15], where
details concerning analytic computations are given. Note that in [16],
although this is also a direct visual-servoing approach, the considered
features used in the control law are very different. In this paper, we
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specifically focus on the way the visual-servoing problem has been
turned into an optimization problem. More precisely, we analytically
analyze the cost function to minimize in order to derive an efficient
control law. Moreover, experimental results other than those described
in our previous works are presented, such as a comparison between
classical 2-D geometric visual features and the use of the luminance.
We will show that by using luminance much lower positioning errors
can be obtained.

The remainder of this paper is organized as follows. We first com-
pute the interaction matrix of the luminance in Section II. Then, we
reformulate the visual-servoing problem into an optimization problem
in Section III and propose a new control law dedicated to our cost func-
tion to minimize. Section IV shows experimental results on various
scenes for several tasks.

II. LUMINANCE AS A VISUAL FEATURE

The visual features considered in this paper are the luminance of
each point of the image. More precisely, we consider as visual features
the luminance Ix at a constant pixel location x = (x, y) for all x
belonging to the image domain and for a given pose p. Thus, we have

s(p) = Ix (p) = (I1•, I2•, . . . , IN •) (1)

where Ii• is the ith line of the image. Ix (p) is then a vector of size
k = N × M , where N × M is the size of the image.

As mentioned in Section I, an estimation of the interaction matrix
is required to control the robot motion. In our case, we are looking for
the interaction matrix LIx related to the luminance Ix (t) at time t, i.e.,

İx = LIx v (2)

with v = (v, ω), where v is the linear camera velocity, and ω is its
angular velocity.

Let us consider a particular point P (t) belonging to the scene that
projects into the camera plane at the point p(t). P (t) is time varying
either because the camera is moving with respect to the scene or because
the scene is moving itself with respect to the camera. Let us note that,
unless explicitly stated otherwise, all the quantities are expressed in the
camera frame. The computation of the interaction matrix (2) requires
to write the total derivative of the luminance I(p(t), t) in p at time t as

İ(p(t), t) = ∇I(p(t), t)�ṗ(t) +
∂I(p(t), t)

∂t
. (3)

However, considering that, at time t, the normalized coordinates of
p(t) coincide with x, (3) becomes

İ(p(t), t) = ∇Ix (t)�ẋ + İx (t) (4)

with ∇Ix (t) being the spatial gradient of Ix (t) and ẋ the 2-D velocity
of p(t).

Therefore, to explicitly compute the interaction matrix LIx , an illu-
mination model is required to estimate İ(p(t), t).

The simplest one is, of course, the one that is based on the temporal
luminance constancy hypothesis [17], as is the case in most of computer
vision applications. In that case, we simply have İ(p(t), t) = 0, and it
becomes straightforward to derive the interaction matrix from (4) and
(2) (see [12] for further details). In that case, we obtain

LIx = −∇I�Lx (5)

where the interaction matrix Lx related to x (i.e., such that ẋ = Lxv)
has been introduced as

Lx =

[
−1/Z 0 x/Z xy −(1 + x2 ) y

0 −1/Z y/Z 1 + y2 −xy −x

]
. (6)

Fig. 1. Quantities involved in the Phong illumination model [20] (expressed
here in the scene frame).

Of course, because of the temporal luminance-constancy hypothesis,
(5) is only valid for Lambertian scenes, i.e., for surfaces reflecting the
light with the same intensity in each direction. Besides, (5) is only valid
when the lighting source is not moving with respect to the scene. In
fact, it is well known that the temporal luminance-constancy hypothesis
can be easily violated [18]. Therefore, to derive the interaction matrix,
we have to consider a more realistic reflection model than the Lambert
one.1 In this paper, we derive the interaction matrix from the Phong
illumination model [20]. This model is not based on physical laws but
comes from the computer graphics community. Although empirical, it
is widely used thanks to its simplicity, as well as because it is appropri-
ate for various types of materials, regardless of whether they are rough
or smooth.

According to the Phong model (see Fig. 1), the intensity I(p(t), t)
at point p and at time t can be written as follows:

I(p(t), t) = Ks cosη α + Kd cos θ + Ka . (7)

This relation is composed of a diffuse, a specular, and an ambient
component and assumes a point light source. The scalar Ks describes
the specular component of the lighting; Kd describes the weight of the
diffuse term that depends on the albedo in P (t); Ka is the intensity of
ambient lighting in P (t). Note that Ks , Kd , and Ka depend on P (t).
θ is the angle between the normal to the surface n in P (t) and the
direction of the light source l; α is the angle between r (which is l
mirrored about n) and the viewing direction d; r can be seen as the
direction because of a pure specular object. The parameter η allows
the width of the specular lobe around r to be modeled, and this scalar
varies as the inverse of the roughness of the material.

Considering that r,d, and l are normalized, we can rewrite (7) as

I(p(t), t) = Ksu1
η + Kdu2 + Ka (8)

where u1 = r�d, while we have u2 = n�l. Note that these vectors
are easy to compute, since we have d = − x̃

‖x̃‖ and r = 2u2n − l with
x̃ = (x, y, 1).

Consequently, from (8), it becomes easy to compute İ(p(t), t) in-
volved in (4) (we assume here that the scene is only constituted by one
material)

İ(p(t), t) = ηKsu
η−1
1 u̇1 + Kd u̇2 (9)

that leads to a general formulation of the optical flow constraint equa-
tion [17] considering the Phong illumination model

∇I�
x Lxv + İx = ηKsu

η−1
1 u̇1 + Kd u̇2 . (10)

Thereafter, by explicitly computing the total time derivative of u1 and
u2 and writing u̇1 as u̇1 = L�

1 v and u̇2 as u̇2 = L�
2 v, where L1 and

1Indeed, Lambert’s model can only explain the behavior of nonhomogeneous
opaque dielectric material [19]. It only describes a diffuse reflection component
and does not take into account the viewing direction.
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L2 are 6-D vectors, we obtain the interaction matrix related to the
intensity at pixel x in the general case as2

LIx = −∇I� Lx + ηKsu1
η−1L�

1 + KdL�
2 . (11)

To compute the vectors L1 and L2 involved in (11), we have to
explicitly express u̇1 and u̇2 . However, to do that, we have to assume
some hypothesis about how n and l move with respect to the camera.
Various cases have been studied in [15]. Because of lack of space,
we report here only the case of an eye-in-hand robot system where
the light source is mounted on the camera and where the interaction
matrix is computed at the desired position. It is a very classical way to
proceed [1]. Indeed, it avoids to compute online 3-D information like
the depths, for example. We consider here this case. More precisely,
we consider that at the desired position, the depth of all the points
where the luminance is measured is equal to a constant value Z∗. This
means that we consider that the object is planar and that the camera and
the object planes are parallel at this position. Moreover, we consider a
directional lighting source. In these conditions, all computations done
(see [15]), the interaction matrix related to the luminance can be written
simply as

L̂Ix =
ηKsu1

η−1

‖ x̃‖

[
x

Z̄

y

Z̄
−x2 + y2

Z̄
y −x 0

]
− ∇I� Lx

(12)

where Z̄ = Z∗‖ x̃ ‖2 .
Note that this matrix requires the computation of ∇I , which is the

only image-processing step necessary to implement our method.
On the other hand, even if the analytical computation of the vec-

tors L1 and L2 is not straightforward in the general case, their final
expression is very simple and easy to compute in this particular case.

III. VISUAL-SERVOING CONTROL LAW

The interaction matrix associated to the luminance being known, the
control law can now be derived. For that, we have turned the visual-
servoing problem into an optimization problem where the goal was to
minimize the following cost function [12]:

C(p) =
1
2
‖e‖2 (13)

where e = Ix (p) − Ix (p∗).
However, it is well known that in visual servoing, some image mo-

tions are not observable because of particular camera motions. Of
course, to derive an efficient control law, such camera motions must be
avoided.

In the next section, we will first prove that such motions exist,
compute them, and then propose a control law that will ensure a high
decrease of the cost function.

A. Analysis of the Cost Function

At the desired position, thanks to a first-order Taylor-series expan-
sion of the visual features Ix (p) around p∗, an approximation of the
cost function in a neighborhood of p∗ can be obtained (see [12] and [15]
for more details):

Ĉ(p) =
1
2
(vΔt)�H∗(vΔt) (14)

2Note that we recover the interaction matrix −∇I� Lx associated with
the intensity under temporal constancy [see (5)], i.e., in the Lambertian case
(Ks = 0) and when u̇2 = 0 (the lighting direction is motionless with respect
to the point P ).

where
H∗ = LI∗x

�LI∗x (15)

is the Hessian matrix at p∗.
Since LI∗x is analytically known, H∗ is also known, and (14) can be

easily evaluated. However, we will consider here only the case where
the temporal luminance-constancy hypothesis is valid and, first, when
the camera and the object planes are parallel. In this case, we will
denote H∗ by H∗

‖. We will consider the more complex case when these
planes are not parallel afterward.

By considering the relation between the normalized coordinates x
and their pixel value u = (u, v), a line of LI∗x can be written simply at
first order in h as

LI ∗
x

=
(
∇Ix /Z∗, ∇Iy /Z∗, −h(m∇Ix + n∇Iy )/Z∗

− ∇Iy , ∇Ix , −(n∇Ix + m∇Iy )h
)

(16)

where x = m h and y = n h have been substituted in (5) with m =
u − u0 , n = v − v0 , where (u0 , v0 ) is the principal point of the camera,
and h = 1/F with F = f/μ, f being the focal length and μ the size
of a pixel (supposed to be square).

Note that since F is a high value, the first-order Taylor-series ex-
pansion (16) is valid. From (16), H∗

‖ is easily obtained as

H∗
‖ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h11

Z∗2
h12

Z∗2 h
h13

Z∗2 −h12

Z∗
h11

Z∗ h
h16

Z∗

h12

Z∗2
h22

Z∗2 h
h23

Z∗2 −h22

Z∗
h12

Z∗ h
h26

Z∗

h
h13

Z∗2 h
h23

Z∗2 0 −h
h23

Z∗ h
h13

Z∗ 0

−h12

Z∗ −h22

Z∗ −h
h23

Z∗ h22 −h12 −h h26

h11

Z∗
h12

Z∗ h
h13

Z∗ −h12 h11 h h16

h
h16

Z∗ h
h26

Z∗ 0 −h h26 h h16 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

where hij are functions of the image gradients computed at each pixel
that is not useful to detail.

From (17), it is easy to show that the rank of H∗
‖ is 4 since the first

line is obtained from the fifth line divided by Z∗ and the second line
from the fourth divided by−Z∗. Therefore, whatever the image content
is, 0 is a double eigenvalue, and its associated eigenvectors denoted by
e1 and e2 are simply generated by the kernel of H∗

‖

Ker H∗
‖ = {(−Z∗ 0 0 0 1 0), (0 Z∗ 0 1 0 0)} .

This means that along any direction d‖ = γ1 e1 + γ2 e2 (with γ1 and
γ2 nonnull scalars), the approximated cost function (14) does not vary,
and therefore, the true cost function (13) will slowly vary. Note that
these motions coincide with what it is observed in practice: It is always
possible to compensate a x (resp., y) axis translational motion with a y
(resp., x) axis rotational motion to keep an image almost constant from
a different point of view. In addition, note that d‖ does not depend at
all on the image content; moreover, d‖ is a constant value.

The problem is now to find a direction that highly decreases the cost
function. Since d‖ is a constant value, we search a direction orthogonal
to d‖. Such a direction can be simply given by ∇C (p) since near the
desired pose p∗, we have

∇̂C (p)� d‖ = (vΔt)�H∗
‖
�d‖ = 0 (18)

(we recall that d‖ ∈ Ker H∗
‖).
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Note that, in practice, this direction is also valid, even quite far from
p∗, as will be proved by the experimental results.

Now, we investigate the more complex case where the camera de-
sired position is no more parallel to the object plane. In that case, the
depths are given by 1/Z = ax + by + c, and the matrix H∗ can be
written now as H∗ = H∗

‖ + H∗
� , where

H∗
� =

⎡
⎢⎢⎢⎢⎣

−2b11c h −2b12c h 0 b12 h −b11 h 0
−2b12c h −2b22c h 0 b22 h −b12 h 0

0 0 0 0 0 0
b12 h b22 h 0 0 0 0
−b11 h −b12 h 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

(19)

with bij = aαij + bβij , where αij and βij are functions of all the
image gradients computed at each pixel. As in the previous case where
the camera desired position was parallel to the object plane, the rank of
H∗ is still 4, and the same conclusions can be reached: Whatever the
image content is, 0 is a double eigenvalue, the associated eigenvectors
of which are still generated by the kernel of H∗

Ker H∗ = {(−1/c 0 μ1 0 1 μ2), (μ3 1/c μ4 1 μ5 0)}

where μk (k ∈ {1, . . . , 5}) are functions of hij and bij . Those are not
useful to detail.

Here again, there are some directions d generated by Ker H∗, where
the cost function (13) slowly varies. Moreover, as previously, ∇C (p)
is an optimal direction since near p∗, ∇C (p) and d are orthogonal

∇̂C (p)� d = (vΔt)�H∗�d = 0. (20)

B. Design of the Control Law

We propose the following algorithm to reach the minimum of the
cost function. The camera is first moved in the direction of∇C to highly
decrease the cost function and, next, to a direction according to d to
explore the remainder 2-D subspace to reach its minimum. The first
step can be easily implemented by using a steepest descent approach.
However, if the direction of ∇C (p) is almost constant, its amplitude is
not constant and may even vary very slowly in practice. To cope with
this problem, we propose to use the following control law:

v = −vc
∇C(pin it )

‖ ∇C(pin it ) ‖
. (21)

That is, a constant velocity with norm vc is applied in the steepest
descent computed at the initial camera pose. Consequently, this first
step behaves as an open-loop system. To turn into a closed-loop system,
we first detect roughly the minimum along the direction of ∇C from a
third-order polynomial filtering of C(p) and then apply a control law
formally equal to the one used in the Levenberg–Marquardt approach.
We denote this method by MLM in the remainder of the paper. The
resulting control law is then given by (see [15])

v = −λ (H + μ diag(H))−1 L̂Ix

�
(Ix (p) − Ix (p∗)) (22)

where λ and μ are positive scalars, and H is the Hessian matrix at p.
More precisely, first, a high value for μ is used in (22) (typically

μ = 1) to turn the control law into a steepest descent-like approach3 and
to reach the minimum along the direction of ∇C. Once this minimum

3More precisely, each component of the gradient is scaled according to the
diagonal of the Hessian, which leads to larger displacements along the direction
where the gradient is low.

has been reached, a lower value is used (typically μ = 10−2 ) to switch
continuously to a Gauss–Newton (GN) control law (commonly used in
visual servoing; see [1]) in order to explore the remainder 2-D subspace
generated by d and to reach the minimum of the cost function. This
way to proceed ensures both a high convergence rate and a correct
robot path.

Remarks About the Stability: Since redundant visual features (i.e.,
k > 6 considering a 6-DOF robot) have been used, as it is also the case
in classical visual servoing, only the local stability can be obtained
(see [1] for a proof). However, as pointed out in [1], this domain can
be quite large in practice. In addition, since we use redundant visual
features, it is clear that the potential dimension of the null space can
be high. However, that does not mean at all that all the motions that
belongs to this null space are feasible (see, for example, [21]). They
use redundant visual features but prove that there are no local minima.

IV. EXPERIMENTAL RESULTS

In all the experiments reported here, the camera is mounted on a
6-DOF gantry robot. Control law is computed in real time on a Core
2 Duo 3-GHz PC running Linux. Images are acquired at 66 Hz using
an IEEE 1394 camera with a resolution of 320 × 240.4 The size of
the vector Ix is then 76 800. Despite this size, the matrix L̂Ix can be
computed at each iteration if needed.

A. Positioning Tasks Using the Basic Temporal Luminance
Constancy Model

We assume in this section that the temporal luminance-constancy
hypothesis is valid, i.e., we use the interaction matrix given in (5). In
order to make this assumption as valid as possible, diffuse lighting
has been used so that the luminance can be considered as constant
with respect to the viewing direction. Moreover, the lighting is also
motionless with respect to the scene being observed. In this section,
we will first compare the GN and MLM methods, then compare the
photometric visual servoing with respect to a classical approach based
on a matching and tracking process, and finally, we will show that the
photometric visual servoing is robust.

1) Comparison Between the Gauss–Newton and the MLM Method:
The goal of the first experiment is to compare the control laws based
on GN (the usual visual-servoing control law) and MLM approaches
when a planar object (a photograph) is considered. The initial error pose
was Δpin it = (5 cm, −23 cm, 5 cm, −12.5◦, −8.4◦, −15.5◦).5 The
desired pose was such that the object and camera planes are parallel at
Z = Z∗ = 80 cm. The interaction matrix has been computed at each
iteration but assuming that all the depths are constant and equal to Z∗

(i.e., (5) with Z = Z∗), which is, of course, a coarse approximation.
Fig. 2(a) depicts the behavior of the cost functions using the GN

method or the MLM method, while Fig. 2 (b) depicts the trajectories
(expressed in the desired frame) when using either the GN or the MLM
method. Fig. 2(c) and (d) depicts, respectively, the camera velocity.
The initial and final images are shown, respectively, in Fig. 2(e) and
(f). First, as can be seen in Fig. 2(a), both control laws converge since the

4Note that if a higher resolution is used, the computation times of the error
vector and of the interaction matrix will be highly increased, and thus, it is
better to decrease their size by decreasing the image resolution. There is no real
advantage to using high-resolution images for control issues.

5The following notation has been used: Δp = (t, uθ), where t describes
the translation part of the homogeneous matrix related to the transformation
from the current to the desired frame, while its rotation part is expressed under
the form uθ, where u represents the unit rotation-axis vector and θ the rotation
angle around this axis.
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Fig. 2. First experiment. MLM versus GN method (x-axis in second). (a)
Comparison of cost functions. (b) Comparison of camera trajectories. (c) Camera
velocities (in m/s or rad/s) for the GN method. (d) Camera velocities (in m/s or
rad/s) for the MLM method. (e) Initial image. (f) Final image.

TABLE I
FINAL POSITIONING ERROR: WE COMPARED THE PROPOSED APPROACH WITH

APPROACHES BASED ON GEOMETRIC FEATURE EXTRACTION

cost functions vanish.6 However, the time-to-convergence with the GN
method is much higher than that of the MLM method. The trajectory
when using the GN method is also shaky compared with the one of the
MLM method [see Fig. 2(b)]. The velocity of the camera when using
the MLM method is smoother than when using the GN method [see
Fig. 2(d) and (c)]. This experiment clearly shows that the MLM method
outperforms the GN one. Note that in both cases, the positioning error is
very low, for the MLM method we obtainedΔp = (0.26 mm, 0.30 mm,
0.03 mm, 0.02◦, −0.02◦, 0.03◦). It is very difficult to reach such low
positioning errors when using geometric visual features as is usually
done. Indeed, this nice result is obtained because e is very sensitive to
the pose p.

2) Comparison With a Feature Matching Process: Considering
such images, it is also possible to extract geometric features like SIFT
or SURF and match them between current and desired images. In this

6In fact, the cost functions do not exactly vanish, the mean error of the in-
tensity levels being 2.2 (with a standard deviation of 0.4) at the end of the
motion for the MLM method, and this error is because of the acquisition
noise and not because of the positioning error which, as we shall see, is very
low.

experiment, we use SURF features (with the OpenCV implementation)
and use these points coordinates within a classical 2-D visual servoing
control law and within a robust one [22]. The latter allows the rejection
of wrong matched features directly at the control level; 200 points have
been extracted in the desired image, and between 50 and 100 points
are matched at each iteration and considered in the control law. The
goal here is to compare the precision of the positioning between these
two classical approaches and the new proposed one. Table I shows the
obtained results. As expected, the positioning error is far lower using
the new proposed approach. Translation error (i.e., ‖t‖) is only 0.07
mm (our robot precision is 0.1 mm), which has to be compared with
the 0.87 and 1.28 mm using the two other methods. Indeed, in a clas-
sical approach, an extraction process obviously introduces errors in
the features coordinates, which implies imprecisions in the positioning
task. Similar results have been obtained from other initial positions and
other scenes.

3) Behavior With Respect to Partial Occlusions: This experiment
deals with partial occlusions. The desired object pose, as well as the
initial pose, are unchanged. After having moved the camera to its ini-
tial position, an object has been added to the scene so that the initial
image is now the one shown in Fig. 3(a), and the desired image is
still the one shown in Fig. 2(f). Moreover, as seen in Fig. 3(b) and
(c), the object introduced in the scene is also moved by hand during
the camera motion, which highly increases the occluded surface. De-
spite that, the control law still converges [see Fig. 3(f)]. Of course,
since the desired image is not the true one, the error cannot vanish
at the end of the motion [see Fig. 3(f)]. Nevertheless, the final posi-
tioning error is not affected by the occlusions since we have Δp =
(−0.1 mm, 2 mm, 0.3 mm, 0.13◦, 0.04◦, 0.07◦). It is very similar to the
previous experiments. This very nice behavior is because of the high
redundancy of the visual features that we use.

4) Robustness With Respect to Nonplanar Scenes: The goal of this
third experiment is to show the robustness of the control law with
respect to nonplanar scenes (see Fig. 4). Fig. 4 shows that large errors
in the depth are introduced (the height of the castle tower is around 30
cm). The initial and desired poses are still unchanged. Fig. 5 depicts
this experiment. Here again, the control law still converges (despite the
fact that L̂Ix has been computed with a constant depth Z∗ = 80 cm),
and the positioning error is still low since we have Δp = (0.2 mm,
−0.0 mm, 0.1 mm, −0.01◦, 0.00◦, 0.06◦).

5) Influence of the Image Content: The goal of these last set of
experiments is to show that, even if the luminance is used as a visual
feature, our approach does not depend too much on the texture of the
scene being observed. Fig. 6 depicts the behavior of our algorithm
for different planar objects (the initial as well as the desired pose is
unchanged). As can be seen, the control law converges in each case,
even in the case of a low-textured scene. Let us point out that similar
positioning errors than for the first experiment have been obtained.

B. Tracking Tasks

Our goal is now to perform a tracking task with respect to a moving
object. That is, we have to maintain a rigid link between the target to
track and the camera. Considering that the scene is moving, a specific
illumination model has to be considered, as explained in Section II. A
directional light ring is located around the camera lens.7 The scene is
then no more illuminated by diffuse lighting. The object is unchanged
but it is attached to a motorized rail that allows to control its motion
(see [15] for an object moved by hand). Although only 1 DOF of the

7The nature of the light is directional because LEDs with a small emission
angle have been used.
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Fig. 3. Second experiment. Partial occlusions (x-axis in second). (a) Initial
image. (b) Image at t ≈ 11 s. (c) Image at t ≈ 13 s. (d) Final image. (e) Camera
velocities (in m/s or rad/s). (f) Cost function. (g) Ix − I∗x at the initial position.
(h) Ix − I∗x at the end of the motion.

Fig. 4. Nonplanar scene used in Fig. 5 experiment.

object is controlled (with a motion that is completely unknown from
the tracking process), the 6 DOFs of the robot are controlled (the object
velocity is 1 cm/s). Since we have a constant target velocity, a simple
integrator, as in [23], has been introduced in the control law to eliminate
the steady-state tracking error.

In this experiment, we use (12) to compute L̂Ix . In this relation, two
parameters depending on the object surface are required: Ks and η.
However, in practice, a large domain of values for these parameters has

Fig. 5. Third experiment. Robustness wrt depths. (a) Initial image. (b) Final
image. (c) Ix − I∗x at the initial position. (d) Ix − I∗x at the end of the motion.

Fig. 6. Fourth experiment. Same positioning task wrt to various objects. Ob-
jects considered (left column). Cost functions (right column) (x-axis in second).

led to good results. The same values (Ks = 200 and η = 200) have
been used for all of our experiments and has never been changed, despite
the fact that various materials have been considered (glass, various
plastics, metal, glossy, and matt paper); see [13] and [14] for other
experiments using a complex illumination model. When the velocity
is constant, the object is perfectly tracked, as can be seen in Fig. 7(a),
where ‖e‖ is depicted, despite the occurrence of a large specularity
which shows the importance of using a complex illumination model. Let
us note that without using this new model, experiments fail [15]. Error
in the image remains small, except when the object stops or accelerates
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Fig. 7. Target tracking considering the complete interaction matrix that inte-
grates specularity, diffuse, and ambient terms (x-axis in frame number). (a) Error
‖ Ix − I∗x ‖. (b) Camera velocity (in m/s and rad/s). (c) Images at different
time (left) and corresponding errors Ix − I∗x (right).

[corresponding to the peaks in Fig. 7(a)]. For each pixel, except during
accelerations and decelerations, |Ix − I∗

x | < 5. The camera velocity
[see Fig. 7(b)] shows a pure motion along the x (± 1cm/s) axis that
corresponds to the ground truth.

V. CONCLUSION

We have shown in this paper that it is possible to use directly the lumi-
nance of all the pixels in an image as visual features in visual servoing.
To the best of our knowledge, this is the first time that visual servo-
ing has been handled neither without any complex image-processing
task (except the image spatial gradient required for the computation of
the interaction matrix) nor without any learning step. Indeed, unlike
classical visual servoing, where geometrical features are used, using
photometric visual servoing needs no matching between the initial and
desired features nor between the current and the previous features. It
is a very important issue when complex scenes have to be considered.
Our approach has been validated on various scenes and various light-

ings for positioning or tracking tasks. Concerning positioning tasks,
the positioning error is always very low and much lower than classical
visual servoing based on 2-D geometric visual features. Supplementary
advantages are that our approach is not sensitive to partial occlusions
nor to coarse approximations of the depths required to compute the
interaction matrix.
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