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Experimental Evaluation of Autonomous Driving
Based on Visual Memory and Image-Based

Visual Servoing
Albert Diosi, Siniša Šegvić, Anthony Remazeilles, and François Chaumette

Abstract—In this paper, the performance of a topological–
metric visual-path-following framework is investigated in different
environments. The framework relies on a monocular camera as the
only sensing modality. The path is represented as a series of refer-
ence images such that each neighboring pair contains a number
of common landmarks. Local 3-D geometries are reconstructed
between the neighboring reference images to achieve fast feature
prediction. This condition allows recovery from tracking failures.
During navigation, the robot is controlled using image-based vi-
sual servoing. The focus of this paper is on the results from a num-
ber of experiments that were conducted in different environments,
lighting conditions, and seasons. The experiments with a robot car
show that the framework is robust to moving objects and moderate
illumination changes. It is also shown that the system is capable of
online path learning.

Index Terms—Localization, mapping, path following, visual
memory, visual servoing.

I. I NTRODUCTION

I
national projects Predit MobiVIP and CityVIP. The Associate Editor for this
paper was L. Li.

A. Diosi was with the INRIA, Rennes-Bretagne Atlantique–IRISA, Campus
Beaulieu, 35042 Rennes Cedex, France (e-mail: albert.diosi@gmail.com).

S. Šegvíc was with the INRIA, Rennes-Bretagne Atlantique–IRISA, Campus
Beaulieu, 35042 Rennes Cedex, France. He is now with the Department of
Electronics, Microelectronics, Computer, and Intelligent Systems, Faculty of
Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb,
Croatia (e-mail: sinisa.segvic@fer.hr).

A. Remazeilles was with the INRIA, 35042 Rennes Cedex, France. He is
now with the Health Unit, Fatronik-Tecnalia, 20009 Donostia-San Sebastian,
Spain (e-mail: aremazeilles@fatronik.com).

F. Chaumette is with the INRIA, Rennes-Bretagne Atlantique–IRISA,
Campus Beaulieu, 35042 Rennes Cedex, France (e-mail: Francois.
Chaumette@irisa.fr).

Color versions of one or more of the �gures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identi�er 10.1109/TITS.2011.2122334

path [10]. However, reliable autonomous navigation outdoors
using one camera and no other sensor still remains an exciting
challenge.

One of the approaches for autonomous navigation using
monocular vision is visual path following. In visual path fol-
lowing, a path to follow can be represented by a series of
reference images and corresponding robot actions (e.g., go
forward, turn left, and turn right), as discussed in [24], where
a mobile robot navigated through indoor corridors by applying
template matching to current and reference images and using
the stored actions. However, storing the robot actions is not nec-
essary for navigation. In [33], a robot navigates a 127-m-long
path outdoors while saving only a series of images from a
camera with a �sh-eye lens. To enable pose-based control of
the robot in a global metric coordinate frame, a precise 3-D
reconstruction of the camera poses is performed of the fre-
quently (approximately every 70 cm) saved reference images.
In the 3-D reconstruction process applied to feature points of
the reference images, global bundle adjustment is used, which
results in a long (1-h) learning phase unsuitable for online use.
The length of the path measured by odometry is used to correct
the scale of the map. After learning the path, the robot can very
accurately reproduce it at a 50-cm/s velocity.
caused a problem due to covering up each tracked feature. In a
later work [5], the authors in [4] added odometry to compensate
for roll on a non�at terrain.

The work described in [15] aimed at indoor navigation
and can deal with occlusion but at the price of using 3-D
information. A local 3-D reconstruction is done between two
reference omnidirectional images. During navigation, tracked
features that have been occluded get projected back into the
current image. The recovered pose of the robot is used to guide
the robot toward the target image.
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across a multilevel resolution pyramid.5 Then, to avoid drift
accumulation, the current appearance is warped to achieve opti-
mal resemblance with the stored template image or reference.6

This alignment can be achieved by minimizing the norm of
the error image obtained by subtracting the warped current
feature from the reference [1]. Shi and Tomasi [36] have de-
scribed the warp as a 2-D affine transform. An extended warp,
which, in addition, compensates for affine photometric defor-
mations of the gray-level value in the image, has been proposed
in [17].

In the rest of this section, we first provide a formula-
tion of the general point feature tracker [1], [17], [36] in
Section III-B1, and then, in Section III-B2, we describe our
variant of the concept, with which we obtained best results.
The main changes of our final implementation with respect
to the public KLT library are outlined in Section III-B3,
whereas in Section III-B4, we summarize some computational
considerations.

1) General Differential Tracker With Warp Correction: Let
the feature in the current frame be given by I (x), its appearance
after a warp with parameters p by I W (x, p), and the corre-
sponding reference by I R(x). Then, the differential tracking
consists of finding p̂, which minimizes the norm of the error
over the feature window. We have

p̂ = arg min
p

�
x

� I W (x, p) Š I R(x)� . (3)

The minimization is performed in a Gauss–Newton style,
by employing a first-order Taylor expansion of the warped
feature around the previous approximation of p̂. This formu-
lation can be expressed in different ways [1], and here, we
present a “forward-additive” formulation, with which the best
accuracy has been obtained. In this formulation, the current
feature warped with a sum of the previous parameter vector p,
and an unknown additive improvement Δp is approximated as

I W (x, p + Δp) � I W (x, p) +
�I W

� p
· Δp. (4)

The scalar residual norm that appears in (3) can now be
represented as

R(Δp) =
�

x

� I W (x, p + Δp) Š I R(x)�

�
�

x

����I W (x, p) +
�I W

� p
· Δp Š I R(x)

���� . (5)

For clarity, we omit the arguments, denote the previous error
image as e, and introduce g as the transposed warped feature
gradient over the warp parameters. We have

R(Δp) �
�

x

� e+ g� Δp� . (6)

5We used two additional pyramid levels, which are iteratively obtained by
subsampling each second pixel in a properly smoothed image.

6During mapping, the reference is obtained by simply storing the first
appearance of the feature. During localization, the reference is taken from the
corresponding key image.

The requirement (3) can be enforced by finding a Δp̂ for
which the gradient of the residual vanishes. In case of the L2
norm, this approach is easy to perform, i.e.,

�R (Δp̂)
� Δp̂

�
�

x

2 · (e+ g� Δp̂) · g� = 0� . (7)

After transposing both ends of (7), we arrive at the final
expression for an iteration in the context of a general warp (note
that e is a scalar function) as follows:�

x

(ge+ gg� Δp̂) = 0. (8)

Thus, in each iteration, the additive improvement is calcu-
lated by solving a linear system of equations. The procedure
stops when the norm of the improvement � Δp̂� falls below a
threshold, when the new feature position falls outside the image
bounds, or when the determinant |gg� | becomes very small.

2) Differential Tracker With Isotropic Scaling and Contrast
Compensation: To mitigate the danger that a physically un-
related image patch might be well transformed toward the
reference, a tradeoff between modeling power and tracking
security should carefully be chosen. For our application, a
good balance is obtained by a 5-D warp that consists of a
2-D translational offset (d), isotropic scaling (m), and the
affine contrast compensation model (�, � ) [17]. It is convenient
to express the warp in terms of geometric and photometric
components as p = (q, r), where q = (m, d), and r = (�, � ).
The warped feature is then obtained as

I W (x, p) = � · I (m � x + d) + � = U (I (T(x, q)) , r). (9)

To use the general formulation given in (8), an expression for
�I W /� p = [�U/� q �U/� r] must be derived using the chain
rule. The second term is simpler to obtain. We have

�U
� r

(I (T(x, q)) , r) = [I T 1] (10)

where I T is the current feature warped with T , I T =
I (T(x, q))). The derivative of the first term is more
involved as

�U
� q

(I (T(x, q)) , r)

=
�U
�I

(I (T(x, q)) , r) ·
�I
�T

(T(x, q)) ·
�T
� q

(x, q)

= � · I x
T ·

�
x1 1 0
x2 0 1

�
= �

�
I x
T x I x1

T I x2
T

�
(11)

where I x
T is the gradient in the feature warped by T , I x

T =
�I
�T (T(x, q))). The combined result, (10) and (11), can be
inserted into (8), with g given by

g� =
�
�I x

T x �I x1
T �I x2

T I T 1
�

. (12)

3) Implementation: Our implementation of the KLT tracker
derives from the public library maintained by S. Birchfield at
Clemson University.7 We performed several modifications to

7URL: http://www.ces.clemson.edu/~stb/klt/ [Accessed: February 22, 2011].
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Fig. 5. Point transfer problem. Given two known projections of the same
point Q onto key images A and B, �nd its projection in a current view X.
The decomposed solution of that problem is given as follows: 1) Image
correspondences are used to recover the two-view geometry (A, B); 2) the two
known projectionsqA andqB are used to triangulate the 3-D pointQ ; 3) the
two-view geometry (A, X) is recovered and put into the frame of the geometry
(A, B); and 4) the desired pointqX is obtained by projectingQ onto image X.

To perform the point transfer, we need to recover the three-view
geometry between the current image and two key images from
the map.

There are several ways of computing the three-view geome-
try, with different assumptions and performance requirements.
The golden standard method described in [16] involves bundle
adjustment with respect to the reprojection error in all views,
which may be costly for a real-time implementation. A more
suitable solution would observe that several three-view geome-
tries need to be recovered for the same key-image pair during
navigation and therefore strive to reuse precomputed two-view
geometries for such pairs. Such a decomposed solution has been
proposed in [20]. A similar approach has been employed in
this paper but within the calibrated context, i.e., by assuming
that all observed points have been expressed in normalized
coordinates9 that correspond to the case of unit focal distance
[22]. Some implementation details of our solution will be
described as follows.

Each of the two geometries (A, B) and (A, X) (see Fig. 5)
is independently recovered. The two essential matrices are
estimated by the random sampling scheme MLESAC [38],
using the recent �ve-point algorithm [29] as the generator of
motion hypotheses. The implementation employed has been
provided within the libraryVW3410 maintained at the Imperial
College, London, U.K.. The decomposition of the essential
matrix into motion components is performed next, followed by
the triangulation of 3-D points [16].

Consequently, the geometries (A, B) and (A, X) (see Fig. 5)
are expressed in the common frame. In the calibrated context,
the adjustment involves the estimation of only one parameter
(scale), whereas in the projective context, the ambiguity has
4 degrees of freedom (DOFs) [20]. The scale factor between
two metric frames is estimated by requiring that pairs of corre-
sponding points visible in both frames have the same depth. In

9We employ the usual model for transforming pixels into normalized coordi-
nates that comprise a 5-DOF linear transformation and the fourth-order radial
distortion model [41]. We recovered calibration parameters for our cameras by
employing our own implementation of the procedure with a planar calibration
target as described in [41].

10URL http://www.doc.ic.ac.uk/~ajd/Scene/Release/vw34.tar.gz [Accessed:
February 22, 2011].

Fig. 6. Paths for experiments 1 and 2.

practice, different points vote for different scale factors due to
noise, but a robust result is, in the end, obtained as the median
of all individual factors.

Three-dimensional coordinates of the desired pointQ are ob-
tained by triangulating its projections onto the two key images
A and B (see Fig. 5). This approach can be performed of�ine
during mapping. The desired predictionqX of the triangulated
point Q to the current image X is �nally obtained by simple
projection.

The aforementioned prediction procedure is very sensitive
to the accuracy of the estimated two-view geometries. Thus,
it makes sense to disregard the predictions when the estimates
appear to be inaccurate with respect to the reprojection error
[16]. The reprojection error may be determined either in a
straightforward manner or, as calculated in this paper, by taking
into account the probability that a bad geometry may produce a
low reprojection error by chance (as proposed in [35]).

IV. EXPERIMENTAL RESULTS

The goal of our experiments is to explore the possibilities
and limits of the current implementation of the framework by
navigating in different scenarios, environments with different
proportions of vegetation to human made structures, and differ-
ent illumination conditions. We also explore the limit in speed
and in lateral deviation from the path. A practical application
of online mapping and autonomous parking is also given. The
results are quantitatively evaluated.

In all but the last experiment, a CyCab—a French-made four-
wheel-drive four-wheel-steered intelligent vehicle designed to
carry two passengers—was used. On our CyCab, all compu-
tations, except for the low-level control, were carried out on
a laptop with a 2-GHz Pentium M processor. A 70� �eld of
view, forward looking, B&W Allied Vision Marlin (F-131B)
camera was mounted on the robot at a 65-cm height. Except
for experiment 3, the camera was used in the autoshutter mode,
with the rest of the settings constant. During all experiments
(except the last experiment), no software parameters were
changed, except for the forward and turning speed. Mapping
has been performed of�ine, except in experiment 6. The image
resolution in the experiments was 320× 240. Tracked feature
patch sizes were 15× 15 pixels.
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Fig. 8. Every second frame of a sequence from experiment 1 demonstrates robust feature (light colored crosses) tracking resumption after occlusion by a passing
car.

Fig. 9. Navigation results in experiment 2 (left) using a map created four
months earlier. As shown in the proportion of black and lighter colored dots,
CyCab completed about 80% of the path. A successfully repeated experiment
(right) with a new map suggests the previous experiment failed near the end
because of large changes in the appearance of the environment.

Fig. 10. Large difference in illumination and vegetation between a four-
month-old reference image (left) and a current image used during navigation
in experiment 2.

Fig. 11. Difference between the reference image (left) and current image
(right) in experiment 2, which the vision system could no longer handle. Notice
the missing �owers in the �owerbed.

points in Fig. 14, e.g., at the right bottom part of the path.
In this case, the 3-D pose error resulted in an early switching
of a few reference images during turning and, subsequently,
following the learned path with a 1-m lateral error for a short
section of the path. Other than this case, CyCab performed
excellently, even when the sun was shining into its camera, as
shown in Fig. 15. With seamless motion over the �rst and �nal
reference frames, CyCab demonstrated that the framework does
not require global consistency in the 3-D reconstruction.

Fig. 12. CyCab autonomously drives on the narrow path in experiment 2.

Fig. 13. Path for experiment 3.

Fig. 14. Larger noise in the reconstructed robot poses, where all features are
far away in experiment 3.

Fig. 15. Sun shines into the camera in the reference image (left) but not in the
current image (right) during navigation in experiment 3.


