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Figure 1: Nonrigidly deformable random dot markers. (a) For an input image, (b) the deformed surface of a marker is recovered from keypoint
correspondences using random dots, (c) texture is overlaid on the deformed surface.

ABSTRACT

We extend planar fiducial markers using random dots [8] to non-
rigidly deformable markers. Because the recognition and tracking
of random dot markers are based on keypoint matching, we can
estimate the deformation of the markers with nonrigid surface de-
tection from keypoint correspondences. First, the initial pose of
the markers is computed from a homography with RANSAC as a
planar detection. Second, deformations are estimated from the min-
imization of a cost function for deformable surface fitting. We show
augmentation results of 2D surface deformation recovery with sev-
eral markers.

Index Terms: H.5.1 [INFORMATION INTERFACES AND
PRESENTATION (e.g., HCI)]: Multimedia Information Systems—
Artificial, augmented, and virtual realities; I.4.8 [IMAGE
PROCESSING AND COMPUTER VISION]: Scene Analysis—
Tracking

1 INTRODUCTION

Fiducial markers have been utilized in a wide field of research.
For example, the initialization of a camera pose in visual SLAM
can be done with a marker to estimate a known scale. Studies on
mixed/augmented reality have also been proposed such that a cam-
era pose with respect to real world can be estimated to overlay vir-
tual objects with geometrical consistency. Thanks to their simplic-
ity of use, the stability of recognition and tracking process, up to
now fiducial markers have been a useful tool and will continue to
be utilized in the future as well.

The shape of planar fiducial markers was generally square with
a black frame such as ARToolKit [3] and ARTag [1]. As another
type of fiducial marker, random dot markers were proposed [8].
Compared with traditional square markers, the flexibility of design
and the occlusion robustness were improved. However, random dot
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markers should still be planar as well as traditional markers. In or-
der to enhance the functionality of fiducial markers, we propose an
approach for recognizing and tracking nonrigidly deformable ran-
dom dot markers.

2 RELATED WORKS

The world first AR system with fiducial markers was developed by
Rekimoto [7]. The markers had a black and white coded square pat-
tern inside a black frame and were recognized by decoding the pat-
tern. The shape of binary pattern can be replaced with hexagon [9],
circle [4] and frame [10]. Generally, such square markers are not
able to be deformed because the pose of the markers is computed
from the position of the four corners using homography.

Random dot markers have been developed to relax the con-
straints for the design and usability of fiducial markers [8]. Each
dot is first extracted with binarization and utilized as a keypoint.
The recognition and tracking of the markers are based on key-
point matching using local geometrical relationship of keypoints
with LLAH (Locally Likely Arrangement Hashing) [5]. It was ex-
perimentally confirmed that 40 random dots per marker were dis-
tinguishable enough for recognizing 1000 markers. Because the
augmentation of a deformed surface can be useful for several AR
systems, we extend this work to deformable random dot markers.

3 DETECTING AND TRACKING DEFORMATION

In this section, we describe the procedure of recognizing the mark-
ers and tracking their deformation.

3.1 Nonrigid Surface Recovery

Zhu and Lyu nicely formulated the problem of nonrigid surface re-
covery from keypoint correspondences such that the shape of 2D
nonrigid surface could be computed by solving two linear equations
with the finite number of iteration [11]. The complexity of its com-
putation is equivalent to one Newton optimization step. Because of
low computational cost and the simplicity of the implementation,
we incorporate this method into our approach.



3.2 Setup

As in [8], we first generate random dots without any overlay. In
a keypoint database, the geometrical descriptors of each dot are
stored. In addition, we decide the number of triangles and their
size on a mesh as illustrated in Figure 2. The number of triangles is
closely correlated with computational cost for recovering the shape.

Figure 2: Mesh on a marker. A marker is represented by triangles
with hexagonally connected vertices. The more the number of trian-
gles increases, the more computational power is required.

3.3 Recognizing and Tracking Multiple Markers

For marker recognition, a marker is initially set as a plane and rec-
ognized by computing RANSAC based homography as in [8]. Once
a marker is recognized, the detected plane is utilized as the refer-
ence plane for the Zhu’s method [11].

During tracking the deformation of a marker, the keypoints in
a current image is matched with those in the previous image us-
ing LLAH [5]. From these correspondences, we estimate the sur-
face shape only with one iteration in the optimization of the Zhu’s
method because the deformation between consecutive images is
small. This continuous estimation of the surface shape works as
the tracking of marker deformation. As illustrated in Figure 3 (a)
and (b), the marker shape can nonrigidly be deformed. We can con-
sider that tracking fails when the number of inliers is lower than
a threshold because the Zhu’s method returns the inliers from the
keypoint correspondences.

The overall procedure for recognizing and tracking multiple
markers is as follows. First, all keypoints extracted in an image
are matched with a keypoint database as marker recognition. To
recognize multiple markers simultaneously, RANSAC based ho-
mography is computed for several candidates of markers that have
enough correspondences as in [8]. Once markers are recognized,
the keypoints in those markers are tracked by matching with the
keypoints in the next frame using LLAH. For the remaining of the
keypoints, that are not tracked in the image, marker recognition is
again performed to find new markers. As illustrated in Figure 3 (c),
multiple markers can simultaneously be recognized and tracked.

Note that the computational cost for recognizing one marker is
not much affected by the number of markers registered in a database
because LLAH utilizes a hash scheme for finding a keypoint corre-
spondence from the database [5]. The cost is mainly affected by
the number of keypoints extracted in an image. This means that the
cost increases when the number of markers captured in an image
increases. Tracking the deformation of one marker can run over 30
frames per second on an Intel Core i7 M620 (2.67GHz).

4 CONCLUSION

We proposed an approach for recognizing and tracking multiple de-
formable fiducial markers using random dots. Because our marker
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Figure 3: Augmentation results. A marker can nonrigidly be de-
formed as (a) and (b). (c) Multiple markers can simultaneously be
recognized and tracked.

system is based on keypoint matching, we utilized nonrigid sur-
face recovery from keypoint correspondences as considered in [11].
Other methods for nonrigid surface recovery such as [6] and [2] can
also be applicable to our approach.

One of the future works is the retexturing of the surface con-
sidering lighting conditions as in [11]. The quality of retexturing
random dot markers will be good because random dots can easily
be removed by covering the dots with the color of the background.
Also, we will develop some applications such that a virtual cloth
can be overlaid on a white shirt with random black dot as an AR
clothing system.
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